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The Conway–Maxwell–Poisson Distribution

While the Poisson distribution is a classical statistical model for count data, the distribu-
tional model hinges on the constraining property that its mean equals its variance. This
text instead introduces the Conway–Maxwell–Poisson distribution and motivates its use
in developing flexible statistical methods based on its distributional form.

This two-parameter model not only contains the Poisson distribution as a special
case but, in its ability to account for data over- or under-dispersion, encompasses both
the geometric and Bernoulli distributions. The resulting statistical methods serve in a
multitude of ways, from an exploratory data analysis tool to a flexible modeling impetus
for varied statistical methods involving count data.

The first comprehensive reference on the subject, this text contains numerous illus-
trative examples demonstrating R code and output. It is essential reading for academics
in statistics and data science, as well as quantitative researchers and data analysts in
economics, biostatistics and other applied disciplines.

K I M B E R L Y F. S E L L E R S is Professor in the Department of Mathematics and Statis-
tics at Georgetown University and a researcher at the U.S. Census Bureau. Her work
has contributed to count data research and software for the last 15 years. She is a Fel-
low of the American Statistical Association and an Elected Member of the International
Statistical Institute.
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Preface

Welcome to The Conway–Maxwell–Poisson Distribution – the first co-
herent introduction to the Conway–Maxwell–Poisson distribution and its
contributions with regard to statistical theory and methods. This two-
parameter model not only serves as a flexible distribution containing the
Poisson distribution as a special case but also, in its ability to capture either
data over- or under-dispersion, it contains (in particular) two other classi-
cal distributions. The Conway–Maxwell–Poisson distribution thereby can
effectively model a range of count data distributions that contain data over-
or under-dispersion, simply through the addition of one parameter. This
distribution’s flexibility offers numerous opportunities with regard to statis-
tical methods development. To date, such efforts involve work in univariate
and multivariate distributional theory, regression analysis (including spa-
tial and/or temporal models, and cure rate models), control chart theory,
and count processes. Accordingly, the statistical methods described in this
reference can effectively serve in a multitude of ways, from an exploratory
data analysis tool to an appropriate, flexible count data modeling impetus
for a variety of statistical methods involving count data.

The Conway–Maxwell–Poisson Distribution can benefit a broad
statistical audience. This book combines theoretical and applied data
developments and discussions regarding the Conway–Maxwell–Poisson
distribution and its significant flexibility in modeling count data, where
this reference adopts the convention that the counting numbers are the
natural numbers including zero, i.e. N = {0, 1, 2, . . .}. Count data mod-
eling research is a topic of interest to the academic audience, rang-
ing from upper-level undergraduates to graduate students and faculty
in statistics (and, more broadly, data science). Meanwhile, the com-
pelling nature of this topic and the writing format of the reference

xxi



xxii Preface

intend to draw quantitative researchers and data analysts in applied dis-
ciplines, including business and economics, medicine and public health,
engineering, psychology, and sociology – broadly anyone interested in
its supporting computational discussions and examples using R. This
reference seeks to assume minimal prerequisite statistics coursework/
knowledge (e.g. calculus and a calculus-based introduction to probability
and statistics that includes maximum likelihood estimation) throughout the
book. More advanced readers, however, will benefit from additional knowl-
edge of other subject areas in some chapters, for example, linear algebra or
Bayesian computation.

Along with this reference’s discussion of flexible statistical methods
for count data comes an accounting of available computation packages
in R to conduct analyses. Accordingly, preliminary R knowledge will also
prove handy as this reference brings to light the various packages that ex-
ist for modeling count data via the Conway–Maxwell–Poisson distribution
through the relevant statistical methods. The Comprehensive R Archive
Network (CRAN) regularly updates its system. In the event that any pack-
age discussed in this reference is subsequently no longer directly accessible
through the CRAN, note that it is archived and thus still accessible for
download and use by analysts.
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1

Introduction: Count Data Containing
Dispersion

This chapter is an overview summarizing relevant, established, and well-
studied distributions for count data that motivate the consideration of the
Conway–Maxwell–Poisson (COM–Poisson) distribution. Each of the dis-
cussed models provides an improved flexibility and computational ability
for analyzing count data; yet associated restrictions help readers to appre-
ciate the need for and usefulness of the COM–Poisson distribution, thus
resulting in an explosion of research relating to this model. For complete-
ness of discussion, each of these sections includes discussion of the relevant
R packages and their contained functionality to serve as a starting point for
forthcoming discussions throughout subsequent chapters. Along with the R
discussion, illustrative examples aid readers in understanding distribution
qualities and related statistical computational output. This background pro-
vides insights into the real implications of apparent data dispersion in count
data models and the need to properly address it.

This introductory chapter proceeds as follows. Section 1.1 introduces
the most well-known model for count data: the Poisson distribution. Its
probabilistic and statistical properties are discussed, along with R tools to
perform computations. Section 1.2, however, notes a major limitation of
the Poisson distribution – namely its inability to properly model dispersed
count data. Focusing first on the phenomenon of data over-dispersion, this
section focuses attention on the negative binomial (NB) distribution – the
most popular count distribution that allows for data over-dispersion. Sec-
tion 1.3 meanwhile recognizes the existence of count data that express data
under-dispersion and the resulting need for model consideration that can ac-
commodate this property. While several flexible models allowing for data
over- or under-dispersion exist in the literature, this section focuses atten-
tion on the generalized Poisson (GP) distribution for modeling such data
because it is arguably (one of) the most popular option(s) for modeling

1
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such data. Section 1.4 offers an overarching perspective about these models
as special cases of a larger class of weighted Poisson distributions. Finally,
Section 1.5 motivates an interest in the COM–Poisson distribution and sum-
marizes the rest of the book, including the unifying background that will be
referenced in subsequent chapters.

1.1 Poisson Distribution

The Poisson distribution is the most studied and applied distribution ref-
erenced to describe variability in count data. A random variable X with a
Poisson(λ) distribution has the probability mass function

P(X = x) = λxe−λ

x! , x = 0, 1, 2, . . . , (1.1)

or, on the log-scale,

ln [P(X = x)] = x ln λ− ln (x!) − λ

= x ln λ−
x∑

j=1

ln (j) − λ,

where λ is the associated intensity parameter; illustrative examples of the
distributional form assuming various values of λ are provided in Figure 1.1.

Derived as the limiting distribution of a binomial(n, p) distribution where
n → ∞ and p → 0 such that np = λ, the beauty of this distribution lies in
its simplicity. Both its mean and variance equal the intensity parameter λ;
thus, the dispersion index is

DI(X) = V(X)

E(X)
= λ

λ
= 1. (1.2)

The probability mass function satisfies the recursion

P(X = x − 1)

P(X = x)
= x

λ
, (1.3)

with its moment generating function MX(t) = eλ(et−1), and the Poisson
distribution is a member of the exponential family of the form

P(X = x; θ) = H(x) exp [η(θ)T(x) −�(θ)], x ∈ N, (1.4)

where, for θ = λ, η(θ) = ln (λ), �(θ) = λ, T(x) = x, and H(x) = (x!)−1.
The simplicity of the Poisson distribution, however, can also be viewed as
theoretically constraining and not necessarily representative of real count
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Figure 1.1 Poisson probability mass function illustrations for λ ∈ {0.3, 1, 3, 10}.

data distributions. Thus, applying statistical methods that are motivated
and/or developed by the Poisson model assumption can cause significant
repercussions with regard to statistical inference. This matter is discussed
in more detail in the subsequent sections in Chapter 1 and throughout this
reference.
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1.1.1 R Computing

The stats package contains functions to compute the probability, distribu-
tion function, quantile function, and random number generation associated
with the Poisson distribution. All of the relevant commands require the
Poisson rate parameter λ (lambda) as an input value. The dpois func-
tion computes the probability/density P(X = x) for a random variable X
at observation x. The command has the default setting as described (log
= FALSE), while changing the indicator input to log = TRUE computes
the probability on the natural-log scale. The ppois function computes the
cumulative probability P(X ≤ q) given a quantile value q, while qpois
determines the quantile q (i.e. the smallest integer) for which the cumula-
tive probability P(X ≤ q) ≥ p for some given probability p. This quantile
determination stems from the discrete nature of the Poisson probability
distribution. Both commands contain the default settings lower.tail =
TRUE and log.p = FALSE. The condition lower.tail = TRUE infers in-
terest regarding the cumulative probability P(X ≤ q) while lower.tail
= FALSE focuses on its complement P(X > q) (i.e. the upper tail). The
indicator log.p = FALSE (TRUE) meanwhile infers whether to consider
probabilities on the original or natural-log scale, respectively. Finally, the
rpois function produces a length n (n) vector of count data randomly
generated via the Poisson distribution.

Demonstrative examples utilizing the respective functions are pro-
vided in Code 1.1, all of which assume the Poisson rate param-
eter λ= 3. The command dpois(x=5, lambda=3) determines that
P(X = x) = 0.1008188; this value is illustrated in Figure 1.1 for
λ= 3. Meanwhile, dpois(x=5, lambda=3, log = TRUE) shows that
ln (P(X = x)) = ln (0.1008188) = − 2.29443. The ppois functions demon-
strate the difference between computing the lower versus upper tail,
respectively; naturally, the sum of the two results equals 1. The com-
mand qpois(p=0.9, lambda=3) produces the expected result of 5 be-
cause we see that the earlier ppois(q=5, lambda=3) result showed that
P(X ≤ 5) = 0.9160821> 0.9. Meanwhile, one can see that qpois(p=0.9,
lambda=3, lower.tail = FALSE) produces the value 1 by considering
the corresponding ppois commands:

ppois(q=0, lambda=3, lower.tail=FALSE) produces the result 0.9502129
ppois(q=1, lambda=3, lower.tail=FALSE) produces the result 0.8008517.

Recall that the discrete nature of the Poisson distribution requires a mod-
ified approach for determining the quantile value; the resulting quantile is
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Code 1.1 Examples of R function use for Poisson distributional computing:
dpois, ppois, qpois, rpois.

> dpois (x=5, lambda =3)
[1] 0.1008188
> dpois (x=5, lambda =3, log = TRUE)
[1] -2.29443
> ppois (q=5, lambda =3)
[1] 0.9160821
> ppois (q=5, lambda =3, lower .tail = FALSE )
[1] 0.08391794
> qpois (p=0.9 , lambda =3)
[1] 5
> qpois (p=0.9 , lambda =3, lower .tail = FALSE)
[1] 1
> rpois (n=10, lambda =3)

[1] 3 4 3 5 2 0 5 5 4 3

determined such that the cumulative probability of interest is at least as
much as the desired probability of interest. This definition suggests that,
when considering the upper tail probability, the resulting quantile now
implies that the corresponding upper tail probability is no more than the
desired probability of interest. As noted above, P(X > 0) = 0.9502129 and
P(X > 1) = 0.8008517; because the desired upper tail probability in the
example is 0.9, we see that 0 produces an upper tail probability that is too
large for consideration, while the upper tail probability associated with 1 is
the first integer that satisfies P(X > x) ≤ 0.9, thus producing the solution
as 1. Finally, for completeness, the rpois function produces 10 randomly
generated potential observations stemming from a Poisson(3) distribution.
Given the probability mass function illustration provided in Figure 1.1 for
λ = 3, these outcomes appear reasonable.

1.2 Data Over-dispersion

Over-dispersion (relative to a comparable Poisson model) describes distri-
butions whose variance is larger than the mean, i.e. DI(X)> 1 for a random
variable X. This is a well-studied phenomenon that occurs in most real-
world datasets. Over-dispersion can be caused by any number of situations,
including data heterogeneity, the existence of positive correlation between
responses, excess variation between response probabilities or counts, and
violations in data distributional assumptions. Apparent over-dispersion can
also exist in datasets because of outliers or, in the case of regression
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models, the model may not include important explanatory variables or a
sufficient number of interaction terms, or the link relating the response
to the explanatory variables may be misspecified. Under such circum-
stances, over-dispersion causes problems because resulting standard errors
associated with parameter estimation may be underestimated, thus pro-
ducing biased inferences. Interested readers should see Hilbe (2007) for
a comprehensive discussion regarding over-dispersion and its causes.

The most popular distribution to describe over-dispersed data is the NB
distribution. A random variable X with an NB(r, p) distribution has the
probability mass function

P(X = x) =
(

r + x − 1

x

)

px(1 − p)r (1.5)

= �(r + x)

x!�(r)
px(1 − p)r, x = 0, 1, 2, . . . , (1.6)

and can be viewed as the probability of attaining a total of x successes
with r > 0 failures in a series of independent Bernoulli(p) trials, where
0 < p < 1 denotes the success probability associated with each trial.
Alternatively, the NB distribution can be derived via a mixture model of
a Poisson(λ) distribution, where λ is gamma distributed1 with shape and
scale parameters, r and p/(1 − p), respectively. The latter approach is a
common technique for addressing heterogeneity. Other possible distribu-
tions for λ include the generalized gamma (which produces a generalized
form of the NB distribution (Gupta and Ong, 2004)), the inverse Gaussian,
and the generalized inverse Gaussian (which produces the Sichel distribu-
tion (Atkinson and Yeh, 1982; Ord and Whitmore, 1986)). Various other
mixing distributions have also been considered; see Gupta and Ong (2005)
for discussion.

The moment generating function of the NB(r, p) random variable X is

MX(t) =
(

p

1 − (1 − p)et

)r

, t < − ln (1 − p),

1 For a gamma(α,β) distributed random variable X with shape and scale parameters α and
β, respectively, its probability density function (pdf) is f (x) = 1

�(α)βα xα−1e−x/β (Casella
and Berger, 1990).
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which produces a respective mean and variance,

μ
.= E(X) = r(1 − p)

p
and (1.7)

V(X) = r(1 − p)

p2
= μ+ 1

r
μ2, (1.8)

where r > 0 can be viewed as a dispersion parameter. Given the dispersion
parameter r, this distribution can be represented as an exponential family
(Equation (1.4)), where θ = p, H(x; r) = (r+x−1

x

)
, T(x) = x, η(p) = ln p,

and ψ(p; r) = r ln (1 − p). Equation (1.8) demonstrates that the NB dis-
tribution can accommodate data over-dispersion (DI(X) > 1) because one
can clearly see that the distribution’s variance is greater than or equal to
its mean since r > 0. Further, the NB distribution contains the Poisson
as a limiting case; as r → ∞ and p → 1 such that r(1 − p) → λ,
0 < λ <∞, not only do the NB mean and variance both converge to λ, but
the NB probabilities likewise converge to their respective Poisson counter-
parts. Figure 1.2 illustrates the distributional convergence of the NB(r, p)
to the Poisson(λ = 3) distribution, where r → ∞ and p → 1 such that
r(1 − p) = 3. The NB distribution likewise contains the geometric(p) as a
special case when r = 1.

The NB distribution can alternatively be represented as NB(r, r/(r +μ))
with the probability mass function

P(X = x) =
(

x + r − 1

x

)(
r

r + μ
)x (

μ

r + μ
)r

, x = 0, 1, 2, . . . , (1.9)

where r > 0,μ > 0; this formulation explicitly has a meanμ and a variance
μ+ μ2/r. The MASS package in R utilizes this parametrization and defines
the dispersion parameter as theta such that V(X) = μ+ μ2/θ , i.e. θ

.= r;
we will revisit this in Chapter 5. While the NB distribution has been well
studied and statistical computational ability is supplied in numerous soft-
ware packages (e.g. R and SAS), an underlying constraint regarding the NB
distribution leads to its inability to address data under-dispersion (i.e. the
dispersion index is less than 1, or the variance is smaller than the mean).

1.2.1 R Computing

The stats package provides functionality for determining the probability,
distribution function, quantile function and random number generation for
the NB distribution. These commands all require the inputs size (r) and
either the success probability p (prob) or mean μ (mu), depending on the
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NB(r = 300, p = 0.99)
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Figure 1.2 Negative binomial distribution illustrations for values of (r, p) ∈
{(5, 0.4), (10, 0.7), (15, 0.8), (60, 0.95), (300, 0.99)} and the Poisson(λ = 3) prob-
ability mass function. This series of density plots nicely demonstrates the distribu-
tional convergence of the negative binomial to the Poisson as r → ∞ and p → 1
such that r(1 − p) → λ.

choice of parametrization. The function dnbinom computes the probability
P(X = x) for a random variable X at observation x, either on the original
scale (log = FALSE; this is the default setting) or on a natural-log scale
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Code 1.2 Examples of R commands for NB distributional computing: dnbinom,
pnbinom, qnbinom, rnbinom.

> dnbinom (x=5, size =10, prob =0.7)
[1] 0.1374203
> dnbinom (x=5, size =10, prob =0.7 , log = TRUE)
[1] -1.984712
> pnbinom (q=5, size =10, prob =0.7)
[1] 0.7216214
> pnbinom (q=5, size =10, prob =0.7 , lower .tail = FALSE )
[1] 0.2783786
> qnbinom (p=0.9 , size =10, prob =0.7)
[1] 8
> qnbinom (p=0.9 , size =10, prob =0.7 , lower .tail = FALSE)
[1] 1
> rnbinom (n=10, size =10, prob =0.7)

[1] 1 8 7 3 5 8 4 2 5 3

(log = TRUE). For a given quantile value q, the pnbinom function deter-
mines the cumulative probability P(X ≤ q), where the default settings,
lower.tail = TRUE and log.p = FALSE, imply that the resulting cu-
mulative probability is attained by accumulating the probability from the
lower tail and on the original probability scale. The command qnbinom
meanwhile determines the smallest discrete quantile value q that satisfies
the cumulative probability P(X ≤ q) ≥ p for a given probability p. This
function likewise assumes the default settings, lower.tail = TRUE and
log.p = FALSE, such that the quantile q is determined from the lower tail
and on the original probability scale. For both of these commands, changing
the default settings to lower.tail = FALSE and log.p = TRUE, respec-
tively allows analysts to instead consider quantile determination on the
basis of the upper tail probability P(X > q), and via a probability compu-
tation on the basis of the natural-log scale. Finally, the rnbinom function
randomly generates n (n) observations from an NB distribution with the
specified size (size) and success probability (prob).

The NB(r = 10, p = 0.7) distribution is provided in Figure 1.2 and
serves as a graphical reference for the illustrative commands featured
in Code 1.2. All of the demonstrated functions assume r = 10 and
p = 0.7 as the associated NB size and success probability parameters.
The first command (dnbinom(x=5, size=10, prob=0.7)) shows that
P(X = x) = 0.1374203; this probability is shown in the associated
plot in Figure 1.2. Meanwhile, dnbinom(x=5, size=10, prob=0.7,
log = TRUE) shows that ln (P(X = x)) = ln (0.1374203) = − 1.984712.
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The pnbinom functions show the results when computing the lower
versus upper tail, respectively; naturally, the sum of the two com-
putations equals 1. Calling qnbinom(p=0.9, size=10, prob=0.7)
produces the result 8, while qnbinom(p=0.9, size=10, prob=0.7,
lower.tail = FALSE) yields the value 1. Finally, the rnbinom com-
mand produces 10 randomly generated potential observations stemming
from an NB(r = 10, p = 0.7) distribution.

1.3 Data Under-dispersion

Where data over-dispersion describes excess variation in count data, under-
dispersion describes deficient variation in count data. Data under-dispersion
(relative to the Poisson model) refers to count data that are distributed
such that the variance is smaller than the mean, i.e. its dispersion index
DI(X) < 1 for a random variable X.

There remains some measures of debate regarding the legitimacy of
data under-dispersion as a real concept. Some researchers attribute under-
dispersion to the data generation (e.g. small sample values) or to the
modeling process (e.g. model over-fitting), noting that the arrival process,
birth–death process, or binomial thinning mechanisms can also lead to
under-dispersion (Kokonendji, 2014; Lord and Guikema, 2012; Puig et al.,
2016). As an example, for renewal processes where the distribution of
the interarrival times has an increasing hazard rate, the distribution of the
number of events is under-dispersed (Barlow and Proschan, 1965). Efron
(1986), however, argues that “there are often good physical reasons for not
believing in under-dispersion, however, especially in binomial and Poisson
situations.”

Whether real or apparent, examples across disciplines are surfacing with
more frequency where data under-dispersion is present; thus there exists the
need to represent such data. The most popular model that can accommodate
data dispersion (whether over- or under-dispersion) is the GP distribution –
a flexible two-parameter distribution that contains the Poisson distribution
as a special case (Consul, 1988). A random variable X that is GP(λ1, λ2)
distributed has the probability mass function

P(X = x)=
⎧
⎨

⎩

λ1(λ1 + λ2x)x−1

x! exp ( − λ1 − λ2x), x = 0, 1, 2, . . .

0, x ≥ m where λ1 + λ2m ≤ 0

(1.10)
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for λ1 > 0 and −1 < λ2 < 1 (Consul and Jain, 1973). This distribution has
the respective mean and variance,

E(X) = λ1

1 − λ2
(1.11)

V(X) = λ1

(1 − λ2)3
, (1.12)

and can accommodate any form of data dispersion via λ2. The GP(λ1, λ2)
distribution contains the special-case Poisson(λ1) distribution, where
λ2 = 0; this is the case of equi-dispersion relative to the Poisson model.
Meanwhile, for λ2> (<)0, the GP distribution accommodates data over-
dispersion (under-dispersion). Figure 1.3 illustrates various probability
mass functions for different values of λ1 and λ2 ∈ {−0.5, 0, 0.5}. These
choices for λ1 and λ2 demonstrate the change in shape and skewness for this
unimodal distribution and also illustrate the data over- or under-dispersion
as a function of λ2. The middle column of Figure 1.3 contains the respective
Poisson(λ1 = 2, 3, 6) probability distributions.

The GP distribution allows for over- or under-dispersion; however, ex-
treme under-dispersion can result in probability models that do not satisfy
the basic probability axioms (Famoye, 1993). Alternative count distribu-
tions exist that allow for data under-dispersion, such as the condensed
Poisson, the Gamma count, and the double Poisson distributions; see
Sellers and Morris (2017) for discussion regarding these distributions.
Nonetheless, the GP distribution maintains its status as a very popular and
well-studied count distribution that allows for data dispersion.

1.3.1 R Computing

The GP distribution is a popular model for describing count data that
express either over- or under-dispersion, and this is reflected through
the multiple R packages available for statistical computing. Basic func-
tionality exists in the packages HMMpa (Witowski and Foraita, 2018),
LaplacesDemon (Statisticat and LLC., 2021), and RNGforGPD (Li et al.,
2020), while commands to conduct GP regression are available in the VGAM
(Yee, 2008) package.

The HMMpa and LaplacesDemon packages each contain commands
that can compute the probability mass function of a GP distribution.
HMMpa provides the dgenpois(x, lambda1, lambda2) function, where
lambda1 and lambda2 are λ1 and λ2 as defined in Equation (1.10).
LaplacesDemon meanwhile contains the function dgpois(x, lambda,
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Figure 1.3 Generalized Poisson probability mass function illustrations for values
of λ1 > 0, and dispersion parameter λ2 ∈ {−0.5, 0, 0.5}. For λ1 > 0 and −1 <
λ2 < 1 such that λ2 > (<)0 denotes data over-dispersion (under-dispersion), the
generalized Poisson distribution has the mean E(X) = λ1

1−λ2
and variance V(X) =

λ1
(1−λ2)3 .
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omega, log=FALSE) that computes the probability mass function via an
alternate parametrization, namely

P(X = x) = λ(1 − ω)[λ(1 − ω) + ωx]x−1

x! exp (− λ(1 − ω) − ωx),

x = 0, 1, 2, . . . , (1.13)

for parameters λ > 0 and 0 ≤ ω < 1 (as reported in Statisticat and LLC.
(2021)). Under this parametrization, ω = 0 reduces the GP distribution
to the Poisson(λ) distribution. Equations (1.10) and (1.13) are equivalent
with λ1 = λ(1 − ω) and λ2 = ω. The dgpois logical input log deter-
mines whether the probability mass function is provided on the original
(log=FALSE; this is the default) or natural-log (log=TRUE) scale. The two
functions dgenpois and dgpois produce identical outcomes for lambda1
= lambda(1-omega) and lambda2 = omega for appropriate values of x.

While dgenpois and dgpois both have the capability to compute
P(X = x) for a GP Poisson random variable X, these functions should be
used with caution. The GP parametrization that motivates dgpois stems
from an applied focus involving claim count data with the argument that
such data are not commonly under-dispersed so that distributional focus
assumes nonnegative ω (Ntzoufras et al., 2005). Equation (1.13) thus has a
mean and variance

E(X) = λ (1.14)

V(X) = λ

(1 − ω)2
(1.15)

that results in the dispersion index, DI(X) = 1/(1 − ω)2 ≥ 1. The dgpois
function, however, appears to accurately compute probabilities associated
with data under-dispersion (i.e. satisfying −1 < ω < 0); hence analysts
can safely maintain |ω| < 1. The dgenpois function meanwhile computes
the first component of Equation (1.10) (i.e. λ1(λ1+λ2x)x−1

x! exp ( −λ1 −λ2x) for
x = 0, 1, 2, . . .); however, it does not set P(X = x) = 0 for those x ≥ m,
where λ1 +λ2m ≥ 0. As a result, the function can compute extraneous out-
put; Figure 1.4 provides an illustrative example. As demonstrated in Figure
1.4(a), because the dgenpois function does not properly account for values
x ≥ m, where λ1 + λ2m ≥ 0 for some m, the resulting outcomes defy the
probability axioms. In this illustration, we see that m = 6; thus P(X = x)
should equal 0 for x ≥ 6. Reported computations for x > 6, however,
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Figure 1.4 The probability mass function P(X = x) created for x ∈ {0, . . . , 20}
for a generalized Poisson distribution (a) via dgenpois (HMMpa) with λ1 = 3,
λ2 = −0.5; and (b) via dgpois (LaplacesDemon) with λ = 2, ω = −0.5. The
resulting plots should be identical because λ1 = λ(1 − ω) and λ2 = ω.

instead bifurcate between outcomes that increase in absolute value, whether
negative or positive (thus further producing outcomes that are greater than
1); both of these scenarios contradict probability axioms. Thus, in order to
get the dgenpois function to provide appropriate output, it is important to
insert the condition (lambda1+lambda2*x) >= 0; see below for illustra-
tive R code and output that can produce probabilities as shown in Figure
1.4(b).

> x<- 0:20
> lambda1=3
> lambda2=-0.5
> ifelse((lambda1+lambda2*x) >= 0, dgenpois(x, lambda1, lambda2), 0)
[1] 0.0497870684 0.2462549959 0.4060058497 0.2510214302 0.0459849301
[6] 0.0009477042 0.0000000000 0.0000000000 0.0000000000 0.0000000000

[11] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
[16] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
[21] 0.0000000000

The command dgpois(x=0:20, lambda=2, omega=-0.5) likewise
produces Figure 1.4(b); this is because dgpois properly detects the need to
set P(X = x) = 0 for x ≥ 7. This function, however, does so by producing
a warning and NaNs as outcomes for those probabilities P(X = x), x ≥ m2

for some m2 such that λ1 + λ2m2 = λ(1 −ω) +ωm2 < 0; see the following
illustration for details. The term λ(1 −ω) +ωx is defined as lambda.star
in the dgpois function and is referenced in the following warning message.
In this example, x ≥ 7 produces NaN (i.e. in the eighth position).
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> dgpois(x=0:20, lambda=2, omega=-0.5)
[1] 0.0497870684 0.2462549959 0.4060058497 0.2510214302 0.0459849301
[6] 0.0009477042 0.0000000000 NaN NaN NaN

[11] NaN NaN NaN NaN NaN
[16] NaN NaN NaN NaN NaN
[21] NaN
Warning message:
In log(lambda.star) : NaNs produced

The dgpois and dgenpois P(X = x) outputs are equivalent for x =
0, . . . , 6 (see Figure 1.4); thus both of these functions are capable of com-
puting the first condition of the GP probability mass function as shown in
Equations (1.10) and (1.13). Analysts are thus encouraged to first confirm
that the constraint λ1 + λ2x = λ(1 − ω) + ωx ≥ 0 is satisfied in order to
ensure proper GP probability computation.

HMMpa also contains the functions pgenpois and rgenpois to con-
duct cumulative probability computation and random number generation,
respectively, based on the GP distribution. Both functions require the pa-
rameter inputs lambda1 and lambda2; pgenpois needs the added input
q to determine the cumulative probability P(X ≤ q) for a quantile value q,
while rgenpois further requires the value n to obtain n randomly generated
observations from a GP(λ1, λ2) distribution. Recognizing the aforemen-
tioned issue, however, that the genpois functions contained in HMMpa do
not first constrain the support space for x such that λ1 + λ2x ≥ 0, one
should ensure that this caveat holds for any subsequent use of dgenpois
or pgenpois in order to have confidence in the resulting output. The
HMMpa function rgenpois appears to operate properly as a random num-
ber generator based on the GP distribution; the function selects proper
values associated with the true support space. The RNGforGPD package
offers alternative commands with the ability to randomly generate univari-
ate or multivariate generalized Poisson data. The GenUniGpois function
generates univariate GP data via one of five methods (inversion, build-up,
chop-down, normal-approximation, and branching) selected by the analyst.
For the given rate and dispersion parameters, theta and lambda respec-
tively, and method, GenUniGpois can generate n univariate data from
a GP(theta=λ1, lambda=λ2) distribution, where we note the aforemen-
tioned variable substitutions to adhere to Equation (1.10) for λ1 > 0 and
−λ1/4 ≤ λ2 < 1.

As with other GP representations, the RNGforGPD package recognizes
the Poisson model as a special case of the GP distribution when lambda
= λ2 = 0; under this circumstance, any data-generation method can be
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specified. Analysts should otherwise be mindful of which method is se-
lected for random number generation as constraints exist in order to ensure
performance and/or reliability. The branching method does not work for
generating under-dispersed data (thus λ2 ≥ 0), and the normal approxima-
tion approach is not necessarily reliable for λ1 < 10 (Demirtas, 2017; Li
et al., 2020). The GenMVGpois function meanwhile generates data of size
sample.size from a multivariate GP distribution with the marginal rate
and dispersion vectors theta.vec and lambda.vec, respectively, and the
correlation matrix cmat.star; see Li et al. (2020) for details.

The RNGforGPD package likewise contains the function Quantile-
Gpois that can determine the quantile q that satisfies the cumulative
probability P(X ≤ q) ≥ p for some percentile p associated with a
GP(theta=λ1, lambda=λ2) distributed random variable. This function in-
cludes the logical input details, where details=FALSE (the default
setting) reports the quantile value, and details=TRUE provides the prob-
ability P(X = x) and cumulative probability P(X ≤ x) for every x ≤ q.
When providing a negative dispersion parameter, it may be helpful to set
details=TRUE as RNGforGPD adjusts the initially provided cumulative
probabilities to account for the truncation error, and then lists the adjusted
cumulative probabilities.

1.4 Weighted Poisson Distributions

The weighted Poisson distribution is a flexible model class for count data
that can account for either over- or under-dispersion. Let Xw denote the
weighted version of a Poisson random variable X with the probability mass
function P(X = x; λ) as defined in Equation (1.1); Xw has the probability

P(Xw = x; λ) = w(x)P(X = x; λ)

Eλ(w(X))
, x = 0, 1, 2, . . . , (1.16)

where w(·) is a nonnegative weight function, and Eλ(w(X)) = ∑∞
j=0 w(j)

P(X = j; λ) > 0 is the finite expectation. The weighted Poisson is actually
a class of distributions that depends on their associated weight functions
and does not offer its own general statistical computing packages (e.g. in
R). Examples of weighted Poisson distributions include the NB and GP
distributions; Table 1.1 provides the weight functions that define several
examples of weighted Poisson models.

The weighted Poisson distribution has several interesting properties. For
a Poisson weight function having an exponential form,

w(y) = exp [rt(y)], y ∈ N,
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Table 1.1 Weight functions associated with various examples of weighted Poisson
distributions.

Distribution Weight function, w(x)

Poisson 1
negative binomial �(r + x), where r > 0

generalized Poisson
(
λ1+λ2x
λ1

)x−1
exp ( − λ2x), where λ1 > 0 and −1 < λ2 < 1

where r ∈ R and y → t(y) is a convex function (that may or may not depend
on the original Poisson parameter), r > 0 corresponds to a weighted Pois-
son distribution that is over-dispersed. Similarly, r = (<) 0 implies that it
is equi-dispersed (under-dispersed) (del Castillo and Pérez-Casany, 2005).
The random variable Xw is over-dispersed (under-dispersed) if and only if
the mean weight function Eλ(w(X;φ)) for a weight function w(x;φ) that
does not depend on the Poisson mean λ > 0 is log-convex (log-concave).
Further, Eλ(w(X;φ)) has the same direction of log-concavity as w(x;φ);
if w(x;φ) is log-convex (log-concave), then Eλ(w(X;φ)) is likewise log-
convex (log-concave). Thus, one can simply assess the shape of w(x;φ) to
determine the direction of dispersion for Xw. Accordingly, a positive weight
function’s log-concavity implies the log-concavity of the weighted Poisson
distribution; if the weight function w(x;φ) is log-concave, then the associ-
ated weighted Poisson distribution is likewise log-concave. These concav-
ity results are compelling because they imply other relationships regarding
distributional forms. Discrete log-concave distributions have an increas-
ing failure rate and are unimodal, while log-convex distributions have a
decreasing failure rate (DFR) and are infinitely divisible, thus implying
over-dispersion (Kokonendji et al., 2008). Two weighted Poisson distribu-
tions are defined as a pointwise dual pair if their respective positive Poisson
weight functions w1 and w2 satisfy w1(x)w2(x) = 1 for all x ∈ N. The dual
of weighted Poisson distributions is closed if the two distributions have dif-
fering dispersion types, i.e. one is over-dispersed (under-dispersed) and the
other is under-dispersed (over-dispersed). Further, all natural exponential
families of the form

P(X = x; θ ,φ) = �(x;φ) exp [η(θ)T(x) −�(θ ;φ)], x ∈ N, (1.17)

with a fixed φ > 0 are weighted Poisson distributions where the weight
function is w(x;φ) = x!�(x;φ), x ∈ N; however, not all weighted Pois-
son distributions have the exponential family form. The weighted Poisson
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distribution is likewise a member of an exponential dispersion family if it
satisfies the form

P(X = x; θ ,φ) = H(x;φ) exp

(
(η(θ)T(x) −�(θ ;φ))w

φ

)

. (1.18)

Weighted Poisson distributions give rise to a destructive cure rate model
framework in survival analysis. Let Mw denote the number of competing
causes associated with an event occurrence and have a weighted Poisson
distribution as defined in Equation (1.16). Given Mw, let

Dw =
{ ∑Mw

i=1 Bi Mw > 0
0 M = 0,

(1.19)

where Bi are independent and identically Bernoulli(p) distributed random
variables (independent from Mw) noting the presence (1) or absence (0) of
Cause i = 1, . . . , Mw. Dw denotes the total number of competing risks or
causes that remain viable after eradication or treatment. Accordingly, the
destructive weighted Poisson cure rate survival function is

Sp(y) = P(Y ≥ y) =
∞∑

d=0

P(Dw = d)[S(y)]d,

where Y = min (W0, W1, W2, . . . , WDw) measures the survival time based
on Dw competing risks and their independent and identically distributed
survival times S(y) (Rodrigues et al., 2011, 2012). We will revisit these
ideas in Chapter 8.

1.5 Motivation, and Summary of the Book

The Poisson distribution is a classical statistical model for modeling count
data and, because its probability mass function is the simplest distribution
for counts, is a “fan favorite” in the statistics community. Its underlying
equi-dispersion property, however, is idealistic and constraining such that
real data do not typically satisfy this attribute. Over-dispersed data are
often modeled via the NB distribution; however, it cannot address data
under-dispersion. A distribution that can effectively model data over- or
under-dispersion would be convenient for analysts because such a construct
could address any exploratory analyses regarding dispersion in a direct
sense without a priori knowledge of the dispersion type in the data. More
broadly, any statistical methods motivated and/or derived by such a dis-
tribution would likewise allow for more flexibility and thus more proper
inference. The GP distribution is a popular two-parameter distribution that
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allows for over- or under-dispersion; however, its distributional complex-
ity and inability to properly model extreme under-dispersion are troubling.
Thus, there remains the need to consider an alternate count distribution that
can likewise accommodate data over- or under-dispersion.

This book introduces the reader to the COM–Poisson distribution and
motivates its use in developing flexible statistical methods based on its
form. This two-parameter model not only serves as a flexible distribution
containing the Poisson distribution as a special case but, in its ability to
capture either data over- or under-dispersion, it contains (in particular)
two other classical distributions as special cases (namely, the geomet-
ric and Bernoulli distributions). The COM–Poisson distribution thereby
can effectively model a range of count data distributions that contain
data over- or under-dispersion, from the geometric to the Poisson to the
Bernoulli distributions, simply through the addition of one parameter. The
statistical methods described in this reference cover a myriad of top-
ics, including distributional theory, generalized linear modeling, control
chart theory, and count processes. Chapter 2 describes the COM–Poisson
distribution in further detail and discusses its associated statistical proper-
ties. It further introduces various proposed parametrizations of the model
and offers added discussion regarding the normalizing constant and its
approximations. Chapter 3 introduces readers to several distributional ex-
tensions of the COM–Poisson distribution and/or other distributions that
otherwise associate with the COM–Poisson model. Chapter 4 highlights
bivariate and multivariate count distributions that are motivated by the
COM–Poisson and discusses their respective statistical properties. Chapter
5 highlights various approaches for COM–Poisson regression under the var-
ious parametrizations, including discussions regarding model formulation
and estimation approach. It further discusses subsequent advancements,
including considerations of observation-level dispersion, additive mod-
els, and accounting for excess zeroes and/or data clustering. Chapter 6
introduces the reader to flexible control chart developments for discrete
data, including COM–Poisson-motivated generalized control charts, cumu-
lative sum charts, and generalized exponentially weighted moving average
control charts. Chapter 7 presents methods for analyzing serially depen-
dent count data via COM–Poisson-motivated stochastic processes, as well
as time series and spatio-temporal models. Finally, Chapter 8 presents
COM–Poisson-motivated cure rate models that can be used to describe
time-to-event data, thus demonstrating the use of this flexible model as
a tool in survival analysis. All of the chapters incorporate (where possi-
ble) discussions regarding statistical computations via R, thus introducing
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readers to the opportunities for data analysis via the featured R packages
and their functionality.

As demonstrated in the subsequent chapters, a great deal of work has
emerged where statistical methodologies are motivated by the COM–
Poisson distribution. The utility of the COM–Poisson distribution, however,
is not limited to these areas. Additional COM–Poisson-related works have
emerged in fields, including capture–recapture and other abundance estima-
tion methods (Anan et al., 2017; Wu et al., 2015), and disclosure limitation
(Kadane et al., 2006a). Further, the COM–Poisson distribution has been
employed in a variety of applications, including biology (Ridout and Bes-
beas, 2004), linguistics (Shmueli et al., 2005), risk analysis (Guikema and
Coffelt, 2008), transportation (Lord and Guikema, 2012; Lord et al., 2008,
2010), and marketing and eCommerce (Boatwright et al., 2003; Borle et al.,
2006, 2005, 2007).

Throughout this reference, much of the discussion focuses on parameter-
estimation techniques associated with the various statistical method devel-
opments. These approaches are relatively thematic, falling in line with one
of three approaches: maximum likelihood estimation, generalized quasi-
likelihood estimation, and Bayesian estimation (Markov Chain Monte
Carlo, Metropolis–Hastings, etc.). This reference will provide a high-level
discussion of the respective approaches as they relate to the featured con-
cepts; however, it assumes that the reader has a prerequisite, rudimentary
knowledge of these concepts.

A common theme regarding parameter estimation in this reference cen-
ters on its dependence on statistical computation to obtain results because
the COM–Poisson distribution does not have a closed form. Various op-
timization tools exist, however, to aid analysts with such issues. This
reference focuses on R tools where existing package functions or analyst-
generated codes can utilize optimization tools such as optim, nlm, or
nlminb to determine parameter estimates. Details are supplied throughout
the manuscript in relation to the respective statistical methodologies under
discussion. Meanwhile, hypothesis testing discussions generally center on
the likelihood ratio test, while other test statistics (e.g. Rao’s score test) can
likewise be considered. The likelihood ratio test statistic is

� = supθ∈�0
L(θ)

supθ∈� L(θ)
, (1.20)

where θ denotes the collection of parameters under consideration, and
�0 and � represent the parameter space under the null hypothesis and
in general, respectively; as n → ∞, −2 ln� converges to a chi-squared
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Table 1.2 Levels of model support based on
AIC difference values, �i = AICi − AICmin,
for Model i (Burnham and Anderson, 2002).

�i Empirical support level for Model i

[0, 2] Substantial
[4, 7] Considerably less
(10, ∞) Essentially none

distribution. Tests about a boundary condition under the null hypothesis
meanwhile produce a likelihood ratio test statistic whose asymptotic dis-
tribution is based on the equally weighted sum of a point mass and the
cumulative probability of a chi-squared distribution (i.e. 0.5 + 0.5χ2) (Self
and Liang, 1987). For example, a common interest is to test for statisti-
cally significant dispersion where the dispersion parameter may be bounded
by 0; this test is introduced in Section 2.4.5 and noted throughout subse-
quent chapters in this reference as the implications of this test relate to the
corresponding chapter content.

Discussions will also include model comparisons to demonstrate and
substantiate the COM–Poisson model’s importance and flexibility. The
Akaike information criterion (AIC) and the Bayesian information criterion
(BIC) are two popular measures used for model comparisons, where

AIC = −2 ln (L) + 2k and BIC = −2 ln (L) + k ln (n)

for a model’s maximized likelihood value L, number of parameters k, and
sample size n. For a collection of considered models, the selected model is
desired to have the minimum AIC or BIC, respectively. In particular, this
reference adopts the Burnham and Anderson (2002) approach for model
comparison, where models are compared via the AIC and relative perfor-
mance is measured via AIC difference values �i = AICi − AICmin, where
AICi denotes the AIC associated with Model i, and AICmin is the minimum
AIC among the considered models. Table 1.2 supplies the levels of model
support based on recommended �i ranges.



2

The Conway–Maxwell–Poisson
(COM–Poisson) Distribution

Conway and Maxwell (1962) developed what is now referred to as the
Conway–Maxwell–Poisson (abbreviated as COM–Poisson or CMP in the
literature) distribution as a more flexible queuing model to allow for state-
dependent service rates. While this is a significant contribution to the field
of count distributions, it did not gain notoriety in the statistics commu-
nity until Shmueli et al. (2005) studied its probabilistic and statistical
properties. This chapter defines the COM–Poisson distribution in greater
detail, discussing its associated attributes and computing tools available
for analysis. Section 2.1 details how the COM–Poisson distribution was
derived, highlighting the underlying queuing model under consideration.
Section 2.2 describes the probability distribution, and introduces comput-
ing functions available in R (R Core Team, 2014) that can be used to
determine various probabilistic quantities of interest, including the normal-
izing constant, probability and cumulative distribution functions, random
number generation, mean, and variance. Section 2.3 outlines the distri-
butional and statistical properties associated with this model. Section 2.4
discusses parameter estimation and statistical inference associated with the
COM–Poisson model. Section 2.5 describes various processes for gen-
erating random data, along with associated available R computing tools.
Section 2.6 provides reparametrizations of the density function that serve
as alternative forms for statistical analyses and model development. This
section will introduce the proposed density representations and their im-
plications on the associated statistical properties. Section 2.7 considers
the COM–Poisson as a weighted Poisson distribution. Section 2.8 pro-
vides detailed discussion describing the various ways to approximate the
COM–Poisson normalizing function. Finally, Section 2.9 concludes the
chapter with discussion. Throughout the book, general references regarding
Conway–Maxwell–Poisson distributions will be made as “COM–Poisson”

22
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when there is no need to distinguish between various model representa-
tions. Meanwhile, respective acronyms will be introduced to denote the
model parametrizations.

2.1 The Derivation/Motivation: A Flexible Queueing Model

Conway and Maxwell (1962) deviate from a queueing model whose service
rate is independent of the system state to account for adjustments conducted
in actual queues to prevent significant system imbalance; while service cen-
ters can be equally loaded, varying service times can cause some service
centers to have long lines, while others do not. Accommodations instilled
in practice thus serve as motivators to generalize the queueing model, in-
cluding machine loading, allowances for machine and operator flexibility
to prevent service overload, and changes in individual service rates based
on the amount of backlog in the queue. Accordingly, they consider a flex-
ible queueing system that allows for dependent arrival and/or service rates
that are functions of the current system state, i.e.

πy = yνπ , (2.1)

where πy denotes the mean service rate for each of the y units in a system,
1/π is the mean service time for a unit when that unit is the only one in
the system, and ν is a “pressure coefficient” describing the impact of the
system state on the service rate of the system. Two special cases involv-
ing the pressure coefficient ν are immediately evident via Equation (2.1):
ν = 0 in Equation (2.1) (i.e. πy = π for all y) represents the special case
of a queueing system where the service rate is independent of the system
state and ν = 1 describes the case when the service rate is directly pro-
portional to the number of units in the system. The pressure coefficient can
likewise be negative (i.e. ν < 0, denoting when the service center slows in
association with an increased workload), between 0 and 1 (i.e. 0 < ν < 1,
denoting when the constant of proportionality between πy and π is less than
the number of units in the system), or greater than 1 (i.e. ν > 1, produc-
ing a constant of proportionality between πy and π that is greater than the
number of units in the system).

Conway and Maxwell (1962) consider a single-queue, single-server
system with random arrival times and a first-come-first-serve policy for
arriving units, where the interarrival times are exponentially distributed
with mean ρ, and the service times are exponentially distributed with the
mean as defined in Equation (2.1). These assumptions associated with this
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queuing system with a state-dependent service rate construct produce the
system of differential equations:

P′
0(t) = −ρP0(t) + πP1(t) (2.2)

P′
y(t) = −(ρ + yνπ)Py(t) + ρPy−1(t) + (y + 1)νπPy+1(t), for y > 0,

(2.3)

where assuming a steady state and letting λ = ρ/π produce the recursion
equations

λP0 = P1 (2.4)

(λ+ yν)Py = λPy−1 + (y + 1)νPy+1, for y > 0. (2.5)

Solving the recursion produces what is now known as the COM–Poisson
distribution with the form

Py = P(Y = y) = λy

(y!)ν P0, (2.6)

where P0 = P(Y = 0) = 1
∑∞

y=0
λy

(y!)ν
. We denote Z(λ, ν) = 1/P0, the nor-

malizing term associated with this distribution. Let this parametrization
be referred to as the CMP(λ, ν) distribution; other parametrizations are
introduced in Section 2.6.

Along with the derivation of this distribution, Conway and Maxwell
(1962) determine the form of the mean number μ of the system as

μ =
∞∑

y=0

yPy =
∑∞

y=0
yλy

(y!)ν
∑∞

y=0
λy

(y!)ν
, (2.7)

recognizing that closed-form results emerge for P0 and μ for special cases
involving ν; see Section 2.2 for a more detailed discussion. Finally, the
above queuing system model with the state-dependent service rate can like-
wise be derived in two other ways. One way is to let the arrival rate depend
on the system state through the relation, ρy = (y+1)−ξρ, while assuming an
exponentially distributed service time. The second approach is to consider
the model where the arrival rate is state-dependent (ρy = (y + 1)−ξρ) as
is the service rate (πy = yνπ). With these assumptions in place along with
the added assumption of exponentially distributed service times and interar-
rival periods, the (ξ + ν) = α system is consistent with the state-dependent
service rate model with ν = α. More precisely, this more flexible state-
dependent arrival and service rate model contains the special case of the
state-dependent service rate model when ξ = 0, and the state-dependent
arrival rate model when ν = 0 (Conway and Maxwell, 1962).
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2.2 The Probability Distribution

The COM–Poisson distribution is a flexible, two-parameter count dis-
tribution that allows for data dispersion relative to the Poisson model.
Derived by Conway and Maxwell (1962), the CMP parametrization has
a probability mass function of the form

P(X = x) = λx

(x!)νZ(λ, ν)
, x = 0, 1, 2, . . . , (2.8)

or, on a log scale,

ln [P(X = x)] = x ln λ− ν ln (x!) − ln [Z(λ, ν)] (2.9)

= x ln λ− ν
x∑

j=1

ln (j) − ln [Z(λ, ν)]

for a random variable X, where the CMP intensity or location parameter
λ = E(Xν) is a generalized form of the Poisson rate parameter; ν ≥ 0
is a dispersion parameter such that ν = 1 denotes equi-dispersion, and
ν > (<)1 signifies under-dispersion (over-dispersion) relative to the Pois-
son model; and Z(λ, ν) = ∑∞

j=0
λj

(j!)ν normalizes the CMP distribution so
that it satisfies the basic probability axioms.1 The CMP(λ, ν) distribution
has the form of an exponential family as defined in Equation (1.17), where
x and ln (x!) denote the joint sufficient statistics for λ and ν, respectively.
More broadly, given a sample of observations x1, . . . , xn from a CMP(λ, ν)
distribution, the likelihood and log-likelihood functions are

L(λ, ν; x) =
n∏

i=1

λxi

(xi!)νZ(λ, ν)
= λ

∑n
i=1 xi

[Z(λ, ν)]n
(∏n

i=1 xi!
)ν and

ln L(λ, ν; x) =
n∑

i=1

xi ln λ− ν
n∑

i=1

ln (xi!) − n ln Z(λ, ν). (2.10)

The CMP distribution does not, however, have the form of a two-parameter
exponential dispersion family (see Equation (1.18)) because the Z(λ, ν)
function cannot be factored into separate functions of λ and ν. This
can be overcome, however, for a CMP distribution with a fixed ν; here,
η(λ) = ln λ, T(x) = x, H(x; ν) = (x!)−ν , �(λ; ν) = ln (Z(λ, ν)), w = 1,
and φ = 1. Similarly, these denotations define the terms for the exponential
family form as shown in Equation (1.4) for a given dispersion ν.

1 Z(λ, ν) = 1/P0, given the notation used in Conway and Maxwell (1962) and described in
Section 2.1.
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Table 2.1 Special cases of the CMP parametrization distribution.

Constraint Z(λ, ν) pmf, P(X = x) Mean Distribution

ν = 1 eλ P(X = x) = λxe−λ

x! , x = 0, 1, 2, . . . λ Poisson(λ)

ν = 0,
λ < 1

1

1 − λ P(X = x) = (1 − λ)λx, x = 0, 1, 2, . . .
λ

1 − λ
Geometric
(p = 1 − λ)

ν → ∞ 1 + λ P(X = x) →

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

1 + λ x = 0

λ

1 + λ x = 1

0 x = 2, 3, 4, . . .

λ

1 + λ Bernoulli(

p = λ

1 + λ
)

The CMP normalizing constant Z(λ, ν) contains three special cases for
which the infinite sum can be determined exactly; Table 2.1 summarizes
the solutions for Z(λ, ν) and the associated distributions that result. Conway
and Maxwell (1962) recognized the two special cases for the normalizing
constant and corresponding mean, while the third case is a limiting result.
With particular focus on the dispersion parameter ν, we see that

Z(λ, ν) =

⎧
⎪⎨

⎪⎩

∑∞
j=0

λj

j! = eλ for ν = 1
∑∞

j=0 λ
j = 1

1−λ for ν = 0, λ < 1
1 + λ+ ∑∞

j=2
λj

(j!)ν → 1 + λ for ν → ∞.
(2.11)

Note that the special case where ν = 0 requires the additional constraint
that λ < 1 because, for ν = 0 and λ ≥ 1, Z(λ, ν) does not converge. Given
these results for the normalizing constant (Equation (2.11)), one can deduce
that the CMP distribution contains three classical special-case distributions:
the Poisson model with rate parameter λ (when ν = 1), the geometric distri-
bution with success probability 1 − λ (for ν = 0, λ < 1), and the Bernoulli
distribution with success probability λ

1+λ (as ν → ∞); see Table 2.1.
Examples illustrating the flexibility of the CMP model can be found in

Figure 2.1. Its subplots consider dispersion values ranging from 0 to 10,
where for all ν > 0, λ = 3 in order to easily assess the impact of the
dispersion parameter on the distributional form. The CMP(λ = 3, ν = 1)
plot is identical to the Poisson(λ = 3) plot shown in Figure 1.1 (which is
likewise shown in Figure 1.2). We can further see larger (smaller) variation
in the CMP distribution for ν < (>)1. The first subplot of Figure 2.1 mean-
while considers the special case where ν = 0 and λ = 0.3 < 1; recall that



2.2 The Probability Distribution 27

0 5 10 15 20

x

P
ro

ba
bi

lit
y,

 P
(X

 =
 x

)

λ = 0.3

ν = 0

0 5 10 15 20

x

P
ro

ba
bi

lit
y,

 P
(X

 =
 x

)

λ = 3

ν = 0.5

0 5 10 15 20

x

P
ro

ba
bi

lit
y,

 P
(X

 =
 x

)

λ = 3

ν = 1

0 5 10 15 20

x

P
ro

ba
bi

lit
y,

 P
(X

 =
 x

)

λ = 3

ν = 2

0 5 10 15 20

x

P
ro

ba
bi

lit
y,

 P
(X

 =
 x

)

λ = 3

ν = 5

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

P
ro

ba
bi

lit
y,

 P
(X

 =
 x

)

λ = 3

ν = 10

Figure 2.1 CMP probability mass function illustrations for the values of λ and ν.
Respective illustrative plots define the same value for λ when ν > 0 for easy dis-
tributional comparisons, while for ν = 0, λ must be constrained to be less than 1;
ν < (>)1 signifies data over-dispersion (under-dispersion) relative to the Poisson
(ν = 1) distribution.

for this special case of ν, λ is constrained to be less than 1 so that the nor-
malizing constant can converge. This probability mass function represents
a geometric distribution with success probability (1 − 0.3) = 0.7. Similarly,
the last subplot of Figure 2.1 also appears to reflect the extreme case of data
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under-dispersion, namely a Bernoulli(p = λ/(1 + λ) = 0.75) distribution;
in fact, we see that, even for ν = 10, the probability at 1 is estimated to be
0.75, while the probability at 0 is approximately 0.25.

Beyond these special cases, Z(λ, ν) does not reduce to a closed form;
therefore, one may wish to consider an approximate form for Z(λ, ν), where
λ and ν are both nonnegative parameters. Two popular approaches exist in
the computing literature. One approach is to consider approximating the
infinite sum by a truncation point M such that Z(λ, ν) = ∑∞

j=0
λj

(j!)ν ≈
∑M

j=0
λj

(j!)ν , either based on a given value for M that is predicted to be
sufficiently large (Sellers and Shmueli, 2010; Sellers et al., 2019) or by
taking into account a given level of precision such that, for a given λ and
ν, the (M + 1)st term in the summand λM

(M!)ν is sufficiently small (Dunn,
2012; Shmueli et al., 2005). Another approach considers the asymptotic
approximation

Z(λ, ν) = exp (νλ1/ν)

λ(ν−1)/2ν(2π)(ν−1)/2
√
ν

{

1 + O

(
1

λ1/ν

)}

(2.12)

for ν ≤ 1 or λ > 10ν (Minka et al., 2003; Sellers et al., 2019; Shmueli et al.,
2005); Section 2.8 describes approximations to the CMP normalizing func-
tion in greater detail. The COM–Poisson distribution can thus be viewed
as a continuous bridge that accommodates over- and under-dispersed count
data models, containing the Poisson and geometric distributions as special
cases and the Bernoulli as a limiting distribution. The COM–Poisson distri-
bution is not closed under addition; however, it motivates the development
of a COM–Poisson extension; see Chapter 3 for details.

2.2.1 R Computing

Several R packages have been developed to perform basic statistical com-
puting associated with the COM–Poisson distribution. This section focuses
on those packages and functions that assume the CMP parametrization;
see Table 2.2. The rcomp (CompGLM) and rcmp (COMPoissonReg) com-
mands both perform random number generation, but they will be discussed
in Section 2.5.

The CompGLM package (Pollock, 2014a) can determine the CMP proba-
bility mass and cumulative probability via its respective functions, dcomp
and pcomp. Both commands require the user to supply the values for λ
(lam) and ν (nu), where both parameters can be supplied as double vectors.
An additional input sumTo (whose default value is set at 100) defines the
truncation point M for the infinite summation so that Z(λ, ν) ≈ ∑M

k=0
λk

(k!)ν .
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Table 2.2 Available R functions for CMP computing.

Package Function Computational result

dcomp Probability mass function
CompGLM pcomp Cumulative distribution function

rcomp Random number generator

com.compute.z Normalizing constant, Z(λ, ν)
com.compute.log.z ln (Z(λ, ν))
dcom Probability mass function

compoisson com.log.density Log-probability
com.loglikelihood Log-likelihood
com.expectation Expectation, E[f ( · )]
com.mean Mean
com.var Variance

dcmp Probability mass function
COMPoissonReg pcmp Cumulative distribution function

qcmp Quantile function
rcmp Random number generator

The dcomp and pcomp functions further provide a logical operator to al-
low for the density function to be computed on a logarithmic scale (logP
= TRUE) or not (logP = FALSE); the default setting assumes the origi-
nal scale. Finally, dcomp requires the integer value y for which the CMP
probability is to be computed. pcomp meanwhile contains the additional
inputs, q and lowerTail; q is an integer vector2 for which the CMP cumu-
lative probabilities P(X ≤ q) are determined, and lowerTail is a logical
term that identifies whether it (lowerTail = TRUE) or its complement
(lowerTail = FALSE) should be computed.

The compoisson package (Dunn, 2012) contains the functions, dcom
and com.log.density, which respectively compute the CMP probability
mass function on the original and natural log scales. Both functions require
x, lambda, and nu as inputs in order to compute P(X = x) (on either scale)
for some CMP(λ, ν) random variable X. The respective commands further
allow for the normalizing constant Z(λ, ν) to be directly supplied by the
analyst, but this is not required; dcom identifies the potential input as z,
while com.log.density denotes it as log.z.

The compoisson package does not contain a function to directly com-
pute the cumulative probability (i.e. analogous to the pcomp function in
CompGLM); however, one can determine it by summing over the relevant

2 Noninteger-valued terms are coerced to integer form.
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dcom results from zero to x. Meanwhile, the com.loglikelihood com-
mand computes the log-likelihood of the data from a frequency table that
is assumed to stem from a CMP(λ, ν) distribution. This function requires
three inputs: x, the frequency table (in a matrix form), and lambda and
nu, the CMP parameters. With the provided inputs, the analyst can obtain
the log-likelihood value as provided in Equation (2.10). Meanwhile, be-
cause the log-likelihood function is the sum of the log-probabilities shown
in Equation (2.9), for a given dataset of values x1, . . . , xn, the resulting out-
put provided from com.loglikelihood equals the sum of the reported
com.log.density values associated with x1, . . . , xn. The compoisson
package also contains functions to compute the mean (com.mean) and vari-
ance (com.var), as well as the general expectation (com.expectation) of
a CMP random variable; these functions will be discussed in more detail in
Section 2.3.

The COMPoissonReg package (Sellers et al., 2019) is a broader R pack-
age that allows analysts to conduct a CMP regression associating a count
response variable to several explanatory variables. Contained within this
package, however, are the commands for the probability (dcmp), cumula-
tive probability (pcmp), and quantile function (qcmp) for the CMP(λ, ν)
distribution. All of the aforementioned functions require the inputs lambda
and nu. Besides these inputs, dcmp requires the vector of quantile values
x for which the function computes P(X = x). This function also of-
fers the option of computing the density function on the log-scale (log
= TRUE) or not (log = FALSE); the function defaults assuming the orig-
inal scale. pcmp likewise requires x in order to determine the cumulative
probability P(X ≤ x). Meanwhile, this is the only package that can perform
quantile calculations assuming a CMP parametrization. The qcmp function
determines the quantile value x such that P(X ≤ x) ≥ q, given some prob-
abilty of interest q; qcmp includes the inputs q (the vector of probabilities)
and the logical operator log.p that defaults such that the quantile value
is determined on the original scale (i.e. log.p = FALSE). These func-
tions (as for all in the COMPoissonReg package) rely on computing the
normalizing constant Z(λ, ν). This package determines Z(λ, ν) in a hybrid
fashion where, for λ sufficiently large and ν sufficiently small, the closed-
form approximation (Equation (2.12)) is used to estimate Z(λ, ν), while the
infinite summation is otherwise Winsorized to meet a desired accuracy level
if the conditions for λ and ν are not satisfied.

To illustrate the various packages and their respective functional-
ity, consider computing the (cumulative) probability at x = 2 of a
CMP(λ = 4, ν) random variable where ν ∈ {0.3, 1, 3, 30}. Naturally, we



2.2 The Probability Distribution 31

expect the corresponding (cumulative) probability computations from the
respective packages to equal each other. Table 2.3 provides the respec-
tive outcomes obtained using the compoisson (Dunn, 2012), CompGLM
(Pollock, 2014a), and COMPoissonReg (Sellers et al., 2019) packages.
Rounding computational results to seven significant digits, we obtain
equality for all (cumulative) probabilities determined by CompGLM and
COMPoissonReg, while these results differ slightly from compoisson by
within 0.0001 for all values of ν. In particular, we expect the special
cases for the CMP model to hold via statistical computation. For the case
where ν = 1, we expect to obtain the same (cumulative) probabilities
for the CMP(λ, ν = 1) and Poisson(λ) distributions. Table 2.4 provides
a comparison of the two (cumulative) probabilities, using compoisson,
CompGLM, and COMPoissonReg for CMP, and the stats package for Pois-
son. For illustrative purposes, calculations shown assume λ = 4, and
results are rounded to six decimal places. We see that dcomp (CompGLM)
and dcmp (COMPoissonReg) agree exactly with that from dpois, while
dcom (compoisson) produces a result whose difference from dpois is
more than 4 × 10−5. Similarly, the results for pcomp (CompGLM) and pcmp
(COMPoissonReg) equal that from ppois, while summing the dcom values
from 0 to 2 (thus determining the cumulative probability, P(X ≤ 2)) differs
from ppois by more than 6 × 10−5. We likewise expect the CMP special
case where ν = 0 and λ < 1 to agree with the geometric distribution
with success probability 1 − λ. Table 2.5 compares the CMP (cumula-
tive) probability calculations determined by compoisson, CompGLM, and
COMPoissonReg with the geometric distribution calculations attained via
the stats package; for illustrative purposes, let λ = 0.25. The result-
ing calculations are rounded to six decimal places. We again find that
the dcomp (CompGLM) and dcmp (COMPoissonReg) computations agree ex-
actly with that from dgeom (stats), while dcom (compoisson) produces
a result whose difference from dgeom is more than 1 × 10−5. Similarly,
the pcomp (CompGLM) and pcmp (COMPoissonReg) cumulative probabil-
ities equal that from pgeom, while summing over the dcom values from
0 to 2 produces a cumulative probability result that differs from pgeom
by more than 2 × 10−4. The differences in which the normalizing func-
tion is determined appear to induce the different results. CompGLM, for
example, uses the default truncation value for the normalizing function;
this choice of summation limit proves to be sufficient and satisfactory for
this illustration. In contrast, compoisson uses a default measure to con-
strain the amount of allowable error (log.error = 0.001). This default
value appears to be slightly deficient for this example, thus producing



Table 2.3 (Cumulative) probability computations via various R packages and their respective functions, illustrated assuming a
CMP(λ = 4, ν) random variable X evaluated at the value 2 for ν ∈ {0.3, 1, 3, 30}. Functions produce equal calculations when rounded
to three decimal places.

Probability, P(X = 2)

Package Function ν = 0.3 ν = 1 ν = 3 ν = 30

CompGLM dcomp 9.314738 ×10−14 0.1465251 0.2733952 2.980232 ×10−9

compoisson dcom 4.339295 ×10−14 0.1465652 0.2733956 2.980232 ×10−9

COMPoissonReg dcmp 9.314738 ×10−14 0.1465251 0.2733952 2.980232 ×10−9

Cumulative probability, P(X ≤ 2)

Package Function ν = 0.3 ν = 1 ν = 3 ν = 30

CompGLM pcomp 1.289842 ×10−13 0.2381033 0.9568831 1
compoisson Sum dcom results 6.008764 ×10−14 0.2381685 0.9568845 1
COMPoissonReg pcmp 1.289842 ×10−13 0.2381033 0.9568831 1
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Table 2.4 Probability P(X = 2) and cumulative probability P(X ≤ 2) computations
for the CMP(λ = 4, ν = 1) = Poisson(λ = 4) distributed random variable X.
CMP computations determined using compoisson (Dunn, 2012), CompGLM
(Pollock, 2014a), and COMPoissonReg (Sellers et al., 2019); Poisson results
obtained using the stats package. All calculations rounded to six decimal places.

Package Function P(X = 2) Function P(X ≤ 2)

compoisson dcom 0.146565 Sum dcom results 0.238169
CompGLM dcomp 0.146525 pcomp 0.238103
COMPoissonReg dcmp 0.146525 pcmp 0.238103
stats dpois 0.146525 ppois 0.238103

Table 2.5 Probability P(X = 2) and cumulative probability P(X ≤ 2)
computations for the CMP(λ = 0.25, ν = 0) = Geom(p = 0.75) distributed
random variable X. CMP computations determined using compoisson (Dunn,
2012), CompGLM (Pollock, 2014a), and COMPoissonReg (Sellers et al., 2019);
geometric results obtained using the stats package. All calculations rounded to
six decimal places.

Package Function P(X = 2) Function P(X ≤ 2)

compoisson dcom 0.046886 Sum dcom results 0.984615
CompGLM dcomp 0.046875 pcomp 0.984375
COMPoissonReg dcmp 0.046875 pcmp 0.984375
stats dgeom 0.046875 pgeom 0.984375

the computational differences shown in Tables 2.3–2.5. The difference,
however, can be argued as sufficiently small such that it may not make
any significant difference in subsequent computations. Alternatively, the
amount of allowable error can be decreased in order to provide greater
accuracy.

To illustrate the relationship between the respective compoisson
functions, com.log.density and com.loglikelihood, consider the
illustrative frequency table provided in Table 2.6 where we assume
a CMP(λ= 2, ν= 3) model. Using the com.log.density function,
we can determine the log-probabilities at 0, 1, and 2, respectively, as
−1.263617, −0.5704694, and −1.956764; see Code 2.1. Meanwhile, using
the com.loglikelihood function, we provide the frequency table pro-
vided in Table 2.6 as a matrix where the count values are supplied in the
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Table 2.6 Hypothetical frequency
table for count data. These data
are used for illustrative analyses
in Code 2.1.

Count Frequency

0 6
1 15
2 4

first column and the associated frequencies are given in the second column.
With this input provided along with the assumed values for λ and ν, we find
that the associated log-likelihood under this construct equals −23.96579.
Note that this summand equals the weighted sum of the respective log-
probabilities, weighted by their respective frequencies. This is equivalent
to summing the reported com.log.density values associated with each
count value contained in this dataset; see Code 2.1.

Code 2.1 R output comparing the results from the functions com.log.density
and com.loglikelihood. Associated computations assume the CMP(λ, ν)
model with parameters lambda = λ = 2 and nu = ν = 3.

> ex <- matrix (c(0 ,6 ,1 ,15 ,2 ,4) , byrow =TRUE ,nrow =3)
> colnames (ex) <- c("Count "," Frequency ")
> ex

Count Frequency
[1,] 0 6
[2,] 1 15
[3,] 2 4
> com.log. density (0, lambda =2,nu =3)
[1] -1.263617
> com.log. density (1, lambda =2,nu =3)
[1] -0.5704694
> com.log. density (2, lambda =2,nu =3)
[1] -1.956764
> 6*com.log. density (0, lambda =2,nu =3)

+ 15*com.log. density (1, lambda =2,nu =3)
+ 4*com.log. density (2, lambda =2,nu =3)

[1] -23.96579
> com. loglikelihood (ex , lambda =2,nu =3)

[,1]
[1,] -23.96579
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Table 2.7 Quantile determinations x
such that P(X ≤ x) ≥ 0.9 for the
CMP(λ = 3, ν) distributed random
variable X, where ν ∈ {0.3, 1, 3, 30}.
Computations conducted via the
qcmp function (COMPoissonReg).

ν x

0.3 55
1.0 5
3.0 2

30.0 1

For completeness of discussion, Table 2.7 provides the quantile values
assuming that X has a CMP(λ = 3, ν), where ν ∈ {0.3, 1, 3, 30}, and we
desire the quantile x such that P(X ≤ x) ≥ 0.9. We see that x decreases as
ν increases; this makes sense because larger ν implies tighter variation in
the data; thus, more probability is contained in a smaller region, implying
an increased cumulative probability associated with a value x.

2.3 Distributional and Statistical Properties

The ratio between probabilities of two consecutive values is

P(X = x − 1)

P(X = x)
= xν

λ
. (2.13)

This nonlinear relationship simplifies to the linear ratio between proba-
bilities of two consecutive values from a Poisson (i.e. ν = 1) model;
see Equation (1.3). For ν < 1, successive ratios are flatter than those of
a Poisson model; this scenario implies longer tails than the Poisson, i.e.
data over-dispersion. Meanwhile, values of ν > 1 demonstrate the oppo-
site effect, hence shorter tails than the Poisson, i.e. data under-dispersion
(Shmueli et al., 2005). The CMP is a unimodal distribution whose prob-
ability mass function is log-concave, and it has an increasing failure rate
and decreasing mean residual life. In fact, as a special case of a weighted
Poisson distribution, the CMP is log-concave when ν ≥ 1 because, for
these values of ν, the weight function w(x;ν) = (x!)1−ν is itself log-
concave (Gupta et al., 2014; Kokonendji et al., 2008). Finally, the mode
of a CMP(λ, ν) distribution occurs at �λ1/ν� if λ1/ν /∈ N or, for λ1/ν ∈ N,
the modes are λ1/ν and λ1/ν − 1 (Daly and Gaunt, 2016).



36 The Conway–Maxwell–Poisson (COM–Poisson) Distribution

Generating functions associated with the CMP distribution are respec-
tively defined in terms of Z function representations. For a random variable
X, the probability generating function is �X(t) = E(tX) = Z(λt,ν)

Z(λ,ν) , while

the moment generating function is MX(t) = E(eXt) = Z(λet ,ν)
Z(λ,ν) . The moment

generating function can be utilized to obtain the moments of the CMP dis-
tribution (Sellers et al., 2011). Exact formulae for the expected value and
variance are

E(X) = ∂ ln Z(λ, ν)

∂ ln λ
= λ∂ ln Z(λ, ν)

∂λ
and (2.14)

V(X) = ∂2 ln Z(λ, ν)

∂( ln λ)2
= ∂E(X)

∂ ln λ
. (2.15)

More broadly, the following recursive relationship holds for the CMP
moments:

E(Xr+1) =
{
λ[E(X + 1)]1−ν r = 0
λ ∂
∂λ

E(Xr) + E(X)E(Xr) r > 0,
(2.16)

where E(Xr) = ∑∞
x=0 xrP(X = x) denotes the rth moment of a random vari-

able X with probability P(X = x) as defined in Equation (2.8). Meanwhile,
letting (j)r = j(j−1)·(j−r+1) denote a falling factorial, E[((X)r)ν] = λr for
a CMP(λ, ν) distributed random variable X and r ∈ N, and the rth moment
has the approximation E(Xr) ≈ λr/ν

(
1 + O(λ−1/ν)

)
as λ→ ∞.

The CMP distribution belongs to the class of two parameter power series
distributions, and is a special case of a modified power series distribution
(Gupta, 1974, 1975), i.e. a distribution whose probability mass function has
the form

P(X = x) = A(x)(g(θ))x

f (θ)
, x ∈ B, (2.17)

where B is a subset of the set of nonnegative integers, A(x) > 0, and f (θ)
and g(θ) are the positive, finite, differentiable functions; here, θ = λ such
that g(θ) = g(λ) = λ, f (θ) = f (λ) = Z(λ, ν), and A(x) = (x!)−ν . This form
of the modified power series distribution not only confirms that the mean
has the form provided in Equation (2.14) along with the recursion for the rth
moment (Equation (2.16)) but further infers the existence of the following
recursion formulae for the rth central and factorial moments, respectively,
r = 1, 2, 3, . . .:
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E
(
(X − μ)r+1

) = λ∂E ((X − μ)r)

∂λ
+ rλE

(
(X − μ)r−1

) ∂2

∂λ2
[ ln Z(λ, ν)]

(2.18)

E((X)r+1) = λ∂E((X)r)

∂λ
+ λE((X)r)

∂

∂λ
[ ln Z(λ, ν)] − rE((X)r).

(2.19)

Results of interest regarding the CMP distribution likewise include the me-
dian, cumulants, and other statistical measures. For a CMP(λ, ν) distributed
random variable X, its median m is approximately λ1/ν as λ → ∞; more
precisely, m ≈ λ1/ν + O(λ1/2ν) as λ→ ∞. The cth cumulant κc is approxi-
mated as κc ≈ 1

νc−1λ
1/ν+O(1) as λ→ ∞. Further, as λ→ ∞, the skewness

γ1 and kurtosis γ2 are approximately

γ1 ≈ 1√
ν
λ−1/2ν + O(λ−3/2ν) (2.20)

γ2 ≈ 1

ν
λ−1/ν + O(λ−2/ν). (2.21)

Finally, the mean deviation of Xν is

E|Xν − λ| = 2

Z(λ, ν)

λ�λ1/ν�+1

�λ1/ν�! . (2.22)

The CMP mean and variance (Equations (2.14) and (2.15)) have the
respective approximations

E(X) ≈ μ .= λ1/ν − ν − 1

2ν
and (2.23)

V(X) ≈ 1

ν
λ1/ν = μ

ν
+ ν − 1

2ν2
, (2.24)

where these approximations are determined via the asymptotic approxima-
tion for Z(λ, ν) as described in Section 2.8, and they hold for ν ≤ 1 or λ >
10ν (Minka et al., 2003; Shmueli et al., 2005; Sunecher et al., 2020). Other
methods for approximating the mean of the distribution include estimating
the mean via the distribution mode, summing the first terms of Z when ν
is large, or bounding the mean when ν is small (Francis et al., 2012; Lord
et al., 2008). Given the approximations for the mean and variance (Equa-
tions (2.23) and (2.24)), one can see that, given ν, the CMP mean increases
(decreases) as λ increases (decreases). The variance likewise increases (de-
creases) with λ for any data that are equi- or over-dispersed. Meanwhile, for
given ν > 1, the variance increases (decreases) as λ decreases (increases)
(Alevizakos and Koukouvinos, 2022). The approximations provided in
Equations (2.23) and (2.24) further motivate two reparametrizations of
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the COM–Poisson distribution: the approximate COM–Poisson (ACMP)
parametrization (Guikema and Coffelt, 2008) which assumes μ∗ = λ1/ν as
a measure of center (that refraining from referring to this as a mean) and
a mean-parametrized COM–Poisson (MCMP2) (Ribeiro Jr. et al., 2019)
where the mean μ is estimated as done in Equation (2.23). See Section 2.6
for more details regarding these and other reparametrizations.

The CMP dispersion index is defined and approximated as

DI(X) = ∂2 ln Z(λ, ν)/∂( ln λ)2

∂ ln Z(λ, ν)/∂ ln λ
≈ λ1/ν/ν

λ1/ν − (ν − 1)/2ν
≈ 1

ν
. (2.25)

Thus, for ν = 1, we find that the data are equi-dispersed (the Poisson
model) since the mean and variance equal, while for ν < ( > )1, we see that
the data are over- (under-)dispersed as the variance is greater (less) than the
mean (Anan et al., 2017). The dispersion index, along with other indexes
regarding zero-inflation (ZI) and heavy-tail (HT), namely

ZI(X) = 1 + ln P(X = 0)

E(X)
and HT(X) = P(X = x + 1)

P(X = x)
, for x → ∞,

(2.26)

depend on the value of μ and become stable for large μ; they confirm
that the relationship between the mean and variance is proportional to the
dispersion. Finally, as the mean increases, the expected number of zeros
decreases (Brooks et al., 2017), and the moment

E( ln (X!)) = −d ln Z(λ, ν)

dν
≈ 1

2ν2
ln (λ) + λ1/ν

(
ln (λ)

ν
− 1

)

+ 1

2ν
+ ln (π)

2
,

(2.27)

where the sum of the first two approximation terms in Equation (2.27) rea-
sonably estimates the result for ν ≤ 1 or λ > 10ν (Gupta et al., 2014;
Minka et al., 2003).

Additional properties regarding the CMP distribution hold. Daly and
Gaunt (2016) note that, for a CMP(λ, ν) distributed random variable X and
function f :Z+ → R such that E|f (X + 1)| <∞ and E|Xν f (X)| <∞,

E[λf (X + 1) − Xν f (X)] = 0, (2.28)

and its converse is likewise true. They further have results regarding
stochastic ordering and other orderings relating to the CMP distribution.
Meanwhile, Gupta et al. (2014) show that the CMP random variable is
smaller than the corresponding Poisson random variable with respect to
the likelihood ratio order, hazard ratio order, and mean residual life order.
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For two random variables, XP and X, that are Poisson(λ) and CMP(λ, ν)
distributed respectively,

P(XP = x)

P(X = x)
= (x!)ν−1Z(λ, ν)

eλ
(2.29)

increases with x; hence, X is smaller than XP with regard to the likelihood
ratio order. The latter two results are inferred given the likelihood ratio
ordering result.

2.3.1 R Computing

As noted in Table 2.2, the compoisson package can calculate several of
the distributional and statistical measures described in Section 2.3. The
com.expectation function computes the expected value of a function of
the CMP random variable of interest, E[f (X)]. The inputs associated with
this function are f, the function on which the random variable (a single ar-
gument) is applied; lambda and nu, the CMP parameters; and log.error,
i.e. the allowable amount of error (on the log scale) for approximating the
logarithm of the expectation. The default setting for this error is log.error
= 0.001, where the logarithm of the expected value is determined exactly
(i.e. not based on the moment approximation formula). Given the general
ability of com.expectation, this function can be used to determine the
CMP moments provided in Equation (2.16). In particular, it is naturally ap-
plied in com.mean and com.var to compute the mean and variance of the
CMP distribution. The com.mean and com.var functions, however, only
allow lambda and nu (i.e. the CMP parameters) as inputs; the log.error
input is presumed to remain as provided in the default settings.

To illustrate these commands, consider a CMP distributed random vari-
able with λ = 4 and ν = 0.5 and suppose we want to compute the
associated mean and variance. Using com.mean and com.var, we find
that the mean and variance are 16.50979 (com.mean(lambda = 4, nu =
0.5)) and 32.00716 (com.var(lambda = 4, nu = 0.5)), respectively.
These results make sense in that 0 ≤ ν < 1 implies that the distribution is
over-dispersed, i.e. the distribution’s variance is greater than its mean (as
reflected here). In contrast, if we consider a CMP(λ = 4, ν = 5.0) ran-
dom variable, we instead find the associated mean and variance to equal
0.9122332 and 0.2706445, respectively. Here, the variance is consider-
ably smaller than the mean of the distribution. Finally, let us consider a
CMP(λ = 4, ν = 1) model. By definition, this represents the special case
of a Poisson model with rate parameter, λ = 4; accordingly, com.mean and
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com.var should both produce values equaling 4. When performing these
functions, however, we obtain

> com.mean(lambda = 4,nu = 1)
[1] 4
> com.var(lambda = 4,nu = 1)
[1] 4.00079

The result for the mean is as expected; however, the variance computation
shows error due to the numerical approximation. This difference in result
is presumed to be due to the default choice of an error threshold. A tighter
threshold value for the error should resolve this issue, thus producing com-
putations under the Poisson assumption such that the mean and variance
computations equal.

2.4 Parameter Estimation and Statistical Inference

Three approaches exist for parameter estimation associated with a COM–
Poisson model: (1) combining a graphical technique with a least-squares
method, (2) maximum likelihood estimation, and (3) Bayesian estimation.

2.4.1 Combining COM–Poissonness Plot with Weighted
Least Squares

Shmueli et al. (2005) note this as a simple and computationally efficient
method where the graphical procedure allows analysts to determine if the
COM–Poisson distribution is a reasonable model for the dataset in question
and, if so, to estimate λ and ν via the method of least squares. Utilizing the
relationship between successive probabilities from the CMP distribution
(Equation (2.13)), taking the logarithm of both sides yields a linear model
of the form

ln (P(X = x − 1)/P(X = x)) = − ln λ+ ν ln x, (2.30)

where the respective probabilities on the left-hand side of Equation (2.30)
can be estimated by their relative frequencies at x − 1 and x. Plotting the
ratio of successive probabilities (where positive counts exist) against ln (x)
will demonstrate that the CMP is a reasonable model if the points follow
the shape of a line. This “COM–Poissonness plot” is similar to the Ord
plot (Ord, 1967) that associated the ratios of successive probabilities with
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quantile values from a power series distribution. In particular, the COM–
Poissonness plot will illustrate that a Poisson model is reasonable if the
shape of the line follows a 45◦ line.

The parameters, − ln λ and ν, can be estimated more precisely by con-
sidering a linear model that regresses ln (P(X = x − 1)/P(X = x)) on ln x.
Two assumptions associated with an ordinary, Gaussian regression model,
however, are violated; this model construct contains heteroskedasticity in
the data, and the data are not independent. These issues can be overcome
by conducting a weighted least-squares approach toward parameter esti-
mation, where the inverse weight matrix has a tri-diagonal form with the
variances on the diagonal and the one-step covariances on the off-diagonals.
This method is found to be effective, particularly if there are not too many
low values with zero counts (Shmueli et al., 2005).

2.4.2 Maximum Likelihood Estimation

Using the log-likelihood determined in Equation (2.10), the maximum
likelihood estimates (MLEs) of λ and ν satisfy the score equations

{
∂ ln L
∂λ

=
∑n

i=1 xi

λ
− n ∂Z(λ,ν)

∂λ

Z(λ,ν) = 0
∂ ln L
∂ν

= −∑n
i=1 ln (xi!) − n ∂Z(λ,ν)

∂ν

Z(λ,ν) = 0,
(2.31)

where

∂Z(λ, ν)

∂λ
=

∞∑

j=0

jλj−1

(j!)ν = Z(λ, ν)

λ

∞∑

j=0

j · λj

(j!)νZ(λ, ν)
= Z(λ, ν)E(X)

λ

(2.32)

∂Z(λ, ν)

∂ν
= −

∞∑

j=0

λj ln (j!)
(j!)ν = −Z(λ, ν)

∞∑

j=0

ln (j!) · λj

(j!)νZ(λ, ν)

= −Z(λ, ν)E( ln (X!)). (2.33)

Substituting Equations (2.32) and (2.33) into Equation (2.31) produces

E(X) = λX

E( ln (X!)) = ln (X!);
these equations cannot be solved directly and do not have a closed form.
A numerical iterative procedure (e.g. a Newton–Raphson-type optimiza-
tion method) can instead be used to optimize the log-likelihood where, at
each iteration, the respective expectations and variances, and covariance
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of X and ln (X!), are determined by plugging in the previous step’s esti-
mates into the general equation for an expectation, E(f (X)), where f (X) is
as appropriate for the required computation (e.g. expectation, variance, or
covariance), and the infinite sum is approximated by a finite sum that pro-
duces the desired level of precision (Minka et al., 2003; Shmueli et al.,
2005). Gupta et al. (2014) instead suggest determining MLEs via the sim-
ulated annealing algorithm as a means to conduct numerical optimization,
where the normalizing constant is truncated such that Z(λ, ν) ≤ 1 × 1050

and calculated with double precision.

2.4.3 Bayesian Properties and Estimation

The CMP distribution belongs to the exponential family (see Section 2.2),
so a distribution of the form

h(λ, ν) = λa−1 exp ( − νb)[Z(λ, ν)]−cκ(a, b, c) (2.34)

is a conjugate prior, where λ > 0, ν ≥ 0, and

κ−1(a, b, c) =
∫ ∞

0

∫ ∞

0
λa−1e−bν[Z(λ, ν)]−cdλdν (2.35)

is the normalizing constant. Accordingly, given a dataset and priors for
λ and ν, the posterior distribution maintains the same form as the prior
distribution, with a, b, and c respectively updated to a′ = a + ∑n

i=1 Xi,
b′ = b +∑n

i=1 ln (Xi!), and c′ = c + n. Equation (2.34) can be viewed as an
extended bivariate gamma distribution where it is necessary and sufficient
for the hyperparameters a, b, and c to be closed under sampling with

b/c > ln (�a/c�!) + (a/c − �a/c�) ln (�a/c� + 1) (2.36)

in order for Equation (2.34) to be a proper density function; see Kadane
et al. (2006b) for details.

Given the values of the hyperparameters, the predictive probability
function is

P(X = x | a, b, c) = κ(a, b, c)

κ(a + y, b + ln (x!), c + 1)
, (2.37)

where κ( · ) is as defined in Equation (2.35) and can be computed through
the aid of numerical procedures and computational software. The double
integrals can be computed by using a nonequally spaced grid over the sup-
port space for λ and ν, where the computational procedures produce more
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robust representations of the parameter space when transformed to the log-
scale in both parameters (i.e. for λ∗ = ln (λ) and ν∗ = ln (ν)); see Kadane
et al. (2006b) for details.

Given Equation (2.34), the respective marginal densities of λ and ν are

h1(λ) = λa−1κ(a, b, c)
∫ ∞

0
e−bν[Z(λ, ν)]−cdν and (2.38)

h2(ν) = e−bνκ(a, b, c)
∫ ∞

0
λa−1[Z(λ, ν)]−cdλ. (2.39)

Accordingly, the conditional density of ν given λ is

h(ν | λ) ∝ e−bν[Z(λ, ν)]−c, (2.40)

while the conditional density of λ given ν is

h(λ | ν) ∝ λa−1[Z(λ, ν)]−c. (2.41)

The latter conditional distribution (Equation (2.41)) simplifies to three
special cases: (1) for ν = 0, the conditional distribution of λ on ν is
Beta(a,c + 1); (2) for ν = 1, the conditional distribution simplifies to a
gamma distribution with parameters a and c; and (3) as ν goes to infinity,
the conditional distribution of λ given ν is F(2a, 2(c − a)) distributed for
c > a, where the last case is recognized because λ

1+λ has a Beta(a, c − a)
distribution when ν = ∞ (Kadane et al., 2006b).

It is important to note that assuming a conjugate distribution is just one
avenue for pursuing Bayesian estimation. While the presented conjugate
forms provide welcomed properties, other priors can be used, for example,
with Markov chain Monte Carlo (MCMC)-type estimation in order to con-
duct Bayesian estimation. This matter is pursued moreso with discussion
in the context of COM–Poisson regression and hence addressed in greater
detail in Chapter 5.

2.4.4 R Computing

Statistical computing and estimation for constants λ and ν in R focus on
maximum likelihood estimation and estimation via the COM–Poissonness
plot. The R packages compoisson, COMPoissonReg, and CompGLM each
contain functions that conduct maximum likelihood estimation. No pack-
age supplies functionality to conduct estimation via the COM–Poissonness
plot; however, associated estimates for λ and ν are directly attainable in R.
Both approaches are discussed in greater detail below in this section. Mean-
while, basic Bayesian estimation was historically addressed via WinBugs
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(e.g. Lord and Guikema, 2012) and hence not addressed within this refer-
ence. There do exist two R packages that allow for Bayesian estimation;
however, they are not pursued here. The mpcmp package (Fung et al., 2020)
is equipped to conduct Bayesian COM–Poisson regression as described
in Huang and Kim (2019), but it requires a plug-in that is only available
through the first author. The combayes package (Chanialidis, 2020) also
conducts Bayesian estimation in R; however, this package does not cur-
rently supply sufficient documentation in order to determine how to directly
estimate λ and ν; see Chapter 5 for package discussion in the regression
format.

Several functions exist to allow an analyst to perform maximum like-
lihood estimation and related statistical computation assuming a CMP
model. The com.fit function (contained in the compoisson package
(Dunn, 2012)) computes the maximum likelihood estimators for the CMP
parameters and estimated frequencies associated with respective count val-
ues. The only input required for this function is the frequency table x (in
a matrix form) that contains the count levels in the first column and the
associated frequencies in the second column. As a result, com.fit returns
the MLEs λ̂ and ν̂ for the CMP parameters (lambda and nu, respectively),
the value of the normalizing constant (z), the estimated frequencies asso-
ciated with each count level in x (fitted.values), and the maximum
log-likelihood value (log.likelihood). Meanwhile, com.confint (also
in the compoisson package) computes bootstrap confidence intervals for
λ and ν. The analyst provides the inputs data, a frequency table of counts;
level, the confidence level of interest (as a decimal); B, the number of
bootstrap repetitions; and n, the bootstrap sample size.

COMPoissonReg (Sellers et al., 2019) and CompGLM (Pollock, 2014b)
are two R packages that conduct CMP regression via generalized linear
models of the forms ln (λ) = Xβ = β0 + β1X1 + · · · + βp1−1Xp1−1 and
ln (ν) = Gγ = γ0 + γ1G1 + · · · + γp2−1Gp2−1. Details regarding the respec-
tive packages and their capabilities are provided in Chapter 5; however, they
both allow for parameter estimation via the method of maximum likelihood
on intercept-only models in order to obtain λ̂ = exp (β̂0) and ν̂ = exp (γ̂0).
The COMPoissonReg function glm.cmp calls an intercept-only model via
the input formula.lambda = 1 in order to obtain λ̂; formula.nu = 1
already serves as the default construct, thus estimating ν̂ as a constant. Sim-
ilarly, the CompGLM function glm.comp considers intercept-only models for
both parameters (i.e. lamFormula= 1 and nuFormula= 1) to estimate λ
and ν. In both cases, the estimators are determined via the optim function
in R – a general-purpose optimization procedure that seeks to minimize a
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function of interest (in this case, the negated log-likelihood). By minimiz-
ing the negated log-likelihood, the analyst maximizes the log-likelihood,
thus identifying the maximum likelihood estimators. The resulting output
for glm.cmp (COMPoissonReg) includes the usual coefficient table for β0

and γ0, along with another table that provides the transformed estimates and
standard errors for λ̂ and ν̂. Additional output includes a chi-squared test
for equi-dispersion (see Section 2.4.5 for details), and other reports includ-
ing the log-likelihood, and AIC and BIC values. The glm.comp function
(CompGLM) similarly reports a coefficient table,3 along with the resulting
log-likelihood and AIC values. While both glm.cmp (COMPoissonReg)
and glm.comp (CompGLM) produce similar displays (glm.cmp being more
inclusive), analysts are cautioned against using glm.comp for estimating
the constants λ and ν. The coefficient estimates are reported correctly (thus
the estimates themselves are useable); however, its reporting of the standard
errors associated with coefficient estimates is located in swapped positions
in the coefficient table, which can introduce incorrectly reported t-values
and p-values.

To illustrate these function capabilities, we consider a classic count data
example where Bailey (1990) studies the number of occurrences of the ar-
ticles “the,” “a,” and “an” in five-word samples from “Essay on Milton” by
Macaulay (1923) (Oxford edition) as a means to measure Macaulay’s writ-
ing style. Table 2.8 provides the observed number of occurrences in 100

Table 2.8 Observed versus CMP estimated
frequency of occurrences of the articles “the,”
“a,” and “an” in five-word samples from
“Essay on Milton” by Macaulay (1923)
(Oxford edition). CMP estimated frequencies
obtained based on the maximum likelihood
estimators λ̂ ≈ 1.0995 and ν̂ ≈ 3.2864.

No. of articles Observed CMP estimated

0 45 44.90
1 49 49.37
2 6 5.56
>2 0 0.17

Total 100 100.00

3 glm.comp (CompGLM) denotes the coefficients associated with ν as zeta instead of gamma
in the equation ln (ν) = Gγ .
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Code 2.2 R codes and output illustrating the use of the compoisson (Dunn, 2012)
package to model observed data provided in Bailey (1990) via the COM–Poisson
distribution.

> word5 <- matrix (c(0 ,45 ,1 ,49 ,2 ,6) , nrow =3, byrow =TRUE)
> com.fit(word5 )
$ lambda
[1] 1.099509

$nu
[1] 3.286388

$z
[1] 2.227142

$ fitted . values
[1] 44.90060 49.36859 5.56350

$log. likelihood
[,1]

[1,] -87.95295

such samples; this dataset is under-dispersed with a mean number of oc-
currences equaling 0.61 while the variance equaling approximately 0.362.
Code 2.2 provides the example code where the observed frequency is first
defined in R as word5 and then inputted into the com.fit (compoisson)
function for model fitting. This example nicely illustrates the ability of the
COM–Poisson distribution (here, via the CMP parametrization) to describe
the variation in count data that express some measure of data dispersion.
Using com.fit, we find that the CMP distribution with λ̂ ≈ 1.0995 and
ν̂ ≈ 3.2864 optimally models the observed distribution; Table 2.8 further
provides the resulting estimated frequencies associated with the CMP(λ̂,
ν̂) model. These estimates maximize the log-likelihood at approximately
−87.9530 and produce a CMP normalizing constant, Z(λ̂, ν̂) ≈ 2.2271.
The estimated dispersion parameter ν̂ ≈ 3.2864 > 1 verifies the appar-
ent under-dispersion present in this data example. This output, however,
does not provide any context surrounding the resulting estimates in that no
quantified measure of variation associated with λ̂ and ν̂ is provided.

The glm.cmp (COMPoissonReg) function instead provides a greater
context and understanding by supplying a more elaborate coefficient ta-
ble for β0 and γ0; see Code 2.3. The function output (primarily) references
the resulting coefficient estimates β̂0 = ln (λ̂) and γ̂0 = ln (ν̂). Solving
for λ̂ and ν̂ shows that the estimates equal those determined in Code 2.2;
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glm.cmp provides the estimates for λ̂ and ν̂ explicitly (along with the as-
sociated standard errors) in the “Transformed intercept-only parameters”
section. The direct call to glm.cmp produces the coefficient table supply-
ing the estimates, standard errors, test statistic values, and p-values. The
additional outputs can be used to assess the fit of the CMP distribution and
will be discussed in Chapter 5.

The glm.comp (CompGLM) function likewise reports analysis regard-
ing λ and ν via the coefficient table for β0 and γ0. The command for
glm.comp is identical to that provided in Code 2.3; a subsequent model
object summary() call reports the resulting coefficient table. The table lists
identical estimates to those provided in the glm.cmp (COMPoissonReg)
output; however, their corresponding standard errors are swapped such that
the standard error associated with β0 is actually the standard error for γ0 and
vice versa. While this error does not ultimately influence perceived statisti-
cal inference in this example, the error is nonetheless noted, thus cautioning
analysts for using this command for generally estimating constants λ and ν
or any associated statistical inference.

Alternatively, one can utilize the COM–Poissonness plot to assess the
appropriateness of the CMP model to these data, creating a scatterplot
of data points, where ln x and ln (P(X = x − 1)/P(X = x)) denote the

Code 2.3 R codes and output illustrating the use of the COMPoissonReg (Sellers
et al., 2019) package to model observed data provided in Bailey (1990) via the
CMP–distribution.

> word5 <- c(rep (0 ,45) , rep (1 ,49) , rep (2 ,6))
> glm.cmp(word5 ~ 1)
CMP coefficients

Estimate SE z. value p.value
X:( Intercept ) 0.0949 0.2051 0.4626 0.6436
S:( Intercept ) 1.1898 0.2142 5.5555 2.768e -08
--

--

--

Transformed intercept -only parameters
Estimate SE

lambda 1.0995 0.2255
nu 3.2864 0.7038

Chi - squared test for equidispersion
X^2 = 14.7160 , df = 1, p-value = 1.2498e -04

Elapsed Sec: 0.01 Sample size: 100 SEs via Hessian
LogLik: -87.9530 AIC: 179.9059 BIC: 185.1163
Optimization Method: L-BFGS -B Converged status : 0
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Figure 2.2 COM–Poissonness plot associated with Macaulay (1923) data.

explanatory and response variables, respectively. Given the small support
space for the number of articles in this example (namely, {0,1,2}), the re-
sulting scatterplot has only two points, i.e. (ln (1) = 0, ln (0.45/0.49) ≈
−0.0852) and (ln (2) ≈ 0.6931,ln (0.49/0.06) ≈ 2.1001), and naturally
a linear relationship is reasonable; see Figure 2.2. Given that there are
only two data points, one can fit a line exactly with the intercept ˜− ln λ ≈
−0.0852, implying that λ̃ ≈ 1.0889, and slope equaling ν̃ = 3.1527 >
1, again indicating data under-dispersion. The COM–Poissonness plot
estimates for λ and ν are close to their respective maximum likelihood es-
timators. The programs conducting COM–Poisson estimation typically use
Poisson estimates as starting values for running the underlying optimiza-
tions; however, this illustration demonstrates that the COM–Poissonness
plot can likewise potentially be utilized for starting value determination
with optimization tools (e.g. maximum likelihood estimation).

As a second example, consider data from Winkelmann (1995) that pro-
vide sample observations from the second wave of the 1985 German
Socio-Economic Panel. The random sample comprises 1,243 women over
44 years old and in their first marriages, where the information collected
includes the number of children born to this sample of women. For now,
attention focuses on the variation in the number of children that ranges
from 0 to 11 with a mean and variance equaling approximately 2.384 and
2.330, respectively. Given that the variance is smaller than the mean, the
distribution representing the number of children is recognized as being at
least mildly under-dispersed. Utilizing com.fit (compoisson) to analyze
these data first requires data restructuring via the table function in R; this
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Table 2.9 Observed versus CMP estimated frequency of
the number of children born to a random sample of
females (Winkelmann, 1995).

No. of children Observed CMP estimated

0 76 94.6238
1 239 270.8529
2 483 345.3846
3 228 274.4449
4 118 155.9054
5 44 68.2681
6 30 24.1661
7 10 7.1466
8 8 1.8086
9 3 0.3989
10 3 0.0778
11 1 0.0136

Total 1243 1243.0910

tool tabulates the frequency associated with each of the possible number
of children representing the support space in the dataset. Again, the CMP
model is able to recognize the under-dispersion present in these data. We
find that the CMP distribution with λ̂ ≈ 2.862 and ν̂ ≈ 1.1665 > 1 opti-
mally models the observed distribution; Table 2.9 provides the fitted values
associated with the CMP model. These MLEs maximize the log-likelihood
at approximately −2182.141 and produce a CMP normalizing constant,
Z(λ̂, ν̂) ≈ 13.13623.

The glm.cmp (COMPoissonReg) function can likewise be used to model
the data via an intercept-only model such that λ̂ = exp (β̂0) and ν̂ =
exp (γ̂0) for the coefficient estimates β̂0 and γ̂0. Code 2.4 provides the
glm.cmp output, including the coefficient table to not only assess the sta-
tistical significance associated with the two estimates (both deemed to be
statistically significant, given the small p-values) but also explicitly pro-
viding λ̂ = exp (1.0533) = 2.8671 and ν̂ = exp (0.1555) = 1.1683.
glm.comp (CompGLM) likewise supplies the summary output associated
with the coefficients, producing nearly identical estimates for β0 and γ0;
however, we again note that the reported standard errors appear to swap
those provided in the glm.cmp output. Thus, analysts are cautioned against
using glm.comp for the constants λ and ν estimation or inference.
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Code 2.4 R codes and output illustrating the use of the COMPoissonReg (Sellers
et al., 2019) package to model observed child data provided in Winkelmann
(1995) via the CMP distribution.

> child.cmp <- glm.cmp(child ~ 1, data=Child )
> child.cmp
CMP coefficients

Estimate SE z. value p.value
X:( Intercept ) 1.0533 0.0658 16.0019 1.238e -57
S:( Intercept ) 0.1555 0.0493 3.1535 0.001613

Transformed intercept -only parameters
Estimate SE

lambda 2.8671 0.1887
nu 1.1683 0.0576

Chi - squared test for equidispersion
X^2 = 9.0823 , df = 1, p-value = 2.5810e -03

Elapsed Sec: 0.21 Sample size: 1243 SEs via Hessian
LogLik : -2182.2347 AIC: 4368.4693 BIC: 4378.7199
Optimization Method: L-BFGS -B Converged status : 0
Message: CONVERGENCE : REL _ REDUCTION _OF_F <= FACTR * EPSMCH

--

--

--

2.4.5 Hypothesis Tests for Dispersion

Does a dataset exhibit a statistically significant amount of (over- or under-)
dispersion? This is an obvious question that deserves attention in that
analysts often question the need to consider alternative models to the ever-
popular Poisson distribution when modeling count data, and the presence
of statistically significant dispersion provides an insight into improved
analysis via the COM–Poisson model. The CMP(λ, ν) distribution reduces
to the Poisson(λ) distribution when the dispersion parameter ν = 1. Since
the dispersion parameter describes the level and type of data dispersion,
the likelihood ratio test can be used to test the null hypothesis H0 : ν = 1
against the alternative hypothesis H1 : ν �= 1 to simply note potential data
dispersion (in either direction). The resulting likelihood ratio test statistic
is as defined in Equation (1.20), where, for this test, −2 ln� converges
to a chi-squared distribution with one degree of freedom from which the
appropriate critical values or p-value can be determined to draw inference
regarding ν (Sellers and Raim, 2016; Sellers and Shmueli, 2010); see Sec-
tion 1.5. The proposed (two-sided) test does not address the direction of
dispersion; however, one can resolve the matter either by comparing the
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MLE for ν to 1 to determine the type of data dispersion (recalling that over-
dispersion (under-dispersion) is detected when ν̂ < ( > )1). Alternatively,
the hypothesis test can be modified to consider ν being strictly greater than
or less than 1, as appropriate. Analogous likelihood ratio tests can likewise
be considered for the respective boundary cases (H0:ν = 0 or H0:ν → ∞
versus H1: otherwise). Under these respective premises, the interested ana-
lyst can determine the appropriate likelihood ratio test statistic, bearing in
mind that the corresponding p-value is now based on a mixture of a point
mass and the χ2

1 distribution, i.e. 0.5 + 0.5χ2
1 (Self and Liang, 1987).

Rao’s score test is an alternative procedure for hypothesis testing. Here,
the test statistic for H0 versus H1 is R = SI−1S′, where

S =
(
∂ ln L

∂λ

∂ ln L

∂ν

)

and (2.42)

I = −
⎛

⎝
E
(
∂2 ln L
∂λ2

)
E
(
∂2 ln L
∂ν∂λ

)

E
(
∂2 ln L
∂ν∂λ

)
E
(
∂2 ln L
∂ν2

)

⎞

⎠ (2.43)

denote the score vector and Fisher information matrix, respectively, asso-
ciated with the log-likelihood (Equation (2.10)); this statistic likewise con-
verges to a chi-squared distribution with one degree of freedom. Through
various data simulation studies, the statistical power associated with each
of the two tests are very close when the sample size is large (i.e. over
500), whether the simulated data reflect over- or under-dispersion. Mean-
while, when applying either test to simulated equi-dispersed data, both
tests achieve reasonable estimated empirical levels that are close to the
prespecified significance level (Gupta et al., 2014).

More broadly, analysts can also consider a Wald test to assess the statis-
tical significance of the coefficient γ0 associated with ν. Considering the
generalized linear model ln (ν) = γ0, analysts can determine the Wald
statistic Wγ = γ̂0

se(γ̂0) , where γ̂0 and se(γ̂0), respectively, denote the maxi-
mum likelihood estimator and its corresponding standard error for γ0; Wγ

has an asymptotic standard normal distribution from which its p-value can
be determined. As an aside, analysts can likewise utilize the Wald test to
draw statistical inference regarding the coefficient β0 associated with λ via
the model ln (λ) = β0; the Wald statistic is now Wβ = β̂0

se(β̂0)
, which likewise

has an asymptotic standard normal distribution.

R Computing for Dispersion Tests

For the constant dispersion case, the glm.cmp (COMPoissonReg) function
conducts both a likelihood ratio test and a Wald test for equi-dispersion,
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including both corresponding outputs in its report. The likelihood ratio test
statistic is provided as −2 ln� and thus reported as a chi-squared statistic
with one degree of freedom; accordingly, the test statistic value, its degree
of freedom, and the associated p-value are provided in the output. The Wald
test output is meanwhile contained within the resulting coefficient table
produced in the “CMP coefficients” output provided via glm.cmp;
the information regarding γ0 is provided in the “S: (Intercept)”
line. As illustrative examples, one can revisit the data analyses pro-
vided in Section 2.4.4; the respective glm.cmp outputs are provided in
Codes 2.3 and 2.4. Both test examples demonstrate reported statistically
significant data under-dispersion, directly reporting test statistics with
corresponding p-values that are sufficiently small when compared to the
traditionally assumed significance levels in the “Chi-squared test for
equidispersion” output. Meanwhile, both examples likewise report
Wald test statistics (listed in the output as z.value) and corrsponding
p-values that demonstrate that γ0 is statistically significantly different from
zero. While the test for equi-dispersion only infers that some form of
statistically significant data dispersion exists deeming the Poisson model
unreasonable, that alone does not provide insight regarding the direction
of the dispersion. That additional knowledge is attained via the reported
dispersion estimate, both of which are greater than 1 in these examples;
see Codes 2.3 and 2.4. Accordingly, analysts considering an initial model
structure to describe variation in these respective datasets should consider
a CMP rather than a Poisson distribution.

2.5 Generating Data

Random number generation is an important aspect of distributional study as
one can benefit from data simulations to gain a better understanding of sta-
tistical properties. Two popular approaches have been considered for gen-
erating COM–Poisson data: the inversion, and rejection sampling methods.

2.5.1 Inversion Method

Minka et al. (2003) provide a simple algorithm for generating data from
a CMP distribution via the inversion method: to generate a dataset with n
observations,

1. simulate n Uniform(0,1) observations;
2. starting from P(X = 0), sum the CMP probabilities until the total

exceeds the value of the associated simulated observation from Step 1;
3. X = x is the observation such that Step 2 is satisfied.
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The probability P(X = 0) = [Z(λ, ν)]−1 can be determined via methods
described in Section 2.8. Subsequent probabilities can be easily determined
via the recursion,

P(X = x) = P(X = x − 1)
λ

(x)ν
. (2.44)

Analogous algorithms can be constructed for random number genera-
tion via the other COM–Poisson parametrizations; see Section 2.6 for the
alternative COM–Poisson constructs.

2.5.2 Rejection Sampling

Rejection sampling is another approach used to generate independent sam-
ples from a distribution of interest. The appeal behind this approach is that
COM–Poisson sampling can be determined without computing the normal-
izing constant. To date, two rejection samplers have been proposed, and
they are each performed in relation to the ACMP parametrization such that

qf (x)
.= qf (x | μ∗, ν) =

(
μx∗
x!
)ν

denotes the nonnormalized ACMP function;
see Section 2.6 for details regarding this parametrization.

Chanialidis et al. (2017) establish a rejection sampler whose rejection
envelope is based on a piecewise geometric distribution

qg(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qf (m − s) ·
(

m−s
μ∗

)ν(m−s−x)
x = 0, . . . , m − s

qf (m − 1) ·
(

m−1
μ∗

)ν(m−1−x)
x = m − s + 1, . . . , m − 1

qf (m) · ( μ∗
m+1

)ν(x−m)
x = m, . . . , m + s − 1

qf (m + s) · ( μ∗
m+s+1

)ν(x−m−s)
x = m + s, m + s + 1, . . .

with normalizing constant

Z1g(μ∗, ν) = qf (m − s)
1 −

(
m−s
μ∗

)ν(m−s+1)

1 −
(

m−s
μ∗

)ν + qf (m − 1)
1 −

(
m−1
μ∗

)ν(s−1)

1 −
(

m−1
μ∗

)ν

+ qf (m)
1 − (

μ∗
m+1

)νs

1 − (
μ∗

m+1

)ν + qf (m + s)
1

1 − (
μ∗

m+s+1

)ν

such that an observation x is drawn from the proper probability mass func-
tion g(x) = qg(x)/Z1g(μ, ν) whose acceptance probability for inclusion as
part of an ACMP sample is qf (x)

qg(x) . Benson and Friel (2017) instead introduce
a rejection sampler whose envelope distribution depends on the dispersion
parameter ν; for ν ≥ 1, the Poisson(μ∗) distribution envelopes the ACMP,
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Given the ACMP parameters μ∗ and ν, determine if ν ≥ ( < )1.
If ν ≥ 1,

1. Sample x̃ from a Poisson(μ∗) distribution using the Ahrens and
Dieter (1982) algorithm.

2. Calculate Bf /g (Equation (2.45)) and determine the acceptance
probability, α = (μx̃∗/ x̃!)ν

Bf /g(μx̃∗/ x̃!) .

3. Generate u ∼ Unif(0, 1). If u ≤ α, then return x̃; otherwise, reject it
and repeat.

If ν < 1,

1. Sample x̃ from a geometric distribution with success probability
p = 2ν

2μ∗ν+1+ν . To do this, sample u(0) ∼ Unif(0, 1) and return
⌊

ln (u(0))
ln (1−p)

⌋
.

2. Calculate Bf /g (Equation (2.45)) and determine the acceptance
probability, α = (μx̃∗/ x̃!)ν

Bf /g(1−p)x̃p .
3. Generate u ∼ Unif(0, 1). If u ≤ α, then return x̃; otherwise, reject it

and repeat.

Algorithm 1 Benson and Friel (2017) rejection sampler for the
ACMP(μ∗, ν) distribution. For multiple ACMP(μ∗, ν) draws, calculate the
appropriate Bf /g bound once (whether for ν ≥ (<)1) to use in the algorithm.

while, for ν < 1, they use the geometric distribution with success probabil-
ity p; see Algorithm 1 for details. Considering the Poisson or geometric
distribution as an envelope distribution implies that the corresponding
enveloping probability mass function is

g(x | γ ) =
{

p(1 − p)x for ν < 1
μx∗e−μ∗

x! for ν ≥ 1

and their corresponding enveloping bound is

Bf /g =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
p

μ

(

ν

⌊
μ∗

(1−p)1/ν

⌋)

∗

(1−p)

(⌊
μ∗

(1−p)1/ν

⌋)
(⌊

μ∗
(1−p)1/ν

⌋
!
)ν

for ν < 1

(
μ

�μ∗�∗
�μ∗�!

)ν−1
for ν ≥ 1

(2.45)

such that the acceptance probability is qf (x)
qg(x)Bf /g

.
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The Benson and Friel (2017) envelope selections make use of the special-
case distributions in a nice way, recognizing their ability to envelope the
ACMP distribution under certain cases of dispersion. When the ACMP
has ν ≥ 1, the distribution reflects equi- or under-dispersion. Accordingly,
the Poisson distribution will either completely envelope the ACMP when
ν > 1 because the Poisson variance is larger (thus producing an accep-
tance probability that is less than 1), or the Poisson envelope will match
the ACMP distribution when ν = 1, producing an acceptance probability
that equals 1. Meanwhile, when the ACMP has ν < 1 (over-dispersion),
the geometric distribution envelopes the ACMP model for all 0 < ν < 1,
thus producing an acceptance probability less than 1 under those circum-
stances, or produces an acceptance probability equaling 1 when ν = 0 (at
least, in theory). The ACMP reparametrization, however, appears to limit
the perceived choice of success probability p associated with the geometric
distribution. Benson and Friel (2017) select p by matching the geometric
distribution mean to the ACMP approximated mean, i.e.

1 − p

p
= μ∗ + 1

2ν
− 1

2
⇔ p = 2ν

2μ∗ν + 1 + ν . (2.46)

Under this approach, Benson and Friel (2017) report that their sampler
obtains an acceptance probability between 50% and 100% when ν ≥ 1,
while that acceptance probability is 30%–80% when ν < 1. Notice that,
in Equation (2.46) however, ν = 0 implies that p = 0. This contradicts
the p > 0 constraint associated with the geometric distribution; yet we
know that the geometric(p) distribution is a special case of the COM–
Poisson distribution (but not under the ACMP parametrization; see Section
2.6 for discussion). This matter presumably contributes toward explaining
the reduced acceptance probability range for ν < 1.

Generating Data from h(λ | ν) When c > a

Along with random number generation regarding the COM–Poisson dis-
tribution itself, one can consider simulating data from the corresponding
conjugate distribution described in Equation (2.34) or the conditional dis-
tribution h(λ | ν). Motivated by the special-case results described in Section
2.4.3 for h(λ | ν), Kadane et al. (2006b) motivate an algorithm to generate
data from h(λ | ν) when c > a by recognizing that the conditional distri-
bution for λ on ν has shorter tails than the F distribution; see Algorithm
2. An “F-type dominating curve” can then aid in developing Algorithm
2 for h(λ | ν) when c > a. Meanwhile, for ν < 1, the special cases
imply that h(λ | ν) has a shorter tail than the gamma distribution; thus,
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1. Choose λ0 and compute q(λ0), where q(λ0) = dZ(λ,ν)
dλ |λ=λ0 .

2. Draw λ from the F distribution proportional to
λa−1[q(λ0)(λ− λ0) + Z(λ0, ν)]−c.

3. Draw a uniform variate u ∼ U(0, 1) and accept λ if
u ≤ [Z(λ,ν)]−c

[q(λ0)(λ−λ0)+Z(λ0,ν)]−c .
4. If λ is rejected, repeat from Step 2.

Algorithm 2 Kadane et al. (2006b) rejection sampling algorithm to gener-
ate data from h(λ | ν) when c> a, assuming a motivating CMP distribution.
See Section 2.4.3 for prerequisite discussion and variable notation.

1. Choose λ0 and compute q(λ0), where q(λ0) = dZ(λ,ν)
dλ |λ=λ0 .

2. Draw λ from a gamma distribution of the form
p(λ | ν) ∝ λa−1 exp ( − cq(λ0)λ).

3. Draw a uniform variate u ∼ U(0, 1) and accept λ if
u ≤ [Z(λ,ν)]−c

exp (−cq(λ0)(λ−λ0))[Z(λ0,ν)]−c

4. If λ is rejected, repeat from Step 2.

Algorithm 3 Kadane et al. (2006b) rejection sampling algorithm to gener-
ate data from h(λ | ν) when ν < 1, assuming a motivating CMP distribution.
See Section 2.4.3 for prerequisite discussion and variable notation. This
algorithm holds without the restriction, c > a.

a gamma-type dominating curve can be constructed and used to develop a
rejection sampling scheme that holds even without the restriction, c > a;
see Algorithm 3.

2.5.3 R Computing

The compoisson (Dunn, 2012), CompGLM (Pollock, 2014b),
COMPoissonReg (Sellers et al., 2019), and combayes (Chanialidis,
2020) packages all provide analysts with the ability to randomly generate
CMP data. All functions naturally require the analyst to provide the sample
size n. Meanwhile, the compoisson, CompGLM, and COMPoissonReg
packages need the associated parameter values for λ and ν from the
analyst; rcomp (CompGLM) defines these inputs as lam and nu, while
rcom (compoisson) and rcmp (COMPoissonReg) refer to these inputs
as lambda and nu. The rcmpois function (combayes) instead requests
the parameter inputs as mu and nu, where mu denotes μ∗ in the ACMP
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parametrization. The rcomp command further allows the analyst to
supply the input sumTo that denotes the number of summation terms
used to approximate Z(λ, ν); the default setting for this input is 100. The
rcom function meanwhile allows the analyst to input log.z, the natural
logarithm of the normalizing constant.

The rcmp function (COMPoissonReg) uses the inversion method with the
CMP parametrization, while rcmpois (combayes) uses rejection sampling
with the ACMP structure. It is unclear what methods are used for the other
packages; however, the inversion method is presumed.

2.6 Reparametrized Forms

Some researchers argue that the CMP parametrization assumed thus far is
limited in its usefulness (e.g. as a generalized linear model) because neither
λ nor ν provide a clear centering parameter, i.e. the CMP distribution is
not directly parametrized by the mean. Barriga and Louzada (2014) (for
example) note that, while λ is close to the distributional mean for ν close
to 1, the mean differs considerably from λ when ν is significantly different
from 1. Huang (2017) further notes that the approximation to the mean
(provided in Equation (2.14)) is accurate for ν ≤ 1 or λ > 10ν ; yet it can be
inaccurate for scenarios outside of that range, particularly when analyzing
under-dispersed count data (unless λ > 10ν is very large). This arguably
makes the regression model based on the original CMP formulation difficult
to interpret and use for dispersed data (this issue is revisited in Chapter 5).

To circumvent this problem for over-dispersed data (i.e. ν < 1), Guikema
and Coffelt (2008) propose the reparametrization

μ∗ = λ1/ν (2.47)

as an approximation for the “center” of the COM–Poisson distribution; note
that Equation (2.47) truncates the CMP mean approximation (Equation
(2.23)) and offers an alternative representation of the constraint λ > 10ν

(i.e. μ∗ = λ1/ν > 10) such that Equation (2.23) holds. The substi-
tution provided in Equation (2.47) produces a reparametrization ACMP
reparametrization) that restructures the CMP probability mass function in
Equation (2.8) to

P(X = x) = 1

Z1(μ∗, ν)

(
μx

∗
x!
)ν

, x = 0, 1, 2, . . . , (2.48)

where Z1(μ∗, ν) = ∑∞
j=0

(
μ

j
∗

j!
)ν

is the modified form of the normalizing
constant. Given this representation, the ratio of successive probabilities now
has the form
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P(X = x − 1)

P(X = x)
=
(

x

μ∗

)ν
.

Further, the mean and variance of X are now

E(X) = 1

ν

∂ ln Z1(μ∗, ν)

∂ lnμ∗
≈ μ∗ + 1

2ν
− 1

2
(2.49)

V(X) = 1

ν2

∂2 ln Z1(μ∗, ν)

∂( lnμ∗)2
= 1

ν

∂E(Y)

∂ lnμ∗
≈ μ∗
ν

, (2.50)

where the asymptotic approximation is accurate forμ∗ = λ1/ν > 10 (Barriga
and Louzada, 2014; Lord et al., 2008; Zhu, 2012). The ACMP distribution
mode is �μ∗� (Chanialidis et al., 2017) for general μ∗ and for the special
case where μ∗ ∈ N; the ACMP has consecutive modes at μ∗ and μ∗ − 1
(Benson and Friel, 2017). Accordingly, “the integral part of μ∗ is now the
mode leaving μ∗ as a reasonable approximation of the mean” while main-
taining ν’s role as the dispersion parameter and hence a shape parameter
(Lord et al., 2008; Zhu, 2012). Chanialidis et al. (2014) confirm that μ∗
closely approximates the mean; however, they further note that this is only
true when both μ∗ and ν are not small. Guikema and Coffelt (2008) like-
wise stress that these approximations may not be accurate for ν > 1 or
μ∗ < 10. This distribution is undefined for ν = 0 and is hence restricted
to ν > 0; thus, this parametrization does not include the geometric special
case (Zhu, 2012).

Huang (2017), however, argues that the ACMP parametrization still does
not offer a closed form for the mean in that the μ∗ = λ1/ν designation
instead redresses the (say) location parameter; yet this value does not equal
the mean nor provide a good approximation for it under any ν. The mean-
parametrized COM–Poisson (MCMP1) distribution instead reparametrizes
the CMP probability mass function (Equation (2.8)) as

P(X = x | μ, ν) = λ(μ, ν)x

(x!)νZ(λ(μ, ν), ν)
, x = 0, 1, 2, . . . , (2.51)

where μ
.= E(X) is the mean of the distribution; accordingly, λ(μ, ν) solves

the equation

∞∑

x=0

(x − μ)
λx

(x!)ν = 0,

and ν = 1 maintains the definition of equi-dispersion, while ν < ( > )1
indicates over-dispersion (under-dispersion). The special-case distributions
associated with the MCMP1 distribution still hold, namely the MCMP1
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distribution reduces to the geometric distribution with success probability
p = 1/(μ + 1) < 1 when ν = 0, the Poisson(μ) distribution when ν = 1,
and converges to the Bernoulli(p = μ) distribution as ν → ∞.

MCMP1 likewise has the form of a two-parameter exponential family,
and a one-parameter exponential dispersion family forms with respect to μ
when ν is fixed. Under this construct, the mean and dispersion parametersμ
and ν are also orthogonal. This proves beneficial in a regression setting be-
cause the resulting estimated regression coefficients linking the covariates
to the mean are asymptotically efficient and independent of the dispersion
estimate ν̂; see Chapter 5 for details. To estimate the MCMP1 parameters
μ, ν via maximum likelihood estimation, the log-likelihood associated with
one random variable X is

ln L(μ, ν | x) = x ln (λ(μ, ν)) − ν ln (x!) − ln Z(λ(μ, ν), ν), (2.52)

which is the reparametrized version of the log-likelihood provided in Equa-
tion (2.10). Thus, for a random sample of observations, the respective
MLEs of the MCMP1 mean and dispersion parameters are μ̂ = X̄ and
ν̂, which solve the equation EX̄,ν( ln (x!)) = 1

n

∑n
i=1 ln (xi!) .= ln (X!). The

closed form for μ̂ provides a direct estimate for μ, thus reducing the overall
computation time for the MLEs.

Equation (2.34) not only serves as a conjugate prior for the CMP
parametrization, but its essence likewise serves as a conjugate form for
the MCMP1 distribution; the Huang and Kim (2019) supplemental discus-
sion maintains the Kadane et al. (2006b) form of the prior, updating λ with
λ(μ, ν). Accordingly, the form of the MCMP1 prior distribution becomes

h+(μ, ν) = λ(μ, ν)a−1 exp ( − νb)[Z(λ(μ, ν), ν)]cκ+(a, b, c), μ> 0, ν ≥ 0,

where

κ−1
+ (a, b, c) =

∫ ∞

0

∫ ∞

0
λ(μ, ν)a−1e−bν[Z(λ(μ, ν), ν)]−cdμdν

is now the normalizing constant, and a, b, and c maintain the restrictions de-
scribed in Section 2.4.3. This posterior form likewise maintains conjugacy
with the updates a′, b′, and c′ as defined in Section 2.4.3.

Ribeiro Jr. et al. (2019) instead work directly with the mean ap-
proximation provided in Equation (2.23) and backsolve for λ so that
λ = (

μ+ ν−1
2ν

)ν
and φ = ln (ν) represent the intensity and dispersion

parameter, respectively; φ = 0 captures the Poisson model, and φ < (>)0
recognizes the data as being over- (under-)dispersed relative to the Poisson.
Accordingly, they introduce a second mean-parametrized COM–Poisson
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(hereafter MCMP2) distribution with parameters μ and φ which has the
probability mass function

P(X = x | μ,φ) =
(

μ+ eφ − 1

2eφ

)xeφ (x!)−eφ

Z2(μ,φ)
, x = 0, 1, 2, . . . , (2.53)

for μ > 0, where Z2(μ,φ) = ∑∞
j=1

(
μ+ eφ−1

2eφ

)jeφ

/(j!)eφ. Ribeiro Jr. et al.
(2019) likewise note that this parametrization provides orthogonality
between μ and φ; yet their parametrization is simpler than that from
Huang (2017) because μ is obtained via “simple algebra.” Further,
this parametrization offers a more direct parametrization based on the
approximate mean than what is achieved via the ACMP parametrization.
The asymptotic approximations for the mean and variance of the MCMP2
distribution are shown to be accurate “for a large part of the parameter
space”; yet the mean approximation can be inaccurate when the count data
are small and strongly over-dispersed (Ribeiro Jr. et al., 2019). Given the
ZI and HT indexes described in Equation (2.26), the MCMP2 can handle
limited ZI when over-dispersion exists, while in cases of under-dispersion,
the MCMP2 can accommodate zero-deflation. Further, studies regarding
the HT indexes show that MCMP2 is generally a light-tailed distribution
(Ribeiro Jr. et al., 2019).

While all of these parametrizations are technically valid in that they are
intended to theoretically produce the same probabilities, differences can
result when different parametrizations are used in statistical methodology
and computation and thus in their resulting interpretation and inference.
Francis et al. (2012) conducted various simulation studies assessing max-
imum likelihood estimation accuracy, prediction bias, and accuracy of the
approximated asymptotic mean for the ACMP parametrization. With re-
gard to maximum likelihood estimation accuracy, under most scenarios,
the confidence interval contained the true parameter with the expected per-
centage of occasions. This, however, was not the case for the dispersion
parameter. Accordingly, “the true value of the dispersion parameter may be
difficult to ascertain with the level of confidence assumed by the α-level se-
lected.” In fact, studies further showed that, for data that are over-dispersed
with a large mean, the dispersion parameter is overestimated. Regarding
the bias of the predicted values, the intercept showed a considerable bias
when the data were under- or equi-dispersed, but the bias in the intercept
decreased with the mean; further, the largest bias occurred when the data
were over-dispersed.

While the Shmueli et al. (2005) constraints imply that the ACMP mean
approximation to be suitable for μ∗ > 10, Francis et al. (2012) instead
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argue that simulation studies show that the asymptotic mean approximates
the true mean even when 5 < μ∗ < 10; however, the approximation’s
accuracy diminishes for μ∗ < 5. Further, the asymptotic approximation
for the mean is shown to hold well for all dispersion types when μ∗
is moderate to large, while it is further accurate for small μ∗ when the
data are under-dispersed. When μ∗ is small, however, the asymptotic
accuracy is lost when working with over- or equi-dispersed data. Francis
et al. (2012) agree that the true mean and its asymptotic approximation
are close when μ∗ > 10. In contrast, however, Ribeiro Jr. et al. (2019)
counter the Shmueli et al. (2005) claims regarding the constraints required
for the approximations to hold, thus making their argument for MCMP2
parametrization. Through numerical studies, the authors determine that
the mean approximation is accurate, while the variance approximation
experiences its largest errors when ν ≤ 1, and that the reported constraint
region λ > 10ν appears unnecessary as there does not appear to exist
a relationship between their reparametrized parameters in their impact
on variance; see Ribeiro Jr. et al. (2019) for details. These assessments,
however, rely on several assumptions. The authors estimate the true mean
and variance by computing the sum of the first 500 terms from the infinite
sum; yet they too concede that the infinite sum can take considerable
time to converge. Thus, it is unclear whether M = 500 suffices for such
a study. Meanwhile, the constraint space for these approximations to hold
stems from one’s ability to approximate the normalizing function; the
approximations for the mean and variance are the by-products of this result.
Nonetheless, it is surprising that Ribeiro Jr. et al. (2019) obtain results that
contradict the over-dispersion constraint ν ≤ 1. Other works (e.g. Guikema
and Coffelt, 2008; Lord et al., 2008) provide over-dispersed examples
where their ACMP reparametrization works well where their approxi-
mation of the mean is a further truncated representation of that provided
by Ribeiro Jr. et al. (2019). Meanwhile, assuming a positive approximate
mean implies that λ1/ν > ν−1

2ν so that the space corresponding to small
and under-dispersed count data is prohibited. However, the constraints for
which the normalizing constant can be approximated imply that λ1/ν > 10.

R Computing

While no available R package appears to exist for statistical computing via
the MCMP2 model, such packages exist assuming either the ACMP or
MCMP1 parametrizations; see Table 2.10. The combayes package (Cha-
nialidis, 2020) performs ACMP computations and Bayesian regression.
Unfortunately, this package does not currently provide any help pages
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Table 2.10 Available R functions based on reparametrized COM–Poisson models.

Package (Parametrization) Function Computational result

dcmpois Probability mass function
combayes (ACMP) logzcmpois Normalizing constant, Z1(μ∗, ν) (log-scale)

rcmpois Random number generator

dcomp Probability mass function
mpcmp (MCMP1) pcomp Cumulative distribution function

qcomp Quantile function
rcomp Random number generator

for its functions; however, some information regarding package capabili-
ties can be ascertained from the Github site and its illustrative examples.
The dcmpois, logzcmpois, rcmpois functions respectively compute the
density, normalizing constant (on the log-scale), and random number gen-
eration associated with the ACMP(μ∗, ν) distribution for given centering
and dispersion parameters, μ∗ and ν (noted as mu and nu in the combayes
package). All of the aforementioned functions require mu and nu as inputs
because they aid in detailing the parametric form of the ACMP distribution.
Beyond these inputs, dcmpois requires the input x for the quantile of inter-
est as defined in Equation (2.48), while rcmpois instead needs the input n
to specify the desired number of generated data values (i.e. the sample size).

The mpcmp package (Fung et al., 2020) performs MCMP1 computations
and regression analysis. The dcomp, pcomp, qcomp, and rcomp respec-
tively compute the density, distribution function, quantiles, and random
number generation associated with the MCMP1(μ, ν) distribution,4 al-
though analysts can supply either mu or lambda (referring to the CMP(λ, ν)
parametrization). All of these functions have the default settings that nu=1
(i.e. MCMP1 with ν = 1, which is the Poisson model); lambdalb =
1e-10 and lambdaub = 1900, implying that (1 × 10−10) ≤ λ ≤ 1900
are the parameter bounds, maxlambdaiter = 1000 is the number of iter-
ations allowed to estimate λ, and tol = 1e-06 is the tolerance threshold
to assess convergence. The dcomp and pcomp functions, respectively, com-
pute the probability P(X = x) and cumulative probability P(X ≤ x), and
qcomp determines the quantile x such that P(X ≤ x) ≥ p, where, for
all of these functions, the additional input log.p is a logical operator

4 The CompGLM package also contains functions named dcomp, pcomp, and rcomp; these
functions assume the CMP parametrization.
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(defaulted as FALSE), noting whether to compute the probability on the
log-scale. pcomp and qcomp further offer a logical input lower.tail
that determines whether the cumulative density function (i.e. =TRUE) or
its complement (i.e. FALSE) is used to determine the output of interest.
The function rcomp generates a sample size of n observations (n) from an
MCMP1(μ, ν) = CMP(λ, ν) distribution when providing nu and either mu or
lambda. Finally, the mpcmp package contains the function glm.cmp to per-
form MCMP1 regression via a generalized linear model.5 Details regarding
this function will be discussed in more detail in Chapter 5; however, we can
use it here to compute μ̂ and ν̂ via an intercept-only model. Further discus-
sion of the combayes package, particularly its ability to conduct Bayesian
ACMP regression, is likewise provided in Chapter 5.

To illustrate the usefulness of these functions, Table 2.11 contains the
density calculations from combayes for the ACMP(μ∗ = λ1/ν = 41/ν , ν),
and the mpcmp density and cumulative probabilities for an MCMP1(μ, ν)
= CMP(λ = 4, ν) distributed random variable for ν ∈ {0.3, 1, 3, 30}. The
resulting calculations are consistent with the analogous CMP computations
provided in Table 2.3 from CompGLM, compoisson, and COMPoissonReg,
particularly close to dcomp (CompGLM) and dcmp (COMPoissonReg) when
ν � 1. Similarly, the density computations shown in Table 2.11 via
dcmpois and dcomp equal each other up to at least five decimal places for
all considered ν. When trying to compare mpcmp with the other functions
for the special case associated with the geometric distribution (Table 2.5),
however, the dcomp and pcomp functions produce NaN. This is because the
mpcmp package requires mu, lambda, and nu to all be positive; thus, an
equivalent calculation for the geometric distribution cannot occur because
that requires setting ν = 0. The combayes package meanwhile tries to
produce output for when ν = 0 but appears stuck churning, trying to deter-
mine this computation. Theoretically, however, we can already recognize
this as being unattainable since ν = 0 implies that μ∗ = λ1/ν is undefined;
thus, we are unable to determine any density associated with the geometric
special case via the ACMP parametrization and dcmpois. Finally (com-
paring qcomp with results from Table 2.7), the qcomp function likewise
determines the quantile q such that P(X ≤ q) ≥ p for some probability of
interest p. Assuming that X has an MCMP1(μ, ν) = CMP(λ = 3, ν), where
ν ∈ {0.3, 1, 3, 30}, and P(X ≤ q) ≥ 0.9, qcomp obtains identical quantiles
as those presented in Table 2.7. The combayes package does not currently

5 The COMPoissonReg package also contains a function glm.cmp, but it assumes a CMP
parametrization.
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Table 2.11 Probability computations (to six decimal places) via dcmpois
(combayes) and dcomp (mpcmp) for ACMP(μ∗ = λ1/ν = 41/ν, ν) and
MCMP1(μ, ν) = CMP(λ = 4, ν), respectively, and cumulative probability pcomp
for the MCMP1 distribution.

P(X = 2) P(X ≤ 2)
ν dcmpois (combayes) dcomp (mpcmp) pcomp (mpcmp)

0.3 4.312012 × 10−14 9.772194 × 10−14 1.353188 × 10−13

1.0 0.146525 0.146525 0.238104
3.0 0.273395 0.273395 0.956883

30.0 2.980834 × 10−9 2.980232 × 10−9 1

provide help pages to know whether an analogous function is contained in
its package.

Revisiting the 1985 German Socio-Economic Panel data regarding the
number of children born to a random sample of 1,243 women (Winkel-
mann, 1995; Section 2.4.4), we can use glm.cmp (mpcmp) to indepen-
dently obtain the coefficients β̂0 and γ̂0 such that λ̂ = exp (β̂0) and
ν̂ = exp (γ̂0). Code 2.5 supplies the resulting R code and output ob-
tained via the mpcmp::glm.cmp function. Here, we obtain ν̂ = 1.168 and
μ̂ = exp (0.8687) ≈ 2.3821. While we can directly compare this esti-
mated dispersion parameter to those obtained via compoisson, CompGLM,
and COMPoissonReg (where we see that the values are nearly identical; see
Section 2.4.4), we cannot directly compare μ̂ and λ̂ because these estimates
stem from different parametrizations that are not easily transformable.

2.7 COM–Poisson Is a Weighted Poisson Distribution

As discussed in Chapter 1, weighted Poisson distributions are flexible gen-
eralizations of the Poisson distribution that allow for either over- or under-
dispersion; see Section 1.4 for a detailed discussion. The COM–Poisson
distribution is a special case of the class of weighted Poisson distributions,
where the weight function is w(x;ν) = (x!)1−ν = [�(x + 1)]1−ν , x ∈ N

(Kokonendji et al., 2008). This weight function can be viewed as w(x;ν) =
exp [(1 − ν) ln (x!)], i.e. r = 1 − ν and t(x) = ln (x!); accordingly, the
COM–Poisson distribution with ν = 1 (i.e. the Poisson distribution) is
equi-dispersed, ν < 1 is over-dispersed, and ν > 1 is under-dispersed.
The COM–Poisson weight function is also log-convex (log-concave) for
0 ≤ ν < 1 (ν > 1); this result is consistent with the previously stated
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Code 2.5 R codes and output illustrating the use of the mpcmp (Fung et al., 2020)
package to model observed child data provided in Winkelmann and Zimmermann
(1995) via the MCMP1 distribution.

> child .mcmp <- glm.cmp(child ~ 1, data= Child )
> summary (child .mcmp)

Call: glm.cmp( formula = child ~ 1, data = Child )

Deviance Residuals :
Min 1Q Median 3Q Max

-2.2702 -1.0707 -0.2711 0.4077 4.3332

Linear Model Coefficients :
Estimate Std.Err Z value Pr(>|z|)

( Intercept ) 0.8687 0.0173 50.2 <2e -16 ***
---
( Dispersion parameter for Mean -CMP estimated to be

1.168)

Null deviance : 1343.2 on 1242 degrees of freedom
Residual deviance : 1343.2 on 1242 degrees of freedom

AIC: 4368.469

results relating the constrained space for ν and the type of data disper-
sion associated with the COM–Poisson distribution. Gupta et al. (2014)
further apply relations of the COM–Poisson log-concavity (log-convexity)
to discrete life distributions having an increasing (decreasing) failure rate.
Finally, the family of COM–Poisson distributions is closed by pointwise
duality for 0 ≤ ν ≤ 2; accordingly, for any COM–Poisson distribution
whose dispersion parameter is 0 ≤ ν ≤ 2, there exists a corresponding
dual COM–Poisson distribution whose dispersion is 0 ≤ 2 − ν ≤ 2, thus
having the same magnitude in the other direction (Kokonendji et al., 2008).

2.8 Approximating the Normalizing Term, Z(λ, ν)

As noted in Section 2.2, the CMP normalizing function Z(λ, ν) = ∑∞
j=0

λj

(j!)ν
is an infinite sum that does not generally have a closed-form solution;
Table 2.1 lists the special cases such that Z(λ, ν) has a closed form. The
infinite sum diverges when ν = 0 and λ ≥ 1 but can likewise cause com-
putational overflow in those scenarios where ν is small while λ is large
(Ribeiro Jr. et al., 2019). Ability to compute the infinite sum, however, is
important because it is required for computing the probabilities, moments,
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and other quantities. Throughout this reference, irrespective of the COM–
Poisson parametrization and associated normalization term, there exists a
consistent need to determine the normalizing constant in a computationally
efficient manner, thus reducing computational time. One way to address
the matter is to code an R-executable C-program that further incorporates
parallel computing (Wu et al., 2013). Another way is to properly and
efficiently approximate this term. Much of the ensuing discussion addresses
this matter with focus on the CMP parametrization and its associated nor-
malization term, Z(λ, ν); however, analogous results hold true for the other
COM–Poisson parametrizations and their respective representations of the
normalizing constant.

While there does not necessarily exist a closed form of Z(λ, ν) for ar-
bitrary λ and ν, there exist various methods to approximate it to any level
of precision. Minka et al. (2003) noted computational issues and provided
useful approximations and upper bounds for both Z(λ, ν) and other related
quantities by noting that, for any λ > 0 and ν > 0, the series λj

(j!)ν converges
because (implementing the ratio test for converging series)

lim
j→∞

λj+1/[(j + 1)!]ν
λj/(j!)ν = lim

j→∞
λ

[(j + 1)!]ν = 0.

In practice, the infinite sum can be approximated by truncation. As noted
in Section 2.2, one can approximate the infinite sum by defining some trun-
cation point M such that Z(λ, ν) ≈ ∑M

j=0
λj

(j!)ν . The upper bound on the
truncation error from using only the first M + 1 counts (j = 0, 1, 2, . . . , M)
is λM+1

[(M+1)!]ν (1−εM ) , where εM > λ(k + 1)ν for all k > M (Minka et al.,
2003). Several R packages (e.g. CompGLM (Pollock, 2014a), multicmp
(Sellers et al., 2017a), cmpprocess (Zhu et al., 2017a), CMPControl (Sell-
ers and Costa, 2014)) utilize this approach with M = 100 as the default
truncation; however, this value can be supplied by the analyst. Earlier
versions of COMPoissonReg (Sellers et al., 2019) (i.e. before 0.5.0) like-
wise used this truncation method to compute Z(λ, ν). Alternatively, M can
be determined such that a desired precision level is attained, i.e. such
that λM

(M!)ν is sufficiently small; the compoisson package (Dunn, 2012)
computes Z(λ, ν) (and ln (Z(λ, ν))) in this manner. The com.compute.z
and com.compute.log.z functions include the input log.error whose
default value equals 0.001 but can be supplied by the analyst.

When the data are under-dispersed (i.e. ν > 1), M is relatively small be-
cause the terms λj

(j!)ν decrease quickly. For over-dispersed data (i.e. ν < 1),
however, these terms decline more slowly, thus requiring the value of M to
be larger. Accordingly, as demonstrated in Section 2.2.1, while the choice
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of default truncation (i.e. M = 100) is oftentimes sufficient for use in the
associated R functions, scenarios exist that require M > 100 to sufficiently
approximate the infinite sum when the data are over-dispersed (Ribeiro
Jr. et al., 2019). This approach can thus require increased computational
time to approximate the normalization term. Further, scenarios that do not
allow for approximating the normalizing constant can lead to “computa-
tionally infeasible Bayesian models” (Wu et al., 2013). As a compromise,
one can directly code an approximation function that combines Equation
(2.12) with the truncation approach via a program (e.g. C) that can be called
from R, e.g. in Wu et al. (2013). Recent versions of COMPoissonReg (i.e.
after 0.5.0), for example, take this approach where, for λ and ν satisfy-
ing ν ≤ 1 or λ > 10ν , the asymptotic approximation (Equation (2.12))
is applied, while the truncation approach is otherwise utilized based on a
pre-determined level of desired precision. Nonetheless, these issues have
motivated researchers to determine alternative approaches to approximate
Z(λ, ν) for any λ, ν.

Shmueli et al. (2005) propose an asymptotic approximation, say Z̃(λ, ν)
(Equation (2.12)), when ν ≤ 1 or λ > 10ν. This result is derived by noting
that the identity 1

2π

∫ π
−π eeia

e−iajda = 1
j! implies that

1

2π

∫ π

−π
eeia

Z(λe−ia, ν)da =
∞∑

j=0

λj

(j!)ν
1

2π

∫ π

−π
eeia

e−iajda = Z(λ, ν + 1),

(2.54)

i.e. Z(λ, ν+ 1) can be represented as an integral over Z(λ, ν). Applying this
result repeatedly produces the representation

Z(λ, ν) = 1

(2π)ν−1

∫

· · ·
∫

exp

(
ν−1∑

k=1

exp (iak) + λ exp

(

−
ν−1∑

k=1

iak

))

da1 · daν−1 (2.55)

for Z(λ, ν), as a multiple integral where the change of variable (iaj =
ibj+ 1

ν
ln (λ)) and application of Laplace’s method result in Equation (2.12).

Minka et al. (2003) prove this approximation accurate when λ > 10ν only
for integer-valued ν; yet they demonstrate empirically that the approxima-
tion holds for any real ν > 0. Olver (1974) likewise obtained and proved
this approximation years earlier but only for 0 < ν ≤ 4. Then, the result
was determined by approximating the infinite summation with a contour
integral around the nonnegative integers where the proportional error to
the approximation converges to 0. This proof, however, fails for ν > 4.
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Gillispie and Green (2015) instead consider a different contour integral
such that the error integral tends to infinity for large λ given any fixed ν
but at such a rate that, compared to Z(λ, ν), the ratio of the error term to
the approximation to Z(λ, ν) tends to zero so that the approximation holds
for all ν > 0. Gillispie and Green (2015) further discuss the behavior of
Z(λ, ν), noting the following properties: Z(0, ν) = 1, ∂Z

∂λ
> 0 and ∂2Z

∂λ2 > 0
for all ν; hence, Z(λ, ν) increases at an increasingly faster rate with respect
to λ. Meanwhile, ∂Z

∂ν
< 0 implies that (for fixed λ) Z(λ, ν) decreases as ν

increases. Thus, Z(λ, ν) increases sharply starting at 1 for ν < 1 and then
flatter for ν > 1, where, as ν → ∞, Z(λ, ν) becomes completely linear
with respect to λ with a slope of 1 (i.e. limν→∞ Z(λ, ν) = 1 + λ).

Gillispie and Green (2015) show that the behavior of Z̃(λ, ν) does not
behave in the same manner for all ν. At ν = 1, the approximation is exact
(i.e. Z̃(λ, 1) = Z(λ, 1) = eλ). While limλ→0 Z̃(λ, ν) = 0, for 0 < ν < 1,

∂Z̃

∂λ
= ν−3/2

2(2π)(ν−1)/2
(2νλ1/ν + 1 − ν)λ(1−3ν)/2νeνλ

1/ν
(2.56)

has an infinite slope at zero for ν ∈ (
1
3 , 1

)
, a positive constant slope at

ν = 1
3 , and a zero slope for ν ∈ (

0, 1
3

)
. Higher derivatives with respect to λ

show that ∂Z̃
∂λ

becomes positive for any ν; therefore, Z̃ increases. Meanwhile,
for ν > 1, limλ→0 Z̃(λ, ν) → ∞ and limλ→0

∂Z̃
∂λ

→ −∞, falling rapidly
before λ = (

1
2

)ν
, and then approaching Z(λ, ν) from below as λ increases.

Recall that the performance of Z̃(λ, ν) is considered only for ν ∈ (0, ∞)
because Z(λ, ν) has a closed form when ν ∈ {0, 1, ∞}; see Table 2.1.

The asymptotic approximation has alternatively been proven via prob-
abilistic arguments. Şimşek and Iyengar (2016) consider the ACMP
reparametrization and show that

Z1(μ∗, ν) = eνμ∗

(2πμ∗)(ν−1)/2
√
ν

[1 + O(μ−1
∗ )] as μ∗ → ∞. (2.57)

While this can be obtained directly by applying Equation (2.47) to Equation
(2.12), the authors prove this result by expressing the normalizing constant
as an expectation of a function of a Poisson random variable and approxi-
mate the function via Stirling’s formula. From there, they use distribution
theory results relating a Poisson random variable to a normal random vari-
able as μ∗ gets large, expand various expressions, and take the expectation
of the penultimate result to obtain Equation (2.57). Şimşek and Iyengar
(2016) further advance the connection between the ACMP distribution and
generalized hypergeometric functions (initiated by Nadarajah (2009)) to re-
fine the approximation of the normalizing constant for integer values of ν.



2.9 Summary 69

Noting that the normalizing constant equals a modified Bessel function of
the first kind when ν = 2, they apply an asymptotic expansion of the mod-
ified Bessel function to determine a more detailed approximation of the
normalizing constant, namely

Z1(μ∗, 2) ≈ e2μ∗
√

4πμ∗

(

1 + 1

16μ∗
+ 9

512μ2∗
+ O(μ−3

∗ )

)

. (2.58)

Because the additional terms are both positive, Equation (2.58) improves
the under-estimation of the normalizing constant approximation provided
in Equation (2.57). Extending the approach described above but with more
terms in the expansions, the asymptotic approximation is refined to be

Z1(μ∗, ν) = eνμ∗

(2πμ∗)(ν−1)/2
√
ν

[

1 + (ν − 1)

(
8ν2 + 12ν + 3

96μ∗ν2
+ 1 + 6ν

144μ2∗ν3

)

+O(μ−3
∗ )

]

as μ∗ → ∞ (2.59)

(Şimşek and Iyengar, 2016). Gaunt et al. (2016) further extend this result
by providing the form of the lower order terms in the asymptotic expansion.
Given ν > 0,

Z(λ, ν) = exp (νλ1/ν)

λ(ν−1)/2ν(2π)(ν−1)/2
√
ν

∞∑

k=0

ck(νλ1/ν)−k as λ→ ∞, (2.60)

where the expansion coefficients ck are uniquely determined by

(�(t + 1))−ν = νν(t+1/2)

(2π)(ν−1)/2

∞∑

j=0

cj

�(νt + (1 + ν)/2 + j)
. (2.61)

2.9 Summary

The COM–Poisson distribution is a flexible count distribution that ac-
commodates for data over- or under-dispersion and contains the Poisson,
geometric, and Bernoulli distributions as special cases. Derived nicely from
a more flexible queuing system model, it satisfies several eloquent proper-
ties, including having the form of an exponential family and a (modified)
power series distribution, and, for a given dispersion ν, it satisfies the
form of an exponential dispersion family. Computational tools provide an-
alysts with the ability to model frequency tables with the COM–Poisson
distribution, thus providing estimators and confidence intervals for λ and
ν, as well as fitted values to determine estimated frequencies based on a
COM–Poisson model.
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The flexibility of the COM–Poisson distribution motivates its appli-
cation in various statistical models, including multivariate distributions
(Chapter 4), regression analysis (Chapter 5), control chart theory (Chap-
ter 6), stochastic processes and time series models (Chapter 7), and survival
analysis (Chapter 8) Meanwhile, Chapter 3 introduces the various dis-
tributional extensions that are attained and introduced (to date) from a
COM–Poisson model.
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Distributional Extensions and Generalities

The COM–Poisson (with specific parametrizations defined as necessary)
distribution has garnered interest in and development of other flexible
alternatives to classical distributions. This chapter will introduce vari-
ous distributional extensions and generalities motivated by functions of
COM–Poisson random variables. Section 3.1 describes a generalization of
the Skellam distribution, namely the Conway–Maxwell–Skellam (COM–
Skellam or CMS) distribution. Section 3.2 introduces the sum-of-Conway–
Maxwell–Poissons (sCMP) distribution. Section 3.3 introduces the reader
to Conway–Maxwell inspired generalizations of the binomial distribution,
particularly the COM–binomial (CMB) and COM–multinomial (CMM)
distributions. Section 3.4 highlights several works that seek to generalize
the negative binomial (NB) distribution, including the generalized COM–
Poisson (GCMP), the COM-type NB (COMtNB), the extended CMP
(ECMP), and the COM–NB (COMNB) distributions. Section 3.5 extends
the Katz class of distributions to introduce the Conway–Maxwell–Katz
(COM–Katz) class. Section 3.6 describes two flexible series system life-
length distributions: the exponential-CMP (ExpCMP) and Weibull–CMP
(WCMP) distributions, respectively. Section 3.7 discusses three general-
izations of the negative hypergeometric (NH) distribution – two named
as a Conway–Maxwell–negative hypergeometric (abbreviated as COMNH
and CMNH, respectively), and the COM–Poisson-type negative hyperge-
ometric (CMPtNH) distributions. All of the distributions described in this
chapter are derived in relation to CMP parametrized random variables. That
said, one can likewise consider analogous representations of these distribu-
tions based on the alternative COM–Poisson parametrizations described in
Chapter 2 (Section 2.6). Finally, Section 3.8 concludes the chapter with
discussion.

71
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3.1 The Conway–Maxwell–Skellam (COM–Skellam or CMS)
Distribution

The Skellam distribution (Skellam, 1946) is a discrete model based on
the difference of two Poisson random variables. Its form has been applied
in various contexts, e.g. in image background correction (Hwang et al.,
2007) and measuring the difference in scores for competing soccer teams
(Karlis and Ntzoufras, 2008). The underlying assumed data equi-dispersion
that motivates the development of the Skellam distribution, however, is
constraining. The COM–Skellam or CMS distribution is a flexible gen-
eralization of the Skellam model to allow for significant data over- or
under-dispersion; its structure is based on the difference of two COM–
Poisson random variables. Consider S = X1 − X2, where Xi, i = 1, 2, are
independent CMP(λi, ν) distributed random variables; accordingly, S has a
CMS(λ1, λ2, ν) distribution with probability

P(S = s) = 1

Z(λ1, ν)Z(λ2, ν)

(
λ1

λ2

)s/2

I(ν)
|s| (2

√
λ1λ2), s ∈ Z,

where Z(λi, ν), i = 1, 2, denote the respective normalizing constants of
the CMP(λi, ν) distributions as described in Section 2.2, and I(ν)

α (z)
.=

∑∞
m=0

1
[�(m+α+1)m!]ν

(
z
2

)2m+α
is a modified Bessel function of the first kind

(Sellers, 2012a). This probability mass function simplifies to that for the
Skellam distribution when ν = 1, while ν < ( > )1 corresponds to over-
dispersion (under-dispersion) relative to the Skellam distribution. The CMS
distribution likewise contains the difference of geometric and Bernoulli
distributions, respectively, as special cases.

The moment generating function of S is MS(t) = Z(λ1et ,ν)
Z(λ1,ν) · Z(λ2e−t ,ν)

Z(λ2,ν) , from
which the moments of interest can be derived. In particular, the mean and
variance are, respectively,

E(S) = E(X1) − E(X2) ≈ λ1/ν
1 − λ1/ν

2 and (3.1)

V(S) = V(X1) + V(X2) ≈ 1

ν

(
λ

1/ν
1 + λ1/ν

2

)
, (3.2)

where E(Xi) and V(Xi) and their approximations are defined in Chapter 2
with the approximations deemed reasonable for ν ≤ 1 or λ > 10ν (Minka
et al., 2003; Shmueli et al., 2005). Figure 3.1 illustrates the CMS vari-
ability via various CMS(λ1 = λ2 = 5, ν) probability mass functions for
ν ∈ {0.25, 0.5, 1, 2, 4, 10}; in particular, the CMS(λ1 = λ2 = 5, ν = 1)
represents the special case of the Skellam(λ1 = λ2 = 5) distribution.
These plots show that, as ν increases, the distribution contracts about the



3.1 The Conway–Maxwell–Skellam Distribution 73

s

P
ro

ba
bi

lit
y,

 P
(S

 =
 s

)

ν = 0.25

s

P
ro

ba
bi

lit
y,

 P
(S

 =
 s

)

ν = 0.5

s

P
ro

ba
bi

lit
y,

 P
(S

 =
 s

)

ν = 1

s

P
ro

ba
bi

lit
y,

 P
(S

 =
 s

)

ν = 2

s

P
ro

ba
bi

lit
y,

 P
(S

 =
 s

)

ν = 4

−20 −10 0 10 20 −20 −10 0 10 20

−20 −10 0 10 20 −20 −10 0 10 20

−20 −10 0 10 20 −20 −10 0 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s

P
ro

ba
bi

lit
y,

 P
(S

 =
 s

)

ν = 10

Figure 3.1 COM–Skellam(λ1 = λ2 = 5, ν) probability mass function illustrations
for the values of ν ∈ {0.25, 0.5, 1, 2, 4, 10}.

mean, consistent with the reduced dispersion in the underlying CMP ran-
dom variables; thus, we see that the CMS distribution is over-dispersed
(under-dispersed) relative to the Skellam distribution when ν < (>)1. Dif-
ferences between λ1 and λ2 would meanwhile shift the distribution center
as described in Equation (3.1).
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Parameter Estimation and Hypothesis Testing

The method of maximum likelihood can be conducted to estimate λ1, λ2,
and ν via the log-likelihood function,

ln L(λ1, λ2, ν | s) = −n[ ln Z(λ1, ν) + ln Z(λ2, ν)] +
∑n

i=1 si

2
(ln λ1 − ln λ2)

+
n∑

i=1

ln Iν|si|(2
√
λ1λ2),

where the corresponding score equations can be solved numerically in R
via optimization tools (e.g. nlminb or optim), and the associated standard
errors determined via the corresponding Fisher information matrix that can
be computed via the resulting approximate Hessian matrix supplied via the
selected optimization command (Sellers, 2012a).

Two hypothesis tests of interest serve to address interesting questions
associated with relevant data: (1) does statistically significant data disper-
sion exist such that the Skellam distribution offers a biased representation
of the data and (2) is the mean of these data statistically significantly differ-
ent from zero, assuming that the data have a COM–Skellam distribution.
A likelihood ratio test can address each of these hypotheses. The first
case considers the hypotheses H0 : ν = 1 versus H1 : ν �= 1 to compare
the appropriateness of a Skellam versus a broader COM–Skellam model
structure. The resulting likelihood ratio test statistic is

�ν = L(λ̂(1,H0), λ̂(2,H0), νH0 = 1)

L(λ̂1, λ̂2, ν̂)
,

where the resulting statistical implications and inferences are maintained as
described in Section 2.4.5. The second hypothesis test allows one to com-
pare two count datasets that contain the same amount of data dispersion or
consider the difference of those data (i.e. a paired design structure). There-
fore, to consider the difference in their respective means, one can define
H0 : E(S) = 0 and H1 : E(S) �= 0 (which is equivalent to H0 : λ1 = λ2

versus H1 : λ1 �= λ2). The associated likelihood ratio test statistic is now

�μS = L(λ̂1,H0 = λ̂2,H0 = λ̂, ν̂H0 )

L(λ̂1, λ̂2, ν̂)
,

where −2 ln�μS converges to a chi-squared distribution with one degree of
freedom. For both tests, analysts can modify the proposed two-sided tests
to be one-sided in order to properly study direction. Analogous to Section
2.4.5, alternative hypothesis test statistics can likewise be derived.
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3.2 The Sum-of-COM–Poissons (sCMP) Distribution

The sCMP (λ, ν, m) class of distributions can be viewed as a three-
parameter structure with CMP intensity parameter λ, dispersion parameter
ν, and number of underlying CMP random variables m ∈ N. Given a ran-
dom sample of CMP(λ, ν) distributed random variables Xi, i = 1, . . . , m,

a random variable Y =
m∑

i=1
Xi has a sCMP(λ, ν, m) distribution with

probability mass function

P(Y = y | λ, ν, m) = λy

(y!)νZm(λ, ν)

y∑

x1,...,xm=0
x1+···+xm=y

(
y

x1 · · · xm

)ν
, y = 0, 1, 2, . . . ,

(3.3)

where Zm(λ, ν) is the mth power of the CMP(λ, ν) normalizing constant,
and

( y
x1 ··· xm

) = y!
x1!···xm! is the multinomial coefficient. Special cases of

the sCMP class include the Poisson(mλ) distribution when ν = 1, the
NB(m, 1 − λ) distribution when ν = 0 and λ < 1, and the binomial(m, p)
distribution as ν → ∞ with success probability p = λ

λ+1 . Accordingly, the
sCMP(λ, ν, m) distribution is over-dispersed (under-dispersed) relative to
the Poisson(mλ) distribution when ν < (>)1. The CMP(λ, ν) distribution
naturally is contained as a special case when m = 1; this implies that the
special cases of the CMP distribution are likewise contained here, namely
the Poisson(λ) (ν = 1), geometric (with success probability 1−λ for ν = 0
and λ < 1), and Bernoulli (with success probability λ

1+λ , when ν → ∞)
distributions (Sellers et al., 2017b). The sCMP generating functions include

its moment generating function MY(t) =
(

Z(λet ,ν)
Z(λ,ν)

)m
, probability generating

function�Y(t) =
(

Z(λt,ν)
Z(λ,ν)

)m
, and characteristic function φY(t) =

(
Z(λeit ,ν)
Z(λ,ν)

)m
,

respectively. Given the same λ and ν, the sum of independent sCMP distri-
butions is invariant under addition; however, this result does not generally
hold. While this definition assumes m ∈ N, m need not be integer-valued
since the generating functions are valid for all m ≥ 0.

Figure 3.2 contains various sCMP(m, λ = 1, ν) probability density
illustrations for the values of m ∈ {2, 3, 4, 5} and ν ∈ {0.5, 1, 2}. As demon-
strated in this illustration, the sCMP distribution can effectively represent
discrete data that contain data dispersion. We see that, for a fixed m, the dis-
tribution contracts closer to zero as ν increases. This makes sense because
an increasing ν associates with decreased dispersion. Meanwhile, for a
fixed ν, we see that the distribution expands as m increases. This also makes
sense because an increased m can be thought of as summing more CMP
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Figure 3.2 sCMP(m, λ = 1, ν) probability mass function illustrations for the values
of m ∈ {2, 3, 4, 5} and ν ∈ {0.5, 1, 2}.

variables. The middle column contains the distribution plots when ν = 1,
and note that the sCMP(λ = 1, ν = 1, m) equals the Poisson(m) distribu-
tion. For example, we see that the sCMP(λ = 1, ν = 1, m = 3) probability
distribution equals the Poisson(λ = 3) model shown in Figure 1.1.



3.3 Generalizations of the Binomial Distribution 77

Parameter Estimation

Sellers et al. (2017b) consider a profile likelihood approach for parame-
ter estimation to estimate λ and ν for a given m via maximum likelihood
estimation. Consider the log-likelihood

ln L(λ, ν | m) =
n∑

i=1

ln P(Yi = yi | λ, ν, m) (3.4)

for a random sample Y1, . . . , Yn, where P(Yi = yi | λ, ν, m), i = 1, . . . , n
is defined in Equation (3.3). For each considered m, the respective con-
ditionally maximized log-likelihood results ln L(λ̂, ν̂ | m) are obtained and
compared to determine the combination of estimators (λ̂, ν̂, m̂) that produce
the maximum log-likelihood. The standard errors associated with λ̂ and ν̂
are obtained by taking the square root of the diagonal elements from the
inverse of the information matrix,

I(λ, ν) = −n · E

(
∂2 ln P(Y=y)

∂λ2
∂2 ln P(Y=y)
∂λ∂ν

∂2 ln P(Y=y)
∂λ∂ν

∂2 ln P(Y=y)
∂ν2

)

. (3.5)

The log-likelihood (Equation (3.4)) produces score equations that do not
have a closed-form solution; thus, the MLEs λ̂ and ν̂ are determined nu-
merically. Sellers et al. (2017b) use the nlminb function (contained in the
stats package) to determine the parameter estimates, while they use the
hessian function (in the numDeriv package (Gilbert and Varadhan, 2016))
to determine the information matrix provided in Equation (3.5).

3.3 Conway–Maxwell Inspired Generalizations
of the Binomial Distribution

The binomial distribution is a popular discrete distribution that models the
number of outcomes in either of two categories, while the multinomial
distribution is its most popular and well-studied generalization of the bi-
nomial distribution, modeling the number of outcomes contained in each
of the k ≥ 2 categories. The common thread regarding these distributions
is that the data stem from independent and identically distributed trials.
This section instead considers various Conway–Maxwell inspired gener-
alizations of these distributions. Section 3.3.1 introduces readers to the
CMB distribution, while Section 3.3.2 discusses a broader generalization
of the CMB distribution. Section 3.3.3 meanwhile acquaints readers to the
broader CMM distribution. Both the CMB and CMM distributions can be
described as a sum of associated Bernoulli random variables; Section 3.3.4
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details that discussion. Finally, Section 3.3.5 describes statistical comput-
ing tools in R for modeling data and computing probabilities assuming a
CMB or CMM distribution.

3.3.1 The Conway–Maxwell–binomial (CMB) Distribution

The CMB distribution (also referred to as the Conway–Maxwell–Poisson–
binomial distribution) is a three-parameter generalization of the binomial
distribution. A random variable Y is CMB(m, p, ν) distributed with the
probability mass function

P(Y = y) =
(m

y

)ν
py(1 − p)m−y

S(m, p, ν)
, y = 0, . . . , m, (3.6)

where 0 ≤ p ≤ 1, ν ∈ R, and S(m, p, ν) = ∑m
y=0

(m
y

)ν
py(1 − p)m−y is a

normalizing constant (Borges et al., 2014; Kadane, 2016; Shmueli et al.,
2005). This model satisfies the recursion property,

P(Y = y) = p

1 − p

(
m + 1 − y

y

)ν
P(Y = y − 1). (3.7)

The binomial(m, p) distribution is the special case of the CMB(m, p, ν),
where ν = 1, while ν > (<)1 corresponds to under-dispersion (over-
dispersion) relative to the binomial model. For ν → ∞, the probability
distribution is concentrated on the point mp, while for ν → −∞, it is con-
centrated at 0 or m. For λ = mνp, the CMB(m, p, ν) distribution converges
to the CMP(λ, ν) as m → ∞, i.e. limm→∞ P(Y = y | m, p, ν) = λy

(y!)νZ(λ,ν) ,
y = 0, 1, 2, . . . (Borges et al., 2014; Daly and Gaunt, 2016). Meanwhile, the
CMB can be derived as the conditional distribution of one CMP random
variable given that the sum of it and another (independent) CMP random
variable (with the same dispersion parameter) equals an outcome m. For
two independent CMP(λi, ν) distributed random variables Xi, i = 1, 2,

(X1 | (X1 + X2 = m)) ∼ CMB

(

m,
λ1

λ1 + λ2
, ν

)

. (3.8)

Daly and Gaunt (2016) present some general properties regarding the CMB
distribution. Letting (j)k = j(j−1) · · · (j− k +1) denote the falling factorial
for a number j,

E (((Y)k)ν) = S(m − k, p, ν)

S(m, p, ν)
((m)k)νpk
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for k = 1, . . . , m − 1. Meanwhile, the mode of the distribution is �a� if

a = m + 1

1 +
(

1−p
p

)1/ν

is not integer-valued; otherwise, the modes are a and a − 1. Finally, analo-
gous to Equation (2.28), for a CMB(m, p, ν) distributed random variable Y
and function f : Z → R such that E|f (Y + 1)| <∞ and E|Yν f (Y)| <∞,

E[p(m − Y)ν f (Y + 1) − (1 − p)Yν f (Y)] = 0. (3.9)

Results also exist regarding stochastic ordering and other orderings re-
lating to the CMB distribution and also regarding other convergence and
approximation results for this distribution; see Daly and Gaunt (2016) for
details.

The CMB(m, p, ν) probability function (Equation (3.6)) can be
reparametrized in terms of the odds θ = p

1−p as

P(Y = y | m, θ , ν) = 1

τ (m, θ , ν)

(
m

y

)ν
θ y or

1

ξ (m, θ , ν)

θ y

[y!(m − y)!]ν

= exp [ν ln
(m

y

) + y ln (θ)]

τ (m, θ , ν)
or

exp (y ln (θ) − ν ln (y!(m − y)!))
ξ (m, θ , ν)

,

for y = 0, 1, 2, . . . , m, where τ (m, θ , ν) = ∑m
j=0

(m
j

)ν
θ j and ξ (m, θ , ν) =

∑m
j=0

θ j

[j!(m−j)!]ν (Borges et al., 2014; Kadane, 2016). These parametrizations
produce analogous representations for the respective generating functions
(i.e. probability, moment, and characteristic function), namely

�Y(t) = τ (m, θ t, ν)

τ (m, θ , ν)
= ξ (m, θ t, ν)

ξ (m, θ , ν)
, for 0 ≤ t ≤ 1, (3.10)

MY(t) = τ (m, θet, ν)

τ (m, θ , ν)
= ξ (m, θet, ν)

ξ (m, θ , ν)
, and (3.11)

φY(t) = τ (m, θeit, ν)

τ (m, θ , ν)
= ξ (m, θeit, ν)

ξ (m, θ , ν)
. (3.12)

Whether from the moment generating function or a direct representation of
the rth moment of Y (via the latter parametrization, e.g.),

E(Yr) = 1

ξ (m, θ , ν)

m∑

x=0

yr θ y

[y!(m − y)!]ν ,
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for r ∈ R, the mean and variance of Y are, respectively,

E(Y) = θ d ln (ξ (m, θ , ν))

dθ
(3.13)

V(Y) = θ dE(Y)

dθ
. (3.14)

The CMB distribution is a member of the exponential family with the
joint probability mass function

P(y | p, ν) ∝ (1 − p)mn
n∏

i=1

(
p

1 − p

)yi m!nν
[yi!(m − yi)!]ν

∝ exp

(

A∗1 ln

(
p

1 − p

)

− νA∗2

)

,

for a random sample y = {y1, . . . , yn}, where A∗1 = ∑n
i=1 yi and A∗2 =∑n

i=1 ln [yi!(m − yi)!] are sufficient statistics for p and ν. As an exponen-
tial family, however, it cannot be represented as a mixture of binomials
for all sample sizes; hence, the CMB family is not marginally compati-
ble (Kadane, 2016). The CMB distribution also belongs to the family of
weighted Poisson distributions as described in Section 1.4 where

w(y; ν) =
{

[y!(m−y)!]1−ν
(m−y)! if y ≤ m

0 if y > m,

and is a generalized power series distribution,1 where η = ν and

a(y; ν) =
{ 1

[y!(m−y)!]ν if y ≤ m
0, if y > m.

The CMB distribution has a conjugate prior family of the form

h(θ , ν) = θa1−1e−νa2ξ−a3 (θ , ν)ψ(a1, a2, a3), 0 < θ <∞, 0 < ν <∞,

where ξ (θ , ν) = ∑m
y=0 θ

y/[y!(m − y)!]ν and ψ−1(a1, a2, a3) = ∫ ∞
0

∫ ∞
0

θa1−1e−νa2ξ−a3 (θ , ν)dθdν < ∞; its updates occur as a′
1 = a1 + y, a′

2 =
a2 + ln (y!(m − y)!) and a′

3 = a3 + 1, and this conjugate prior is symmetric
about 0 if and only if a1/a3 = m/2 (Kadane, 2016).

1 A generalized power series distribution has the form P(Y = y; η, θ) = a(y; η)θy

A(η; θ ) , y =
0, 1, 2, . . ., where A(η; θ ) = ∑∞

j=0 a(j; η)θ j.
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The maximum likelihood estimators of the CMB parameters θ = p
1−p

and ν can be determined for a random sample of n CMB(θ , ν) random
variables, Y1, . . . , Yn, via the log-likelihood

ln L(θ , ν, ; y) =
(

ln (θ)
n∑

i=1

yi − ν
n∑

i=1

ln (yi!(m − yi)!) − n ln (ξ (m, θ , ν))

)

= n [ln (θ)t1 − νt2 − ln (ξ (m, θ , ν))] ,

where t1 = 1
n

∑n
i=1 yi and t2 = 1

n

∑n
i=1 ln (yi!(m − yi)!) denote the sample

mean and sample log-geometric mean, respectively (Borges et al., 2014;
Kadane, 2016). The resulting score equations produce

{
t1 = θ d

dθ ln (ξ (m, θ , ν))

t2 = − d
dν ln (ξ (m, θ , ν)),

(3.15)

where, because the CMB is a member of the exponential family, T1 =
1
n

∑n
i=1 Yi and T2 = 1

n

∑n
i=1 ln (Yi!(m − Yi)!) are minimal sufficient statis-

tics, and the maximum likelihood estimators θ̂ and ν̂ are unique solutions
to Equation (3.15). As has been the case with other distributions and con-
structs, an iterative method (e.g. the Newton–Raphson method) is required
to determine these solutions. This can be accomplished via statistical com-
puting in R (R Core Team, 2014) using, for example, the optim function or
in SAS via the PROC NLMIXED procedure.

3.3.2 The Generalized Conway–Maxwell–Binomial Distribution

The generalized Conway–Maxwell–binomial (gCMB) distribution broad-
ens the CMB distribution, where the support space remains between 0 and
m but allows for even greater flexibility relative to the binomial distribu-
tion. The probability mass function associated with a gCMB(p, ν, m, n1, n2)
distributed random variable X∗ is

P(X∗ = x) =
(m

x

)ν
px(1−p)m−x

[∑x
a1,...,an1

( x
a1, ..., an1

)ν
][∑m−x

b1,...,bn2

( m−x
b1, ..., bn2

)ν
]

G (p, ν, m, n1, n2)
,

(3.16)
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where

G (p, ν, m, n1, n2) =
m∑

x=0

(
m

x

)ν
px(1 − p)m−x

⎡

⎢
⎢
⎣

x∑

a1,...,an1 =0

a1+···+an1 =x

(
x

a1, . . . , an1

)ν

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

m−x∑

b1,...,bn2 =0

b1+···+bn2 =m−x

(
m − x

b1, . . . , bn2

)ν

⎤

⎥
⎥
⎦

is the normalizing constant. Analogous to the manner in which a CMP
variable conditioned on the sum of two CMP variables results in a CMB
distribution (Equation (3.8)), a sCMP variable conditioned on the sum
of two sCMP variables results in a gCMB distribution, i.e. for two in-
dependent sCMP(λi, ν, ni) distributed random variables, Yi, for i = 1, 2,
(Y1 | (Y1 + Y2 = m)) has a gCMB

(
λ1

λ1+λ2
, ν, m, n1, n2

)
distribution (Sell-

ers et al., 2017b). Special cases of the gCMB distribution include the
CMB(m, p, ν) (when n1 = n2 = 1), binomial(m, p) (for n1 = n2 = 1
and ν = 1), a NH (ν = 0 and λ < 1), and hypergeometric (ν → ∞)
distribution.

The gCMB distribution has the probability generating, moment generat-
ing, and characteristic functions

�X∗(t) =
H
(

tp
1−p , ν, m, n1, n2

)

H
(

p
1−p , ν, m, n1, n2

) , MX∗(t) =
H
(

pet

1−p , ν, m, n1, n2

)

H
(

p
1−p , ν, m, n1, n2

) ,

φX∗(t) =
H
(

peit

1−p , ν, m, n1, n2

)

H
(

p
1−p , ν, m, n1, n2

) , (3.17)

respectively, where

H(θ , ν, m, n1, n2) =
m∑

x=0

(
m

x

)ν
θ x

⎡

⎣
x∑

a1,...,an1

(
x

a1, . . . , an1

)ν
⎤

⎦

⎡

⎣
m−x∑

b1,...,bn2

(
m − x

b1, . . . , bn2

)ν
⎤

⎦.
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3.3.3 The Conway–Maxwell–multinomial (CMM) Distribution

The multinomial distribution can likewise be considered more broadly in
a manner to accommodate associations between trials. Where the multino-
mial distribution effectively describes categorical data, this model assumes
that the underlying trials are independent and identically distributed. The
CMM distribution extends the multinomial distribution as a distribution
that can consider trials with positive or negative associations (Kadane and
Wang, 2018; Morris et al., 2020). Like the CMB distribution, the CMM
distribution includes a dispersion parameter that allows for this broader
range of associations between trials, thus making it a more flexible alter-
native to other generalized multinomial distributions such as the Dirichlet-
multinomial or random-clumped multinomial models. A CMMk(m, p, ν)
distributed random variable Y = (Y1, . . . , Yk) has the probability mass
function

P(Y = y) = 1

C(p, ν; m)

(
m

y1 · · · yk

)ν k∏

j=1

p
yj

j , (3.18)

for ν ∈ R, y ∈ �m,k = {(y1, . . . , yk) ∈ {0, 1, 2, . . . , m}k such that
∑k

j=1 yj =
m}, where p = (p1, . . . , pk) satisfying

∑k
j=1 pj = 1,

( m
y1···yk

) = m!
y1!y2!···yk! , and

C(p, ν; m) = ∑
y∈�m,k

( m
y1···yk

)ν∏k
j=1 p

yj

j is the normalizing constant. Analo-
gous to the CMB distribution, the CMM distribution also relates to the CMP
as the conditional distribution of one CMP random variable conditioned on
the outcome from the sum of the independent CMP random variables. For
an independent sample of CMP(λj, ν) random variables Yj, j = 1, . . . , k, the
distribution of Y = (Y1, . . . , Yk) given that

∑k
j=1 Yj = m is CMMk(m, p, ν),

where p = (λ1/
∑k

j=1 λj, . . . , λk/
∑k

j=1 λj). For the special case where
Y1, . . . , Yk are a random sample of CMP(λ, ν) random variables, this con-
ditional form simplifies to a CMMk(m, p, ν), where p = (1/k, . . . , 1/k).
Both derivations assume ν ≥ 0, where λ < 1 if ν = 0, given the
CMP assumptions; however, this constraint is not generally required for
the CMM distribution. Other special cases of the CMMk(m, p, ν) include
the binomial(m, p) (when k = 2) and multinomial Multk(m, p) distributions
(for k > 2) when ν = 1, discrete uniform with probabilities

(m+k−1
m

)−1
on

�m,k when ν = 0 and p = (1/k, . . . , 1/k), and CMB(m, p, ν) for k = 2 and
ν �= 1 (Kadane and Wang, 2018; Morris et al., 2020). In the extreme limit-
ing cases of ν (thus representing the utmost cases of positive and negative
association), the CMM distribution accumulates at either the vertex points
(ν → −∞) or the center points (ν → ∞). For a random sample Y1, . . . , Yn,
the CMM distribution can be represented in an exponential family form as
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P(Y1 = y1, . . . , Yn = yn | p, ν) ∝ exp

⎛

⎝
k−1∑

i=1

ln

(
pi

pk

) n∑

j=1

yij

−ν
n∑

j=1

ln

(
k∏

i=1

yij!
)⎞

⎠ ,

with respective sufficient statistics, S0 = ∑n
j=1 ln (y1j! . . . ykj!) for ν and Si =∑n

j=1 yij for pi, i = 1, . . . , k − 1. The CMM distribution likewise can be a
member of an exponential dispersion family if ν is known.

The CMMk(m, p, ν) probability mass function (Equation (3.18)) can be
reparametrized as

P(Y = y) = 1

S(π , ν; m)

(
m

y1 . . . yk

)ν k−1∏

j=1

π
yj

j (3.19)

= exp

⎛

⎝−ln (S(π , ν; m)) +ν ln (m!)−ν
k∑

j=1

ln (yj!)+
k−1∑

j=1

yj ln (πj)

⎞

⎠,

(3.20)

where π = (π1, . . . ,πk−1) = (p1/pk, . . . , pk−1/pk) denotes the baseline
odds, and S(π , ν; m) = ∑

y∈�m,k

( m
y1...yk

)ν∏k
j=1 p

yj

j = C(p, ν; m)/pm
k denotes

the transformed normalization constant (Morris et al., 2020). The expo-
nential family form provided in Equation (3.20) implies that there exists a
conjugate family of the form

h((π , ν) | a, b, c) ∝ exp (π · a + bν − c ln (S(π , ν; m))), (3.21)

with hyperparameters a = (a1, . . . , ak), b, and c, where Equation (3.21) is
proper if and only if c > 0, ai > 0, for all i such that

∑k
i=1

ai

c = m, and

− ln (m!) < b

c
< −

k∑

i=1

{(ai

c
−
⌊ai

c

⌋)
ln
⌈ai

c

⌉
+ ln

⌊ai

c

⌋
!
}

(Kadane and Wang, 2018). Further, for a probability function with a finite
moment generating function, a proper prior distribution can be attained.
To that end, the CMM probability generating, moment generating, and
characteristic functions are

�Y(t) = C((t1p1, . . . , tkpk), ν; m)/C(p, ν; m)

MY(t) = C((p1et1 , . . . , pketk ), ν; m)/C(p, ν; m) and

φY(t) = C((p1eit1 , . . . , pkeitk ), ν; m)/C(p, ν; m), respectively,
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from which the reparameterized forms can likewise be determined. The
resulting CMM means and covariances are

E(Yj) = mpj + pj
∂ ln C(p, ν; m)

∂pj
− pj

k−1∑

i=1

pi
∂ ln C(p, ν; m)

∂pi
, j = 1, . . . , k−1,

= πj
∂ ln S(π , ν; m)

∂πj
, j = 1, . . . , k − 1, under the reparametrized form

E(Yk) = m −
k−1∑

j=1

E(Yj)

Cov(Yi, Yj) = πi
∂E(Yj)

∂πi
, i, j ∈ {1, . . . , k − 1}.

Finally, while the multinomial distribution is closed under summations,
marginals, conditionals, and coordinate groupings for a given partition of
the index set {1, . . . , k}, the CMM is only closed under conditionals; see
Morris et al. (2020) for details.

Maximum Likelihood Estimation and Statistical Computing

For a random sample Y1, . . . , Yn of CMMk(m, p, ν) distributed random
variables with baseline odds π = (p1/pk, . . . , pk−1/pk), the log-likelihood is

ln L(π , ν) = −n ln S(π , ν; m) + ν
n∑

i=1

ln

(
m

yi1 · · · yik

)

+
n∑

i=1

k−1∑

j=1

yij ln (πj).

(3.22)

While it does not produce score equations that allow for a closed-form solu-
tion for the maximum likelihood estimators, optimization techniques can be
performed computationally in R (e.g. via the optim function). Limitations
exist, however, with such an approach because the optimization scheme
can quickly become intractable. Instead, Morris et al. (2020) transform the
exponential family form of the log-likelihood (via Equation (3.22)) to the
form of the Poisson log-likelihood (as performed by Lindsey and Mersch
(1992)) in order to reduce the computational complexity and time to obtain
estimates and associated standard errors. An extension of the Lindsey and
Mersch (1992) method can likewise be considered for the regression setting
to estimate varying values for m, p, and/or ν. Morris et al. (2020) consider a
multinomial logit link ln (π i) = x′

iβ to associate the baseline odds with pre-
dictors, while the varying dispersion ν is associated with predictors through
the identity link, ν = z′γ.
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3.3.4 CMB and CMM as Sums of Dependent Bernoulli Random
Variables

While Borges et al. (2014) refer to the CMB(m, p, ν) as being over- or
under-dispersed relative to the binomial distribution, such terminology is
generally avoided in the literature; instead, the CMB distribution is moti-
vated as the sum of exchangeable Bernoulli random variables, i.e. for m
Bernoulli random variables B1, . . . , Bm, we have

P(B1 = b1, . . . , Bm = bm) ∝
(

m

x

)ν−1

px(1 − p)m−x (3.23)

and
∑m

i=1 bi = x, where the bs are positively (negatively) correlated when
ν < (>)1 (Kadane, 2016; Morris et al., 2020; Shmueli et al., 2005). In
fact, the correlation between two such Bernoullis Bi and Bj (i �= j, i, j =
1, . . . , m) equals

ρ = p(1 − p)(1 − 4ν−1)

(p + (1 − p)2ν−1)(1 − p(1 − 2ν−1))
(3.24)

(Borges et al., 2014). This result demonstrates that the bs are posi-
tively (negatively) correlated for ν < (>)1. The CMB simplifies to a
binomial(m, p) distribution when ν = 1. Accordingly, a CMB(m, p, ν) dis-
tributed random variable X and a Bernoulli random variable (say, B1) satisfy
the relation 1

n E(X) = E(B1) = p when ν = 1; however, this is not generally
true (Daly and Gaunt, 2016).

CMMk(m, p, ν) can analogously be derived as a sum of dependent unit-
multinomial random variables, B1, . . . , Bm ∈ �1,k with joint distribution

P(B1 = b1, . . . , Bm = bm) ∝
(

m

y1 · · · yk

)ν−1

py1

1 · · · pyk

k ,

where y = ∑m
i=1 bi, ν ∈ R (Morris et al., 2020). Kadane and Wang (2018)

show that there exists a unique distribution on B1, . . . , Bm such that they are
order m exchangeable and

∑m
i=1 Bi has the same distribution as P(Y = y) =

py ≥ 0, where
∑

y∈�m,k
py = 1. Other properties of these unit-multinomials

include the following for i, i′ ∈ {1, . . . , m}, where i �= i′ and ej denotes the
jth column of a k × k identity matrix:

1. P(Bi = ej) = E(Yj/m), for j = 1, . . . , k
2. P(Bi = ej, Bi′ = ej) = [m(m − 1)]−1E[Yj(Yj − 1)], for j = 1, . . . , k
3. P(Bi = ej, Bi′ = el) = [m(m − 1)]−1E[YjYl], for j, l ∈ {1, . . . , k} and

j �= l
4. E(Bi) = E(Y/m)



3.3 Generalizations of the Binomial Distribution 87

5. V(Bi) = Diag[E(Y/m)] − E(Y/m)E(Y/m)′

6. Cov(Bi, Bi′) = [m(m − 1)]−1[E(YY′) − Diag[E(Y)]] − m−2E(Y)E(Y′).

As with the CMB case, B1, . . . , Bm are positively (negatively) correlated
when ν < (>)1.

3.3.5 R Computing

The COMMultReg package (Raim and Morris, 2020) in R produces den-
sity functions of interest relating to the CMB and CMM distributions
and also conducts maximum likelihood estimation associated with CMM
regression. For given inputs m, p, ν, the d_cmb function computes the
probability mass at the value P(X = x) (on the raw or log scale) at a
value of interest x, where normconst_cmb computes the associated CMB
normalizing constant (likewise on either scale). Along with these func-
tions, e_cmb and v_cmb compute the associated mean and variance of the
CMB(m, p, ν) distribution. Finally, r_cmb is a random number generator
that produces n terms from the CMB(m, p, ν) distribution. Similarly, the
d_cmm, normconst_cmm, e_cmm, v_cmm, and r_cmm functions compute
the probability, normalizing constant, expectation, variance, and randomly
generated data associated with the CMM(m, p, ν) distribution.

More broadly, COMMultReg provides the d_cmb_sample and
d_cmm_sample functions, respectively, to compute the density con-
tributions attributed to each of the random variables Xi, i = 1, . . . , n,
where Xi is distributed as CMB(mi, pi, νi) or CMMk(mi, pi, νi), respectively.
d_cmb_sample contains the inputs x of outcomes along with the parame-
ters m, p, and nu. Other d_cmb_sample inputs include take_log, a logical
vector that allows analysts to obtain the density contributions on a log
scale if interested, and normalize, another logical vector that determines
whether or not to include the normalizing constant in the contribution
computations. Meanwhile, d_cmm_sample includes the n × k matrix of
outcomes X and probabilities P, respectively, and the n-dimensional vector
of dispersions nu. This function likewise includes the logical inputs,
take_log and normalize as described.

Code 3.1 illustrates several cmb codes, including computing the density
P(X = 8) and normalizing constant (on the log and raw scales, respec-
tively), and expectation and variance of the CMB(m = 10, p = 0.75, ν = 1)
distribution. As expected, the resulting density, expected value, and vari-
ance calculations are precisely those of the binomial(m = 10, p = 0.75)
distribution as this is the special case of the associated CMB distribution
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Code 3.1 Illustrative R code and output to produce the density and normalizing
constant (on the log or raw scale) respectively, expected value, and variance of a
Conway-Maxwell-binomial (CMB(m, p, ν)) distribution. This example assumes
ν = 1 such that CMB(m, p, ν = 1)=binomial(m, p).

> m = 10
> p = 0.75
> nu = 1

> d_cmb (8, m, p, nu , take_log = TRUE)
[1] -1.267383
> d_cmb (8, m, p, nu)
[1] 0.2815676
> normconst _cmb(m, p, nu , take_log = TRUE)
[1] 0
> normconst _cmb(m, p, nu)
[1] 1
> e_cmb(m, p, nu)
[1] 7.5
> v_cmb(m, p, nu)
[1] 1.875

when ν = 1. In particular, given the form of the normalizing constant
S(m, p, ν) as outlined in Equation (3.6), it makes sense that it would equal
1 when ν = 1 because, in this case, the value is determined by summing
the binomial probability mass function P(X = x) over the entire space of
values for x.

Table 3.1 more broadly supplies illustrative results (on the raw scale)
for ν ∈ {0, 1, 2}, demonstrating the effect of over-dispersion (under-
dispersion) relative to the binomial distribution. The normalizing constant
increases with ν such that, for ν < 1 (i.e. over-dispersion), the normal-
izing constant S(m, p, ν) is likewise less than 1; meanwhile, for ν>1 (i.e.
under-dispersion), S(m, p, ν) is greater than 1. Meanwhile, the expected
value decreases as ν increases such that E(X) > (<) mp when ν < (>) 1.
The density and variance results, however, demonstrate that the respective
outcomes are maximized when ν = 1 (i.e. under the binomial model). The
resulting dispersion indexes (DI(X) = V(X)/E(X)) are thus likewise maxi-
mized when ν = 1. This supports discussion urging analysts to move from
describing relationships as over- or under-dispersed relative to the bino-
mial to instead noting them as sums of positively or negatively correlated
Bernoulli random variables; see Section 3.3.4.

The cmm functions analogously produce the density and normalizing con-
stant (on the raw or log scales, respectively), expected value and variance
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Table 3.1 Probability, normalizing constant,
expected value, and variance calculations
(rounded to three decimal places) for
CMB(m =10, p =0.75, ν) distributions where
ν = {0, 1, 2}.

ν = 0 ν = 1 ν = 2

P(X = 8) 0.074 0.282 0.135
S(m, p, ν) 0.084 1.000 93.809
E(X) 9.500 7.500 6.411
V(X) 0.749 1.875 1.222

for the CMMk(m, p, ν) distribution. Here, however, one needs to define the
number of categories k to ensure that the probability and outcome vectors,
respectively p = (p1, . . . , pk) and y = (y1, . . . , yk), satisfy

∑k
j=1 pj = 1

and
∑k

j=1 yj = m. The expectation output likewise has length k such that
the sum of the expectations equals m, while the variance output produces
a k × k matrix representing the variance–covariance matrix associated
with the different categories. Code 3.2 demonstrates the cmm codes for
a CMM3(m = 10; p = (0.1, 0.35, 0.55); ν = 1) distributed random
variable Y, computing the density P(Y = (0, 2, 8)), normalizing con-
stant, expected value, and variance. The resulting density, expected value,
and variance–covariance calculations demonstrate that the CMM3(m =
10; p = (0.1, 0.35, 0.55); ν = 1) distribution is the special case of the
Mult3(m = 10; p = (0.1, 0.35, 0.55)) distribution. The normalizing con-
stant again equals 1 because the value is determined by summing the
multinomial probability mass function P(Y = y) over all values satisfying∑3

j=1 yj = m = 10; see Equation (3.18).
Table 3.2 illustrates the effect of positive and negative correlated

Bernoulli random variables, relative to the multinomial distribution. The
provided table illustrates these correlations via varying ν ∈ {0, 1, 2}. As was
the case for Table 3.1, the probability values decrease and the normalizing
constants increase as ν increases. The mean and variance–covariance rela-
tionships are more difficult to recognize, however, given the dimensionality
associated with the number of categories and constraint m.

Similarly, d_cmb_sample and d_cmm_sample allow for density
computations for multiple observations with respective probabili-
ties and dispersion values; see Codes 3.3 and 3.4. In Code 3.3,
d_cmb_sample(y,m,p,nu) considers three density computations where,
for each scenario, m = 10, and the density computations are determined



Table 3.2 Probability, normalizing constant, expected value, and variance calculations (rounded to three decimal places) for
CMM3(m =10; p = (0.1, 0.35, 0.55); ν) distributions where ν = {0, 1, 2}.

ν = 0 ν = 1 ν = 2

P(Y = (0, 2, 8)) 0.121 0.046 0.002
C(m, p, ν) 0.008 1.000 990.340
E(Y)

(
0.221 1.665 8.114

) (
1.000 3.500 5.500

) (
1.798 3.610 4.592

)

V(Y)

⎛

⎝
0.269 −0.011 −0.258

−0.011 3.902 −3.891
−0.258 −3.891 4.149

⎞

⎠

⎛

⎝
0.900 −0.350 −0.550

−0.350 2.275 −1.925
−0.550 −1.925 2.475

⎞

⎠

⎛

⎝
0.846 −0.375 −0.470

−0.375 1.245 −0.870
−0.470 −0.870 1.340

⎞

⎠
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Code 3.2 Illustrative R code and output to produce density and normalizing
constant (on the raw scale) respectively, expected value, and variance of a
Conway-Maxwell-multinomial (CMM(m, p, ν)) distribution. This example
assumes three groups (i.e. k = 3) and ν = 1, i.e. the special case of the
CMM3(m, p, ν = 1) distribution equals the Mult3(m, p) distribution.

> m = 10
> p = c(0.1 , 0.35 , 0.55)
> nu = 1

> d_cmm(c(0,2,8), p, nu)
[1] 0.04615833
> normconst _cmm(m, p, nu)
[1] 1
> e_cmm(m, p, nu)
[1] 1.0 3.5 5.5
> v_cmm(m, p, nu)

[,1] [,2] [,3]
[1,] 0.90 -0.350 -0.550
[2,] -0.35 2.275 -1.925
[3,] -0.55 -1.925 2.475

elementwise given inputs

p =
⎛

⎝
0.25
0.50
0.75

⎞

⎠ , ν =
⎛

⎝
0.0
0.5
1.0

⎞

⎠ , and y =
⎛

⎝
6
7
8

⎞

⎠ .

The third element of the resulting output matches the d_cmb output pro-
vided in Code 3.1. Code 3.4 analogously considers three CMM3 density
computations via the d_cmm_sample(X,P,nu) command where, for each
scenario, m = 10, and the density computations are determined row-wise
given inputs

P =
⎛

⎝
0.10 0.35 0.55
0.20 0.30 0.50
0.40 0.40 0.20

⎞

⎠ , ν =
⎛

⎝
1
0

−1

⎞

⎠ , and X =
⎛

⎝
0 2 8
4 5 1
3 4 3

⎞

⎠.

The first element of the resulting output matches the d_cmm output provided
in Code 3.2.

The cmm_reg function in COMMultReg (Raim and Morris, 2020) per-
forms a CMM regression as described in Morris et al. (2020). Accordingly,
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Code 3.3 Illustrative example of d_cmb_sample.

> m = rep (10, 3)
> p = c(.25 ,.5 ,.75)
> nu= c(0 ,.5 ,1)
> y=c(6 ,7 ,8)
> d_cmb_ sample (y,m,p,nu)

[,1]
[1,] 0.0009144999
[2,] 0.1237691420
[3,] 0.2815675735

Code 3.4 Illustrative example of d_cmm_sample.

> p.mat <- matrix (c(0.1 ,0.35 ,0.55 ,0.2 ,0.3 ,0.5 ,0.4 ,0.4 ,
0.2) , byrow =TRUE ,ncol =3)

> x.mat <- matrix (c(0,2,8,4,5,1,3,4,3), byrow =TRUE ,
ncol =3)

> nu <- c(1,0,-1)
> d_cmm_ sample (X=x.mat ,P=p.mat ,nu)

[,1]
[1,] 4.615833e -02
[2,] 4.808816e -04
[3,] 1.235335e -05

this function assumes a sample Yi of CMMk(mi, pi, νi) random variables

with a multinomial logit link ln
(

pij

pi1

)
= xiβ j−1 and identity link νi = giγ

for the dispersion, i = 1, . . . , n and j = 2, . . . , k. As noted in the multi-
nomial logit link, it is assumed by default that the first category serves as
the baseline; however, the analyst can change this (say) to the kth cate-
gory by specifying base = k. Parameter estimation is performed via the
Newton–Raphson method, where the algorithm converges when the sum of
absolute differences among consecutive estimates is sufficiently small; oth-
erwise, the algorithm fails to converge if it reaches the maximum number
of iterations without satisfying the convergence tolerance requirement. The
default settings for the tolerance level (tol) and maximum number of itera-
tions (max_iter), respectively, are 1×10−8 and 200. If issues occur where
convergence is not achieved, then the analyst can update the tolerance level
and/or the maximum number of iterations in order to provide more flexi-
bility. R output includes the usual coefficient table containing the estimates
and associated standard errors, along with the maximum log-likelihood and
AIC; see Raim and Morris (2020) for details.
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3.4 CMP-Motivated Generalizations of the Negative Binomial
Distribution

The NB distribution is a well-studied discrete distribution popular for its
ability to handle data over-dispersion; see Section 1.2. While it is recog-
nized for this accommodation, extensive study surrounds it with the goal
being to develop even more flexible count distributions that broaden the
scope of the NB model. This section describes four such models where at
least one extra parameter serves to reflect and account for added variation –
the GCMP (Section 3.4.1), the COMNB (Section 3.4.2), the COMtNB
(Section 3.4.3), and the ECMP (Section 3.4.4) distributions. Table 3.3 lists
these CMP-inspired generalizations of the NB, noting what models each
contains as special cases. Naturally, because these distributions all contain
the CMP, the classical models it subsumes (i.e. the Poisson, geometric, and
Bernoulli) are likewise included here under the appropriate conditions.

3.4.1 The Generalized COM–Poisson (GCMP) Distribution

The GCMP (Imoto, 2014) is a three-parameter distribution denoted as
GCMP(r, γ , θ) with a flexible form that can model both dispersion and tail
behavior via the probability mass function

P(X = x) = �(γ + x)rθ x

x!C(r, γ , θ)
, x = 0, 1, 2, . . . , (3.25)

with parameters r, γ , and θ , where the normalizing constant C(r, γ , θ) =∑∞
k=0

�(γ+k)rθ k

k! is defined for {(r, γ , θ):r < 1, γ > 0, θ > 0; or r =

Table 3.3 Summary of CMP-motivated generalizations of the negative binomial
(NB) distribution – the generalized COM–Poisson (GCMP), the
Conway-Maxwell-negative binomial (COMNB), the Conway-and-Maxwell-type
negative binomial (COMtNB), and the extended Conway–Maxwell–Poisson
(ECMP) – and the special cases contained by each of them (noted with

√
),

namely any of the following: NB, CMP, Conway-Maxwell-binomial (CMB),
COMNB, COMtNB, exponentially weighted Poisson (EWP), and GCMP.

General Special cases

distribution NB CMP COM–Pascal COMNB COMtNB EWP GCMP

GCMP
√ √

COMNB
√ √ √

COMtNB
√ √ √

ECMP
√ √ √ √ √ √ √
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1, γ > 0, 0 < θ < 1}. This distribution contains the CMP(θ , ν) model
when γ = 1, and r = 1 − ν (and accordingly contains the Poisson(θ)
when ν = 1, geometric with success probability 1 − θ when ν = 0 and
θ < 1, and Bernoulli with success probability θ/(1 + θ) when ν → ∞);
the tail distribution is longer (shorter) than CMP when γ > ( < )1. The
GCMP distribution also reduces to the NB(γ , θ) model when r = 1. More
broadly, 0 < r < 1 models data over-dispersion and r < 0 captures under-
dispersion (Imoto, 2014).

The GCMP(r, γ , θ) distribution can represent a unimodal or a bimodal
structure where one of the modes is at zero. It is unimodal for r ≤ 0 or

{0 < r < 1, γ ≥ 1} with the mode occurring at M = x
x+1

(
γ+x
γ+x−1

)r
< 1.

For 0 < r < 1, 0 < γ < 1, and θγ r < 1, the GCMP distribution is bimodal
with one of those modes occurring at zero; thus, it accounts for excess
zeroes without the need to incorporate zero-inflation. Equation (3.25) can
be represented as

P(X = x) = exp (r ln�(γ + x) − ln (x!) + x ln θ − ln C(r, γ , θ)) ,

thus has the form of an exponential family for r and ln θ with γ viewed
as a nuisance parameter. It likewise belongs to the power series family of
distributions and can be represented as a weighted Poisson distribution (see
Section 1.4) where w(x) = [�(γ + x)]r. Its ratio of successive probabilities

P(X = x)

P(X = x − 1)
= θ(γ − 1 + x)r

x
(3.26)

shows that the GCMP distribution has longer tails than the CMP distribu-
tion when γ > 1 and 0 < r < 1 and shorter tails than the CMP distribution
when γ > 1 and r < 0.

The kth factorial moment for the GCMP distribution is

E[(X)k]
.= E[X(X − 1) · · · (X − k + 1)] = C(r, γ + k, θ)θ k

C(r, γ , θ)

from which one can determine the mean μ = E(X) = E[(X)1] and variance
V(X) = E[(X)2] + E[(X)1] − [E[(X)1]].2 Membership in the power series
family of distributions meanwhile provides the recursion

μk+1 = θ ∂μk

∂θ
+ kμ2μk−1, k = 1, 2, . . . ,
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where μk = E(X − μ)k denotes the kth central moment of the GCMP
distribution (e.g. μ2 = V(X)). Either result produces the moments

μ = C(r, γ + 1, θ)θ

C(r, γ , θ)
= θ ∂C(r, γ , θ)

∂θ
≈ θ1/(1−r) + (2γ − 1)r

2(1 − r)
(3.27)

μ2 = C(r, γ + 2, θ)θ2

C(r, γ , θ)
+ C(r, γ + 1, θ)θ

C(r, γ , θ)
− [C(r, γ + 1, θ)]2θ2

[C(r, γ , θ)]2

= θ ∂μ1

∂θ
+ μ2μ1 ≈ θ1/(1−r)

1 − r
, (3.28)

where the approximations are determined based on an approximation to
C(r, γ , θ) (see the Approximating the Normalizing Constant section below
for details); for example, μ3 ≈ θ1/(1−r)

(1−r)2 (Imoto, 2014). The approximations
for μ1, μ2, and μ3 equal the CMP(θ , ν = 1 − r) moment approximations
(e.g. Equations (2.14) and (2.15)) when γ = 1, and (in particular) their
analogous Poisson moments when r = 0.

Approximating the Normalizing Constant, C(r, γ , θ )

The GCMP distribution likewise involves a normalizing constant
C(r, γ , θ) = ∑∞

k=0
[�(γ+k)]rθ k

k! that is an infinite sum that converges for r < 1
or |θ | < 1 when r = 1. Thus, analogous to the discussion regarding the
CMP normalizing constant (Section 2.8), two methods exist to approxi-
mate C(r, γ , θ). The first approach is to truncate the series to some m such
that

Cm(r, γ , θ) =
m∑

k=0

[�(γ + k)]rθ k

k! , (3.29)

where (γ−1+m)rθ

m < 1. Accordingly, the absolute truncation error is

Rm(r, γ , θ) = C(r, γ , θ) − Cm(r, γ , θ) <
[�(γ + m + 1)]rθm+1

(m + 1)! (1 − (γ−1+m)rθ

m

) ,

while the relative truncation error is

RRm(r, γ , θ) = Rm(r, γ , θ)

Cm(r, γ , θ)
<

[�(γ + m + 1)]rθm+1

(m + 1)! (1 − (γ−1+m)rθ

m

)
Cm(r, γ , θ)

.

Computational complexities exist when r < 1 large and θ > 0; analysts
are advised to restrict θ so that 0 < θ < 1 when r converges to 1 (e.g.
θ < 101−r) to maintain a small relative error (Imoto, 2014). The second
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approach approximates C(r, γ , θ) via the Laplace method; the asymptotic
formula for the GCMP normalizing constant is

C̃(r, γ , θ) = θ (2γ−1)r/[2(1−r)](2π)r/2 exp [(1 − r)θ1/(1−r)]√
1 − r

. (3.30)

While derived for integer-valued r < 0, Imoto (2014) utilizes numerical
studies to illustrate that this result holds more broadly for real-valued r <
1. Accordingly, C(r, γ , θ) can be approximated via the truncation method
(Equation (3.29)) when γ is small and r < 0 or θ < 101−r, while the
C(r, γ , θ) approximation (Equation (3.30)) can be used when γ is large,
θ > 101−r, and 0 < r < 1.

Parameter Estimation

Imoto (2014) conducts parameter estimation via the method of moments,
estimation by four consecutive probabilities, and the method of maxi-
mum likelihood. Under the method of moments procedure, analysts equate
the first three sample central moments to their true counterparts (i.e. μi,
i = 1, 2, 3, as provided in Equations (3.27)–(3.28) for μ1 and μ2, with sub-
sequent discussion containing μ3). Using the respective central moment
approximations produces the system of equations,

⎧
⎪⎨

⎪⎩

θ̃
∂ ln C(r̃,γ̃ ,θ̃)

∂θ̃
≈ θ̃1/(1−r̃) + (2ν̃−1)r̃

2(1−r̃)

θ̃ ∂E(X)
∂θ̃

≈ θ̃1/(1−r̃)

1−r̃

θ̃ ∂V(X)
∂θ̃

≈ θ̃1/(1−r̃)

(1−r̃)2 ;

thus the method of moments estimators are r̃ ≈ 1− μ2

μ3
, γ̃ ≈ μ2(μ1μ3−μ2

2)
μ3(μ3−μ2) + 1

2 ,

and θ̃ ≈
(
μ2

2

μ3

)μ2/μ3

. While this estimation method is easily computable,
situations exist where estimation via the method of moments cannot be
utilized because the resulting estimates may not satisfy the prerequisite
parameter constraints. The second approach approximates the first four
true consecutive probabilities by their respective observed frequencies,
re-representing Equation (3.26) as Px+1

Px
= θ(γ+x)r

x+1 , along with the equations

ln

(
x + 2

x + 1

Px+2Px

P2
x+1

)

= r ln

(
γ + x + 1

γ + x

)

(3.31)

ln
(

x+3
x+2

Px+3Px+1

P2
x+2

)

ln
(

x+2
x+1

Px+2Px

P2
x+1

) =
ln
(
γ+x+2
γ+x+1

)

ln
(
γ+x+1
γ+x

) . (3.32)
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This approach is analogous to the method of moments where, by substi-
tuting the observed (absolute or relative) frequency that x events occurred
for Px into the above three equations, analysts can obtain rough estimates
r̆, γ̆ , and θ̆ that lie in the parameter space for a chosen x value. Choosing
x = 0 as the basis for the consecutive probabilities approach provides a
good estimation for a dataset with excess zeroes (Imoto, 2014).

The method of maximum likelihood is the third approach for parameter
estimation where, given the GCMP log-likelihood

ln L(r, γ , θ) = r
J∑

j=0

fj ln�(γ + j) + ln θ
J∑

j=0

jfj−n ln C(r, γ , θ) −
J∑

j=0

fj ln (j!)
(3.33)

based on a sample of n observations and observed frequencies fj, j =
0, . . . , J, the maximum likelihood estimators r̂, γ̂ , and θ̂ can be determined
by solving the system of score equations

⎧
⎪⎨

⎪⎩

E[ ln�(γ + X)] =
∑J

j=0 ln�(γ + j) fj
n

E[ψ(γ + X)] =
∑J

j=0 ψ(γ + j) fj
n

E(X) =
∑J

j=0 j fj
n ,

(3.34)

where ψ(y) = ∂y ln�(y) = �′(y)
�(y) . The iterative scheme

⎛

⎝
rk+1

γk+1

θk+1

⎞

⎠ =
⎛

⎝
rk

γk

θk

⎞

⎠

+ [I(rk, γk, θk)]−1

⎛

⎜
⎝

∑J
j=0 ln�(γ + j) fj

n − E( ln�(γ + X))
∑J

j=0 ψ(γ + j) fj
n − E(ψ(γ + X))

∑J
j=0 j fj

n − E(X)

⎞

⎟
⎠
∣
∣
r=rk ,γ=γk ,θ=θk

can solve the system of equations contained in Equation (3.34), thus de-
termining a local maximum. Meanwhile, the global maximum can be
determined via a profile maximum likelihood estimation procedure be-
cause, for a given γ , the GCMP distribution belongs to the exponential
family. Under this scenario, the profile MLEs can be determined by solv-
ing the system of equations comprised in Equation (3.34), again via the
scoring method. The Fisher information matrix can be derived from the
variance–covariance matrix of ( ln (�(γ + X)), rψ(γ + X), X), thus aiding
in determining associated standard errors for the parameter estimates.
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The GCMP Queueing Process

Imoto (2014) derives the GCMP distribution from a queueing model with
arrival rate λ(γ + x)r and service rate μx for a queue of length x; the arrival
rate thus increases (decreases) with r > 0 (r < 0), and the service rate is di-
rectly proportional to the length x. This distribution satisfies the difference
equation

P(x, t + h) = [1 − λ(γ + x)rh − μxh]P(x, t) + λ(γ + x − 1)rhP(x − 1, t)

+ μ(x + 1)hP(x + 1, t) (3.35)

for small h which, setting θ = λ/μ and for h → 0, becomes

∂P(x, t)

∂t
= (γ+x−1)rθP(x−1, t)+[(γ+x)rθ+x]P(x, t)+(x+1)P(x+1, t).

Under the stationary state assumption and letting P(x, t) = P(x), the
difference equation is

P(x + 1) = x

x + 1
P(x) + (γ + x)r

x + 1
P(x) − (γ + x − 1)rθ

x + 1
P(x − 1).

The queuing scenario considered by Conway and Maxwell (1962) is a
special case of Equation (3.35) where γ = 1; see Section 2.1 for discussion.

3.4.2 The COM–Negative Binomial (COMNB) Distribution

The COMNB distribution (Zhang et al., 2018) is another three-parameter
generalized count distribution that includes the NB as a special case. Given
the NB distribution probability function described in Equation (1.6), the

coefficient �(γ+x)
x!�(γ ) is updated as

(
�(γ+x)
x!�(γ )

)ν
to inspire the probability mass

function

P(X = x) = 1

D(γ , ν, p)

(
�(γ + x)

x!�(γ )

)ν
px(1 − p)γ , x = 0, 1, 2, . . . ,

(3.36)
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where D(γ , ν, p) = ∑∞
j=0

(
�(γ+j)
j!�(γ )

)ν
pj(1 − p)γ is the normalizing constant.2

The COMNB(γ , ν, p) distribution contains several well-known models as
special cases and relationships with other flexible distributions. When
ν = 1, COMNB(γ , ν, p) reduces to the NB(γ , p) distribution; in particular,
COMNB(γ , ν = 1, p) further reduces to the geometric distribution with
success probability 1 − p when γ = 1 or ν = 0. For γ ∈ Z

+, the COMNB
simplifies to what can be referred to as the COM–Pascal distribution. The
COMNB(γ , ν, p) further converges to a CMP(λ, ν), where λ = γ νp/(1−p)
as γ → ∞ (hence includes Poisson(λ) for ν = 1, geometric with suc-
cess probability 1 − λ for ν = 0 and λ < 1, and Bernoulli with success
probability λ/(1 + λ) for ν → ∞). For two independent COMNB(γi, ν, p)
random variables, Xi, i = 1, 2, the conditional distribution of X1 given the
sum X1 + X2 = x1 + x2 has a Conway–Maxwell negative hypergeometric
COMNH(z = x1 + x2, ν, γ1, γ2) for all z, where the COMNH distribution is
described in more detail in Section 3.7.1.

The COMNB not only contains the many special-case distributions and
relationships with other flexible models as described earlier in this section,
it further is a special case itself of broader distributional forms and presents
additional interesting distributional properties. The COMNB(γ , ν, p) dis-
tribution is log-concave and strongly unimodal when γ ≥ 1, and it is
log-convex and discrete infinitely divisible when γ ≤ 1. It is a discrete
compound Poisson distribution for γ ≤ 1 and is a discrete pseudo com-
pound Poisson distribution3 when γ > 1 and pγ ν < 1, or γ ≤ 1. The
COMNB is another example of a weighted Poisson distribution – here,
the weight function is w(x) = [�(1 + x)]1−ν[�(γ + x)]ν ; see Section
1.4 for details regarding weighted Poisson distributions. The COMNB can
accommodate over-dispersed (under-dispersed) data if

2 An alternate parametrization is achieved by raising the entire NB probability to the νth
power and dividing the result by its appropriate normalizing constant; thus producing the
resulting distribution

P(X = x) = 1

D(γ , ν, p1/ν )

(
�(γ + x)

x!�(γ )

)ν (
p1/ν

)x (
1 − p1/ν

)γ
, x = 0, 1, 2, . . . .

(3.37)

3 A discrete compound Poisson distribution is a distribution whose probability generating
function (pgf) is �(s) = ∑∞

j=0 pjsj = exp (
∑∞

i=1 αiλ(si) − 1), |s| ≤ 1, where αi ≥ 0 such
that

∑∞
i=1 αi = 1, and λ > 0. A discrete pseudo compound Poisson distribution has the

same pgf, however the constraints for αi, i = 1, . . . , ∞ are modified to αi ∈ R such that
∑∞

i=1 |αi| <∞ and
∑∞

i=1 αi = 1 (Zhang et al., 2018).
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∞∑

i=0

(
1 − ν

(i + x + 1)2
+ ν

(i + x + γ )2

)

> (<)0

for all x ∈ N, implying that it is over-dispersed when ν > 0 and γ < 1, or
ν < 1 and γ > 0. This distribution’s recursive formula is

P(X = x − 1)

P(X = x)
= 1

p

(
x

x − 1 + γ
)ν

. (3.38)

Thus, for γ < 1 and ν > 1, the COMNB is more flexible than NB at
accommodating discrete distributions with a considerably high number of
excess zeroes.

Other interesting properties hold for this flexible model. A random
variable X has a COMNB(γ , ν, p) distribution if and only if

E[Xνg(X) − (X + γ )νg(X + 1)p] = 0

holds for any bounded function g:Z+ → R. Analogous to considering the
CMB distribution as a sum of equicorrelated Bernoulli random variables
(see Section 3.3.4), the COMNB can be viewed as the sum of equicorrelated
geometric random variables Zi, i = 1, . . . , m, with joint distribution

P(Z1 = z1, . . . , Zm = zm) ∝
(

m + x − 1

x

)ν−1

px(1 − p)m,

where
∑m

i=1 zi = x. Finally, for two COMNB(γ , ν, pi) random variables,
Xi, i = 1, 2, X1 is less than X2 with respect to stochastic order, likelihood
ratio order, hazard rate order, and mean residual life order for p1 ≤ p2, if
ν ≤ 1 or γ ≥ 1. Similarly, for two COMNB(γ , νi, p) random variables, Xi,
i = 1, 2, X1 is less than X2 with respect to each of these respective orders if
ν1 ≤ ν2 and γ ≥ 1. In particular, for the case where X2 is an NB random
variable, X1 is stochastically less than X2 when ν2 > ν1 = 1.

Parameter Estimation

Two approaches can be considered for estimating γ , ν, p: estimation via
recursive formulae, and maximum likelihood estimation. For the recursive
formulae, one solves the system of equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fx+1

fx
= p

( x+γ
x+1

)ν

ln
(

fxfx+2

f 2
x+1

)
= ν ln

(
x+γ+1

x+2 · x+1
γ+x

)

ln

(
fx fx+2
f 2
x+1

)

ln

(
fx+1 fx+3

f 2
x+2

) = ln
(

x+γ+1
x+2 · x+1

γ+x

)

ln
(

x+γ+2
x+3 · x+2

γ+x+1

)

(3.39)
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to obtain the estimators γ̆ , ν̆, p̆, where fx, x = 0, 1, 2, . . ., denotes the sample
relative frequencies. Alternatively, maximum likelihood estimation finds
those values γ̂ , ν̂, p̂ that maximize the log-likelihood

ln L(γ , ν, p; x) = ν
n∑

i=1

ln

(
�(γ + xi)

xi!
)

+ ln (p)
n∑

i=1

xi + nγ ln (1 − p)

− nν ln (�(γ )) − n ln (D(γ , ν, p)) (3.40)

via the corresponding score equations
⎧
⎪⎨

⎪⎩

ν
∑n

i=1 ψ(γ + xi) + n ln (1 − p) − nνψ(t) − n ∂ ln (D(γ ,ν,p))
∂γ

= 0
∑n

i=1 ln
(
�(γ+xi)

xi!
)

− n ln (�(γ )) − n ∂ ln (D(γ ,ν,p))
∂ν

= 0
1
p

∑n
i=1 xi + nγ

p−1 − n ∂ ln (D(γ ,ν,p))
∂p = 0,

(3.41)

where ψ(a) = ∂ ln (�(a))
∂a is the digamma function. Equation (3.41) does not

have a closed form; thus, analysts must utilize a scoring method to solve
the system of equations or a Newton-type procedure that optimizes Equa-
tion (3.40) such as optim in R; under either scenario, the recursive formula
estimates can serve as starting values for determining the MLEs (Zhang
et al., 2018).

3.4.3 The COM-type Negative Binomial (COMtNB) Distribution

Chakraborty and Ong (2016) introduce what they refer to as a COMtNB
distribution. This model with parameters (ξ , p, η) has a respective probabil-
ity mass function and cumulative distribution function of the form

P(X = x) = pxξ (x)

1Hη−1(ξ ; 1; p)(x!)η , x = 0, 1, 2, . . . (3.42)

P(X ≤ x) = 1 − ξ (x+1)px+1

[(x + 1)!]η−1

2Hη(ξ + x + 1; 1; x + 2; p)

1Hη−1(ξ ; 1; p)
, (3.43)

where 1Hη−1(ξ ; 1; p) = ∑∞
k=0

ξ (k)pk

(k!)η is a special case of the general hyper-

geometric series form mHη(a1, a2, . . . , am; b; p) = ∑∞
k=0

a(k)
1 a(k)

2 ···a(k)
m

{b(k)}η
pk

k! . Given
the parameters (m, η, a, b, p),

a(k) .= a(a + 1) · · · (a + k − 1) = �(a + k)

�(a)
(3.44)

denotes the rising factorial and �(a) = ∫ ∞
0 xa−1e−xdx is the usual gamma

function. The parameter space of interest is {(ξ , p, η):{ξ > 0, p> 0, η > 1}∪
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{ξ > 0, 0 < p < 1, η = 1}}; the probability mass function is undefined for
η < 1 because 1Hη−1(ξ ; 1; p) does not converge under this condition.

The COMtNB(ξ , p, η) distribution contains several special cases. When
η = 1, the COMtNB reduces to the NB(ξ , p) distribution, while it sim-
plifies to the CMP(p, η − 1) distribution when ξ = 1 (which contains the
Poisson(p) when η = 2, geometric with success probability 1 − p when
η = 1 and p < 1, and Bernoulli with success probability p/(1 + p) when
η → ∞). The CMP is also attainable as a limiting distribution of the
COMtNB; for a fixed ξp = λ < ∞, the COMtNB(ξ , p, η) distribution
converges to the CMP(λ, η) distribution as ξ → ∞. Given this result, one
can again see that the associated special cases hold for the CMP distribu-
tion; in particular, the COMtNB(ξ , p, η) distribution further converges to
the Bernoulli distribution with success probability, λ

1+λ , as η → ∞. Mean-
while, the COMtNB(ξ = 1, p = ηeφ , η = 2) is the exponentially weighted
Poisson distribution with weight function eφx, i.e. a Poisson distribution
with rate parameter ηeφ . More broadly, for integer-valued η ≥ 1, Equations
(3.42)–(3.43) simplify to

P(X = x) = pxξ (x)

1Fη−1(ξ ; 1, 1, . . . , 1; p)(x!)η , x = 0, 1, 2, . . . ,

P(X ≤ x) = 1 − ξ (x+1)px+1

[(x + 1)!]η−1

2Fη(ξ + x + 1; x + 2, x + 2, . . . , x + 2; p)

1Fη−1(ξ ; 1, 1, . . . , 1; p)
,

where 1Fη−1(ξ ; 1, 1, . . . , 1; p) = ∑∞
j=0

ξ (j)pj

(j!)η , ξ ≥ 0, 0 < p < 1.
When ξ > 1, the COMtNB(ξ , p, η) probability distribution is log-

concave, has an increasing failure rate function, and is strongly unimodal.
In fact, that log-concavity implies that (1) the truncated COMtNB distri-
bution is likewise log-concave, (2) a convolution with any other discrete
distribution will produce a new log-concave distribution, (3) the COMtNB
has at most an exponential tail, and (4) for any integer i, the ratio P(X = x+i)

P(X = x)
is nonincreasing in x. In particular, the COMtNB distribution satisfies the
recurrence equation

P(X = x + 1)

P(X = x)
= (ξ + x)p

(x + 1)η
, (3.45)

where P(X = 0) = 1
1Hη−1(ξ ; 1; p) . The COMtNB(ξ , p, η) further has a unique

mode at X = r if rη

ξ+r−1 < p < (r+1)η

ξ+r , r = 1, 2, 3, . . ., where the proba-
bility function is nondecreasing with mode 0 if ξp < 1. Alternatively, the
COMtNB(ξ , p, η) has two modes at X = r and r − 1 if (ξ + r − 1)p = rη.
This more general form implies that the modes are at 0 and 1 if ξp = 1 (i.e.
setting r = 1).
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The COMtNB is a member of several families of discrete distributions.
It is a member of the generalized hypergeometric family, and the modified
power series distribution family when ξ and η are known (Gupta, 1974;
Kemp and Kemp, 1956). The COMtNB(ξ , p, η) can likewise be recognized
as either a weighted NB(ξ , p) distribution with weight function 1/(x!)η−1

and NB probability function provided in Equation (1.6) or as a weighted
CMP(p, η) distribution where the CMP probability is described in Equa-
tion (2.8) with 0 < p < 1 and weight function ξ (x). The COMtNB(ξ , p, η)
distribution belongs to the exponential family when ξ is fixed and has
joint sufficient statistics S1 = ∑n

i=1 xi and S2 = ∑n
i=1 ln x! for p and η.

For varying ξ , however, the COMtNB distribution is not a member of the
exponential family (analogous to its special-case NB distribution).

The COMtNB probability and moment generating functions can be
expressed as

�X(s) = 1Hη−1(ξ ; 1; ps)

1Hη−1(ξ ; 1; p)
= 1Fη−1(ξ ; 1, 1, . . . , 1; ps)

1Fη−1(ξ ; 1, 1, . . . , 1; p)
, 0 < ps ≤ 1,

(3.46)

MX(t) = 1Hη−1(ξ ; 1; pet)

1Hη−1(ξ ; 1; p)
= 1Fη−1(ξ ; 1, 1, . . . , 1; pet)

1Fη−1(ξ ; 1, 1, . . . , 1; p)
, (3.47)

and the kth factorial moment μ(k)
.= E(X(k)) = E[X(X − 1) · · · (X − k + 1)]

equals

μ(k) = ξ (k)pk

(k!)η−1

1Hη−1(ξ + k; k + 1; p)

1Hη−1(ξ ; 1; p)

= ξ (k)pk

(k!)η−1

1Fη−1(ξ + k; k + 1, k + 1, . . . , k + 1; p)

1Fη−1(ξ ; 1, 1, . . . , 1; p)
,

where the respective latter expressions hold for integer-valued η ≥ 1. More
broadly, letting μ′

k
.= E(Xk) and μk

.= E[(X − μ)k] denote the kth moment
and central moment, respectively, the following recursions hold:

μ(k+1) = p
d

dp
μ(k) + μ(k)μ(1) − kμ(k) (3.48)

μ′
k+1 = p

d

dp
μ′

k + μ′
kμ

′
1 (3.49)

μk+1 = p
d

dp
μk + kμk−1μ2. (3.50)

The dispersion index (see Chapter 1) can be used to describe the as-
sociation of parameter constraints with data dispersion, stemming from
the COMtNB distribution relative to various baseline models. Comparing
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the COMtNB distribution with the Poisson model demonstrates the great-
est extent of model flexibility with regard to dispersion. When η = 1
(i.e. the special case of the NB(ξ , p) distribution), the COMtNB is over-
dispersed, while when ξ = 1 (i.e. the CMP(p, η − 1) special case), the
COMtNB(ξ , p, η) model is equi-dispersed for η = 2 and over-dispersed
(under-dispersed) for η < (>)2. For fixed ξ and η with respect to p,
the COMtNB(ξ , p, η) distribution is equi-dispersed if E(X) = cp and
over-dispersed (under-dispersed) if E(X) > (<)cp, where c is a constant.
Meanwhile, for constants c > 0 and d with respect to p, equi-dispersion
exists if 1Hη−1(ξ ; 1; p) = exp (cλ + d), and COMtNB data are over-
dispersed (under-dispersed) if 1Hη−1(ξ ; 1; p) = exp (cλ+ d + g(λ)), where
g(λ) > (<)0 is an increasing (decreasing) function of p. More broadly,
the COMtNB distribution is over-dispersed (under-dispersed) relative to
the CMP when ξ > (<)1, and it is under-dispersed relative to the NB
distribution when η > 1.

As was demonstrated with the CMP distribution (see Sections 3.2 and
3.3.1), one can consider the sum of COMtNB random variables, and the
conditional distribution of a COMtNB random variable on the sum of
COMtNB random variables. The sum of n independent and identically dis-
tributed COMtNB(ξ , p, η) random variables produces a continuous bridge
between the NB(nξ , p) (for η = 1 and p < 1), the Poisson(np) (for
η = 2 and ξ = 1), and the binomial

(
n, λ

1+λ
)

distributions (for fixed ξ
or p such that ξp = λ and η → ∞). Meanwhile, for two independent
COMtNB(ξi, p, η) random variables Xi, i = 1, 2, the conditional distribu-
tion of X1 = x | (X1 + X2 = s) is proportional to ξ

(x)
1 ξ

(s−x)
2

(ξ1+ξ2)(s)

(s
x

)η
. Chakraborty

and Ong (2016) refer to the resulting probability function as the CMPtNH
distribution; see Section 3.7.2 for further details.

Survival Analysis and Stochastic Ordering

The survival and failure rate functions are

S(t) = P(X ≥ t) = ξ (t)pt

(t!)η
2Hη−1(ξ + t; t + 1; p)

1Hη−1(ξ ; 1; p)

= ξ (t)pt

(t!)η
2Fη(ξ + t, 1; t + 1, t + 1, . . . , t + 1; p)

1Fη−1(ξ ; 1, 1, . . . , 1; p)

r(t) = P(X = t)

P(X ≥ t)
= 1

2Hη(ξ + t, 1; t + 1; p)

= 1

2Fη(ξ + t, 1; t + 1, t + 1, . . . , t + 1; p)
,
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where the latter respective expressions hold for integer-valued η ≥ 1. A
COMtNB-distributed random variable is meanwhile smaller than its cor-
responding NB-distributed random variable with respect to the likelihood
ratio order. This inequality implies that the COMtNB random variable is
smaller than the NB random variable with regard to hazard rate order and
mean residual life order, respectively.

Parameter Estimation and Hypothesis Testing

The maximum likelihood estimators for ξ , p, and η are determined via the
log-likelihood

ln L(ξ , p, η; x)=
k∑

i=1

fi ln (ξ (xi))+
(

k∑

i=1

fixi

)

ln p−η
k∑

i=1

fi ln xi!−n ln
∞∑

j=0

ξ (j)pj

(j!)η

and corresponding score equations, where the n COMtNB outcomes are
grouped into k classes x = (x1, . . . , xk), with corresponding frequencies
f = (f1, . . . , fk) such that n = ∑k

i=1 fi. As usual, these estimates cannot be
derived in a closed form; however, numerical optimization procedures can
determine them.

Recognizing that the COMtNB(ξ , p, η) simplifies to the NB(ξ , p) when
η = 1, a natural inquiry is to test whether a significant amount of data
dispersion exists relative to the NB such that one should instead consider
the flexible COMtNB distribution. Accordingly, one can consider the hy-
potheses, H0 : η = 1 versus H1 : η �= 1, and conduct a likelihood ratio test
with the statistic, � = L(ξ̂0,p̂0,η=1; x)

L(ξ̂ ,p̂,η̂; x)
, where ξ̂0 and p̂0 are the MLEs under

the null hypothesis (i.e. the estimates under an assumed NB(ξ , p) model)
and ξ̂ , p̂ and η̂ are the MLEs assuming a COMtNB(ξ , p, η) model. Analo-
gous to other works (e.g. Sellers and Shmueli, 2010), Chakraborty and Ong
(2016) consider a two-sided test for η because the direction of data dis-
persion (i.e. over- or under-dispersion) is not important here; rather, the test
infers whether statistically significant data dispersion exists (in either direc-
tion) such that the NB model is inappropriate. As usual, under H0, −2 ln�
converges to a chi-squared distribution with one degree of freedom.

The COMtNB Normalizing Constant

The COMtNB normalizing function 1Hη−1(ξ ; 1; p) = ∑∞
k=0

ξ (k)pk

(k!)η is
a special case of the generalized form of a hypergeometric se-
ries, mHn(a1, a2, . . . , am; b; p) = ∑∞

k=0
a(k)

1 a(k)
2 ···a(k)

m

{b(k)}n
pk

k! given parameters
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(m, n, a, b, p), and 1Hη−1(ξ ; 1; p) itself contains several special-case func-
tions. When η ∈ Z, η ≥ 1, 1Hη−1(ξ ; 1; p) = 1Fη−1(ξ ; 1; p), a particular
generalized hypergeometric function. Additional special cases regarding
1Hη−1(ξ ; 1; p) include

1. 1H0(ξ ; 1; p) = 1
(1−p)ξ ,

2. 1Hη−1(1; 1; p) = Z(p, η − 1), i.e. the CMP normalizing function
described in Chapter 2,

3. limη→∞ 1Hη−1(ξ ; 1; p) = 1 + ξp, and
4. limξ→∞ 1Hη−1(ξ ; 1; p) = Z(λ, η), when 0 < ξp = λ <∞.

Beyond these special cases, 1Hη−1(ξ ; 1; p) can be determined via a trun-
cated approximation at some M so that 1Hη−1(ξ ; 1; p) ≈ ∑M

k=0
ξ (k)pk

(k!)η , where
(ξ+M)p
(M+1)η is sufficiently small.

3.4.4 Extended CMP (ECMP) Distribution

The ECMP (Chakraborty and Imoto, 2016) is a four-parameter distri-
bution that contains the COMtNB and GCMP distributions along with
their respective special cases. The ECMP(γ , p,β,α) distribution has the
probability

P(X = x) =
[
γ (x)

]α
px

1Gαβ−1(γ ; 1; p)(x!)β =
(

[�(γ + x)]

[�(γ )]

)α px

1Gαβ−1(γ ; 1; p)(x!)β ,

(3.51)

where 1Gαβ−1(γ ; 1; p) = ∑∞
k=0

[γ (k)]αpk

(k!)β is the normalizing constant, and γ (k)

is a rising factorial as defined in Equation (3.44); a detailed discussion re-
garding 1Gαβ−1(γ ; 1; p) is provided later in this section. This distribution is
defined for γ ≥ 0, p > 0, and 0 ≤ α < β or where γ > 0, 0 < p < 1, and
α = β. In particular, while the ECMP requires α ≤ β, these parameters are
not otherwise constrained (i.e. α,β ∈ R) as they are for the GCMP (α ≤ 1)
or the COMtNB (β ≥ 1) distributions. This distribution can take various
shapes, including a nonincreasing probability distribution with mode at 0,
a unimodal shape with a nonzero mode, or a bimodal shape with one zero
and one nonzero mode. Further, the survival and failure rate functions are

S(t) = γ (t)pt

(t!)β
2Gαβ−1(γ+t,1; t+1; p)

1Gαβ−1(γ ; 1; p)

= γ (t)pt

(t!)β
α+1Fβ−1(γ + t, 1; t + 1, t + 1, . . . , t + 1; p)

αFβ−1(γ ; 1, 1, · · · , 1; p)
(3.52)
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r(t) = 1

2Gαβ−1(γ + t, 1; t + 1; p)

= 1

α+1Fβ(γ + t, 1; t + 1, t + 1, . . . , t + 1; p)
, (3.53)

where the respective latter representations in Equations (3.52)–(3.53) hold
when α,β ∈ Z. The ECMP satisfies the recurrence

P(X = x + 1)

P(X = x)
= (γ + x)αp

(x + 1)β
, (3.54)

with P(X = 0) = 1
1Gαβ−1(γ ; 1; p) ; this relationship generalizes Equation

(3.45) by Chakraborty and Ong (2016). Equation (3.54) implies that, for
α > (<)1, the ECMP(γ , p,β,α) distribution has a longer (shorter) tail
than the GCMP(γ , p,α) distribution, while, for β < (>)1, the ECMP
has a longer (shorter) tail than the COMtNB(γ , p,β) model. Finally, the
ECMP(γ , p,β,α) can be represented as a member of an exponential family
in (ln (p),β,α) for a given γ and as a weighted Poisson(p) distribution as
described in Section 1.4 with weight w(x) = [�(γ+x)]α

[�(1+x)]β−1 .
The ECMP(γ , p,β,α) distribution is log-concave when all of the con-

straints {γ > 1, p > 0, α ≤ β} hold; this result confirms that the
GCMP(γ , p,β) is log-concave for {γ ≥ 1, p > 0, β < 1}. The gen-
eral constrained space of log-concavity for the ECMP distribution implies
that the distribution is “strongly unimodal” with an increasing failure rate
function (Chakraborty and Imoto, 2016). The ECMP has a mode of 0
when pγ α < 1, and the mode occurs at X = r, r = 1, 2, 3, . . ., when

rβ

(γ+r−1)α < p < (r+1)β

(γ+r)α . Meanwhile, the ECMP is bimodal with modes at r
and r−1 when p(γ+r−1)α = rβ ; in particular, the modes are 0 and 1 when
pγ α = 1 (i.e. r = 1). Conversely, the ECMP(γ , p,β,α) distribution is log-
convex when 0 < γ ≤ 1, p > 0, and α = β. Under such circumstances,
ECMP is infinitely divisible, has a DFR function, an increasing mean resid-
ual life function, and the variance is bounded above by pγ α. Finally, the kth
factorial moment is

(μ)k = {γ (k)}αpk

(k!)β−1

1Gαβ−1(γ + k, k + 1, p)

1Gαβ−1(γ , 1, p)
(3.55)

= {γ (k)}αpk

(k!)β−1

αFβ−1(γ + k; k + 1, k + 1, . . . , k + 1; p)

αFβ−1(γ ; 1, 1, · · · , 1; p)
, (3.56)

where Equation (3.56) holds for α,β ∈ Z. In particular, the mean of
the ECMP(γ , p,β,α) distribution is approximately p1/(β−α) + 1−β+(2γ−1)α

2(β−α) ,
where this approximation holds when p is large and |β − α| is small.
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The ECMP distribution contains several special cases, including the NB,
CMP, GCMP, COMNB, and COMtNB distributions. The NB(γ , p) whose
probability function is as defined in Equation (1.5) is a special case of the
ECMP(γ , p,β,α) when α = 1 and β = 0, while the COMNB(γ , δ, p)
distribution (discussed in Section 3.4.2) is achieved when α = β = δ.
The CMP distribution (as described in Chapter 2) can meanwhile be at-
tained in various ways. The ECMP distribution contains the CMP(p,β−α)
(in particular, the CMP(p,β) when α = 0) when γ = 1 and converges
to the CMP(λ,β) distribution as γ → ∞, with 0 < λ

.= γ αp < ∞
fixed. Accordingly, the ECMP distribution contains the Poisson, geometric,
and Bernoulli distributions (i.e. the special CMP cases) under the appro-
priate conditions. The ECMP further contains the GCMP(γ , p,α) when
β = 1 and the COMtNB(γ , p,β) when α = 1; refer to Sections 3.4.1
and 3.4.3, respectively, for discussion regarding the GCMP and COMtNB
distributions. With respect to likelihood ratio order, the ECMP(γ , p,β,α)
random variable is smaller than the COMtNB(γ , p,β) random variable
when α < 1, and is smaller than the GCMP(γ , p,α) random variable
when β > 1. Both cases imply the same progression with regard to haz-
ard rate ordering and thus mean residual life ordering under the respective
constraints.

Data dispersion for the ECMP distribution can be reflected relative
to several other distributions. Considering the ECMP distribution as a
weighted Poisson(p) distribution (see Section 1.4 for details) with weight
w(x) = [�(γ+x)]α

[�(1+x)]β−1 implies that the ECMP(γ , p,β,α) addresses over-
dispersion relative to the Poisson distribution (1) for all γ when α ≥ 0
and β < 1, or (2) when {0 < γ ≤ 1,α ≤ β ≤ α + 1} or {γ > 1,β ≤ 1}
is true, and {α > 0,β ≥ 1} or {α < 0,β < 1} also holds. Meanwhile,
ECMP(γ , p,β,α) accommodates under-dispersion relative to the Poisson
when (1) α < 0 and β ≥ 1 for all γ , or (2) for {α > 0,β ≥ 1} or
{α < 0,β < 1} when {0 < γ ≤ 1,β ≥ α+ 1} or {γ > 1,β ≥ 1} hold true.
More broadly, the ECMP(γ , p,β,α) is over-dispersed (under-dispersed)
relative to the COMtNB(γ , p,β) when 0 < α ≤ β (β ≥ α ≤ 0), while
ECMP is over-dispersed (under-dispersed) relative to the GCMP(γ , p,α)
when α ≤ β < 1 (1 < α ≤ β).

Parameter Estimation

Maximum likelihood estimation is a popular procedure for parameter
estimation; however, the ECMP log-likelihood,
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ln L(γ , p,β,α; f ) = α
k∑

i=0

fi ln (γ (i)) − β
k∑

i=0

fi ln (i!)

+ ln (p)
k∑

i=0

ifi − n ln
(

1Gαβ−1(γ , 1, p)
)

, (3.57)

can have multiple local maxima, where f = (f1, . . . , fk) denotes the ob-
served frequencies at 0, . . . , k such that k denotes the largest observation,
and n = ∑k

i=0 fi, thus the log-likelihood may not contain a unique solu-
tion. Chakraborty and Imoto (2016) suggest conducting a profile likelihood
approach to determine the estimators where, for a given γ , analysts max-
imize Equation (3.57) with respect to p,α, and β. Given its exponential
family form for a fixed γ , profile MLEs can be attained from which the
overall MLEs (γ̂ , p̂, α̂, β̂) can be identified. The authors further propose the
starting values

α
(0)
k (γ ) = s2,k(γ ), (3.58)

β
(0)
k (γ ) =

{
s1,k(γ ) for s1,k(γ ) > s2,k(γ )
s2,k(γ ) otherwise

(3.59)

p(0)
l (γ ) = (l + 1)β (0)

k (γ )

(γ + l)α(0)
k (γ )

(3.60)

for a given γ from an ECMP(γ , p,β,α) distribution, where l is the smallest
observation and s1,k(γ ), s2,k(γ ) satisfy

(
s1,k(γ )
s2,k(γ )

)

=
⎛

⎝
ln
(

k+1
k+2

)
ln
(
γ+k+1
γ+k

)

ln
(

k+2
k+3

)
ln
(
γ+k+2
γ+k+1

)

⎞

⎠

−1 ⎛

⎝
ln
(

fk+2

fk+1

)
− ln

(
fk+1

fk

)

ln
(

fk+3

fk+2

)
− ln

(
fk+2

fk+1

)

⎞

⎠

(3.61)

for chosen k such that the inverse matrix exists.

The ECMP Normalizing Constant, 1Gαβ−1(γ ; 1; p), and Its
Approximation

The normalizing constant 1Gαβ−1(γ ; 1; p) = ∑∞
k=0

[γ (k)]αpk

(k!)β is a special case of
the generalized form of the Chakraborty and Ong (2016) hypergeometric-
type series,

mGc
d(a1, a2, . . . , am; b; p) =

∞∑

k=0

[
a(k)

1

]c
a(k)

2 · · · a(k)
m

[b(k)]d

pk

k! . (3.62)
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Equation (3.62) can likewise be represented as

mGc
d(a1, a2, . . . , am; b; p)=c+m−1Fd( a1, a1, . . . , a1︸ ︷︷ ︸

c times

, a2, . . . , am; b, b, . . . , b
︸ ︷︷ ︸

d times

; p)

for α,β, and m ∈ Z
+. The following properties hold as special cases of

1Gαβ−1(γ ; 1; p), thus defining the normalizing constant for certain special-
case distributions:

1. 1Gαβ−1(γ ; 1; p) = αFβ−1(γ ; 1, 1, . . . , 1; p) for integer-valued α,β,
2. 1G1

β−1(γ ; 1; p) = 1Hβ−1(γ ; 1; p) as defined in Section 3.4.3,
3. 1Gα0 (γ ; 1; p)

(�(γ ))α = C(α, γ , p) as defined in Section 3.4.1,
4. 1Gαβ−1(1; 1; p) = Z(p,β − α) as described in Chapter 2,
5. 1G1

0(γ ; 1; p) = 1
(1−p)γ ,

6. 1Gx
x(1; 1; p) = exp (p),

7. limβ→∞ 1Gαβ−1(γ ; 1; p) = 1 + γ αp, and
8. limγ→∞ 1Gαβ−1(γ ; 1; p) = Z(λ,β), where 0 < λ

.= γ αp <∞.

Special cases (2)–(5) above define the respective normalizing con-
stants associated with the following distributions: COMtNB(γ , p,β),
GCMP(γ , p,α), COMtNB(γ = 1, p,β−α) = CMP(p,β−α), and NB(γ , p).
Other special-case distributions that can be obtained from the ECMP dis-
tribution include the CMP(p,β) distribution when α = 0 (as shown via
Case 4), and the Poisson(p) distribution when γ = 1 and α = β (i.e.
Case 6), or when α = 0 and β = 1. The CMP(λ,β) distribution is likewise
asymptotically attainable as γ → ∞ such that 0 < λ

.= γ αp <∞ remains
fixed (Case 8). Another special case, namely a new generalization of the
NB distribution, is defined as

P(X = k) = 1

1Gδδ−1(γ ; 1; p)

((
γ + k − 1

k

))δ
pk; (3.63)

this distribution is obtained as a special case of ECMP, with α = β = δ,
and is log-convex for 0 < γ ≤ 1 (Chakraborty and Imoto, 2016).

As is the case with other CMP-motivated distributions, these extensions
rely on a normalizing constant whose form involves an infinite sum-
mation. Because there does not exist a closed form for this summation
except for special cases, Chakraborty and Imoto (2016) suggest two ap-
proaches toward approximating the normalizing constant: truncating the
infinite sum or determining an asymptotic approximation via Laplace’s
method. By truncating the summation, we approximate 1Gαβ−1(γ ; 1; p) with



3.4 Generalizations of the Negative Binomial Distribution 111

1Gαβ−1,M(γ ; 1; p) = ∑M
k=0

[γ (k)]αpk

(k!)β for some M ∈ Z
+ such that εM =

(γ−M+1)αp
Mβ < 1. This requirement produces a relative truncation error

RM(γ , p,β,α) <

[
γ (M+1)

]α
pM+1

[(1 − εM)(M + 1)!]β 1Gαβ−1,M(γ ; 1; p)
.

This approximation is good for β − α ≥ 1, producing a truncation value
M that is not large. For 0 < β − α < 1 and p > 1; however, M needs to
be considerably large. Under such situations, analysts are urged to restrict
p so that p < 1 when β − α → 0. Alternatively, 1Gαβ−1(γ ; 1; p) can be
approximated via the Laplace method to obtain

1Gαβ−1(γ ; 1; p) ≈ p[1−β+(2γ−1)α]/2(β−α) exp ((β − α)p1/(β−α))

(2π)(β−α−1)/2
√
β − α[�(γ )]α

. (3.64)

This reduces to the asymptotic approximation for the COMtNB normal-
izing constant (Equation (3.30)) when β = 1 (Imoto, 2014) and to the
analogous approximation for the CMP normalizing constant (Equation
(2.12)) when γ = 1 or α = 0 (Minka et al., 2003).

Formulating the ECMP(γ , p,β,α) Distribution

The ECMP model can be formulated either via a flexible queuing process
or by an exponential combination. Akin to the derivation of the CMP dis-
tribution, here one can consider a queuing system with arrival and service
rates, λx = (γ + x)αλ and μx = xβμ, respectively, such that the recursive
relationship P(X=x+1)

P(X=x) = λx

μx+1
holds; let 1/μ and 1/λ denote the respective

normal mean service and arrival times for a solo unit in a system, and β and
γ , respectively, denote pressure coefficients. Given this framework, one can
follow the Conway and Maxwell (1962) queuing derivation as discussed in
Section 2.1, now letting the arrival and service rates increase exponentially
as x increases to obtain the ECMP(γ , p,β,α) probability function with
p = λ/μ for the probability of the system being in state x (Chakraborty
and Imoto, 2016; Zhang, 2015). Alternatively, the ECMP(γ , p,β,α) can
be viewed as an exponential combination of the NB(γ , λ) and CMP(μ, θ)
distributions, where p = λαμ1−α and β = θ(1 − α) + α. Accordingly, α
converging to 0 implies more weight toward the NB model, while β con-
verging to 1 tends closer to the CMP distribution (Chakraborty and Imoto,
2016).
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Alternative Parametrization and Associated Results

An alternative ECMP parametrization (denoted as ECMPa(γ , p,β,α)) has
the probability

P(X = x) =
�(γ+x)α

(x!)β px

∑∞
i=0

�(γ+i)α

(i!)β pi
, x = 0, 1, 2, . . .

(Zhang, 2015). This formulation is infinitely divisible for γ ,α, and β that
satisfy the constraint

1

2β

(

1 + 1

γ

)α
≥ 1.

Further, the Stein identity holds under either parametrization, i.e. letting
N = {0, 1, 2, . . .}, a random variable X has the ECMP/ECMPa(γ , p,β,α)
distribution if and only if, for any bounded function g : N → R,

E[Xβg(X) − p(X + γ )αg(X + 1)] = 0

holds.
An extended negative hypergeometric distribution (ENHG) distribution

is meanwhile derived via the conditional distribution involving ECMP dis-
tributions. Denoted as ENHG(s, γ1, γ2,α,β), its probability distribution has
the form

P(Y = y) = [�(γ1 + y)�(γ2 + s − y)]α

[y!(s − y)!]βH(s, γ1, γ2,α,β)
,

where H(s, γ1, γ2,α,β) = ∑s
i=0

[�(γ1+i)�(γ2+s−i)]α

[i!(s−i)!]β is the normalizing con-
stant. This form can be obtained by considering the conditional distribution
of X1 given X1 + X2 = s for two independent ECMP(γi, p,α,β) random
variables, Xi, i = 1, 2 (Zhang, 2015).

3.5 Conway–Maxwell Katz (COM–Katz) Class of Distributions

The Katz class (also referred to as the (a, b, 0) class) of distributions is that
family of distributions satisfying the recursion

P(X = k) =
(

a + b

k

)

P(X = k − 1), k = 1, 2, . . . , (3.65)

where a, b ∈ R. It contains several well-known distributions as special
cases, including the Poisson, binomial, and NB distributions. The family
has been applied in diverse applications such as minefield clearance (Wash-
burn, 1996) and control chart theory (Fang, 2003). Zhang et al. (2018)
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introduce a “COM-type extension” of this class where Equation (3.65) is
modified to

P(X = k) =
(

a + b

k

)ν
P(X = k − 1), k = 1, 2, . . . , (3.66)

for some constants a, b ∈ R and ν ∈ R
+; we will refer to this generalized

family of distributions as the COM–Katz4 class of distributions.
The degenerate, CMP(λ, ν), CMB, and COMNB distributions all belong

to the COM–Katz class. The CMP(λ, ν) satisfies this form by letting a = 0
and b = λ1/ν ; the CMP recursion is provided in Equation (2.44). The
CMB(m, p, ν) recursion property (Equation (3.7)) can likewise be repre-
sented as Equation (3.66); in this case, a = −1 and b = m + 1. Finally, the
COMNB distribution is another special case of this form, where a = p1/ν

and b = (γ −1)p1/ν ; see Equation (3.38). The Brown and Xia (2001) birth–
death processes with arrival rate λx = c[a(x + 1) + b]ν and service rate
μx = cxν such that the ratio of consecutive probabilities P(X=x)

P(X=x−1) = λx−1

μx
,

x = 1, 2, . . ., are another example that lies within the COM–Katz class of
distributions.

3.6 Flexible Series System Life-Length Distributions

Two popular two-parameter distributions have been considered as tools for
describing the life length of systems that arise (say) in the biological or
engineering sciences. The exponential–geometric (EG) distribution has the
probability density function

fEG(y; κ , p) = κ(1 − p)e−κy

(1 − pe−κy)2
, y ≥ 0, (3.67)

for a random variable Y , where κ > 0 and p ∈ (0, 1) (Adamidis and
Loukas, 1998). The exponential–Poisson (EP) distribution meanwhile has
the density

fEP(y; κ , λ) = κλ

1 − e−λ e−λ−κy+λ exp (−κy), y ≥ 0 (3.68)

(Kuş, 2007). Both model pdfs are decreasing functions with a mode at 0
and have a DFR; other respective distributional properties, including their
respective modal values, are provided in Table 3.4. In both cases, these
distributions are derived by considering Y = min ({Xi}C

i=1) for a random
sample of exponentially distributed random variables {Xi}C

i=1, with density

4 While one could consider referring to the COM–Katz class as the (a, b, ν, 0) (to maintain
consistency with the Katz and (a, b, 0) names), we refrain from doing so here.
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Table 3.4 Distributional properties of the exponential-geometric (EG) and
exponential-Poisson (EP) distributions

EG EP

Probability density κ(1 − p)e−κy(1 − pe−κy)−2 κλ
1−e−λ e−λ−κy+λ exp (−κy)

function, f (y)

Cumulative dist. (1 − e−κy)(1 − pe−κy)−1
(
eλ exp (−κy) − eλ

) (
1 − eλ

)−1

function, F(y)

Survival function, S(y) (1 − p)e−κy(1 − pe−κy)−1
(
1 − eλ exp (−κy)

) (
1 − eλ

)−1

Hazard function, h(y) κ(1 − pe−κx)−1 κλe−λ−βy+λ exp (−κy)
(
1−eλ

)

(
1−e−λ) (1 − eλ exp (−κy)

)

Moments, E(Yr) (1 − p)r!(pκr)−1 ∑∞
j=1 (pj/jr)

λ�(r + 1)

(eλ − 1)κr
Fr+1,r+1

([1, 1, . . . , 1], [2, 2, . . . , 2], λ)

Modal value κ(1 − p)−1 κλ(1 − e−λ)−1

Median κ−1 ln (2 − p) κ−1 ln

[

ln
(

eλ+1
2

)−1
λ

]

f (x; κ) = κe−κx, x > 0, where C denotes either a geometric random variable
with probability P(C = j;p) = (1−p)pj−1, for j = 1, 2, 3, . . . (Adamidis and
Loukas, 1998) or a zero-truncated Poisson random variable, where P(C =
j;λ) = e−λλj

(1−e−λ)j! , j = 1, 2, 3, . . . (Kuş, 2007).
The following sections consider generalizations of the EG and EP dis-

tributions in two ways. Section 3.6.1 introduces the flexible ExpCMP
distribution as an extension of EG and EP. Here, C is instead assumed to be
a zero-truncated CMP distribution with probability mass function

P(C = j; λ, ν) = λj

[Z(λ, ν) − 1](j!)ν , j = 1, 2, 3, . . . ; (3.69)

this choice of distribution for C contains the geometric distribution with
success probability 1−λ (when ν = 0 and λ < 1) and zero-truncated Pois-
son with rate parameter λ (ν = 1) as special cases. Section 3.6.2 develops
a further generalized distribution by considering both the zero-truncated
CMP random variable C with instead a Weibull distribution for X. This
results in a marginal distribution that is WCMP.

3.6.1 The Exponential-CMP (ExpCMP) Distribution

The ExpCMP distribution is a flexible model to study the minimum
lifetimes of a series of exponentially distributed random variables. A
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random variable Y that has an ExpCMP(κ , λ, ν) distribution has the density
function

f (y; κ , λ, ν) = κ

Z(λ, ν) − 1

∞∑

j=1

jλj

(j!)ν exp ( − jκy), y > 0, (3.70)

where κ , λ > 0 and ν ≥ 0 (Cordeiro et al., 2012). This distribution is
derived by compounding an exponential distribution with a CMP distribu-
tion. Letting C be a zero-truncated CMP(λ, ν) distributed random variable,
consider a random sample X1, . . . , Xj given C = j of exponentially dis-
tributed random variables (independent of C) with mean 1/κ . Letting
Y = min{Xi}C

i=1, its conditional density function given C = j is exponential
with mean (jκ)−1, i.e. f (y | j; κ) = jκ exp ( − jκy), y ≥ 0.

The ExpCMP distribution is a weighted exponential distribution of the
form f (y; κ , λ, ν) = ∑∞

j=1 wjfe(y; jκ), where

fe(y; jκ) = jκ exp (−jκy) and wj = λj

[Z(λ, ν) − 1](j!)ν . (3.71)

Its representation implies that the ExpCMP has the respective cumulative
distribution and hazard rate functions

F(y; κ , λ, ν) = 1 −
∞∑

j=1

wj exp ( − jκy) = 1 − Z(λe−κy, ν)

Z(λ, ν) − 1
(3.72)

h(y; κ , λ, ν) =
∑∞

j=1 wjfe(y; jκ)
∑∞

j=1 wj exp ( − jκy)
=
κλ

(
∂Z(λe−κy,ν)

∂λ

)

Z(λe−κy, ν)
. (3.73)

The ExpCMP distribution has a DFR whose moments and moment gener-
ating function are

E(Yr) = �(r + 1)

κ r
E(C−r) = �(r + 1)

κ r

∞∑

j=1

wj

jr

= �(r + 1)

κ r

∞∑

j=1

λj

jr[Z(λ, ν) − 1](j!)ν (3.74)

MY(t) =
∞∑

j=1

wj

(

1 − t

jκ

)−1

= E(1 − t(κC)−1)

Z(λ, ν) − 1
, (3.75)

where C is a zero-truncated CMP random variable with probability defined
in Equation (3.69). Meanwhile, the ExpCMP quantiles can be determined
by solving Z(λe−κy, ν) = (1 − p)[Z(λ, ν) − 1] for any probability, p. The
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ExpCMP(κ , λ, ν) distribution contains the EP and EG distributions as spe-
cial cases; the ExpCMP reduces to the EP distribution when ν = 1 and to
the EG distribution when ν = 0 and λ < 1 (Cordeiro et al., 2012).

Order Statistics

Order statistics and their associated properties can prove informative in
applications such as reliability theory or quality control. Given a random
sample of n ExpCMP random variables, Y1, . . . , Yn, the ith-order statistic
Y(i) has the probability

P(Y(i) = y) = κ

B(i, n − i + 1)

⎛

⎝
∞∑

j=0

jwje
−jκy

⎞

⎠

⎡

⎣
n−i∑

�=0

( − 1)�
(

n − i

�

)( ∞∑

m=0

( − wme−mκy)

)i+�−1
⎤

⎦

=
∞∑

j=1

∞∑

m=0

ρ(j, m)fe(y; (j + m)κ), (3.76)

where

ρ(j, m) = jwj
∑n−i
�=0 ( − 1)�

(n−i
�

)
em,i+�−1

(j + m)B(i, n − i + 1)
, (3.77)

B(a, b) = �(a)�(b)
�(a+b) is the Beta function, em,i+�−1 = 1

m

∑m
j=1 [(i + � −

1)j − j + m](−wj)em−j,i+�−1, and wj and fe(y; ·) are defined in Equation
(3.71). This latter representation of the order statistic density function of
the ExpCMP allows for easy determination of the cumulative distribution
function, moment generating function, and moments associated with the
ith-order statistic, namely

Fi:n(y) = 1 −
∞∑

j=1

∞∑

m=0

ρ(j, m) exp ( − (j + m)κy), (3.78)

MY(i) (t) =
∞∑

j=1

∞∑

m=0

ρ(j, m)

[

1 − t

(j + m)κ

]−1

, and (3.79)

E(Yr
(i)) = �(r + 1)

κ r

∞∑

j=1

∞∑

m=0

ρ(j, m)

(j + m)r
, (3.80)

where ρ(j, m) is defined in Equation (3.77).
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Parameter Estimation

Parameter estimation can be achieved via the method of maximum likeli-
hood, where

ln L(κ , λ, ν; y) = n ln (κλ) +
n∑

i=1

ln

(
∂Z(λe−κyi , ν)

∂λ

)

− n ln (Z(λ, ν) − 1)

(3.81)

is the log-likelihood optimized at the estimates {κ̂ , λ̂, ν̂} given an observed
sample y = (y1, . . . , yn). The associated system of score equations is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n
κ

+ ∑n
i=1

(−yiZ(λe−κyi ,ν)E(C2
†i)

Z(λe−κyi ,ν)E(C†i)

)
= 0

n
λ

+ ∑n
i=1

(
Z(λe−κyi ,ν)E(C†i(C†i−1))
λZ(λe−κyi ,ν)E(C†i)

)
− ∑n

i=1

(
Z(λ,ν)E(C�)
λ[Z(λ,ν)−1]

)
= 0

∑n
i=1

(
Z(λ,ν)E( ln (C�!))

Z(λ,ν)−1

)
− ∑n

i=1

(
Z(λe−κyi ,ν)E[C†i ln (C†i!)]

Z(λe−κyi ,ν)E(C†i)

)
= 0

(3.82)

which is solved with respect to κ , λ, and ν, where C� and C†i are CMP(λ, ν)
and CMP(λe−κyi , ν) random variables, respectively. Cordeiro et al. (2012)
utilize the compoisson (Dunn, 2012) and gamlss (Stasinopoulos and
Rigby, 2007) packages in R to perform statistical computations, where the
RS method (Rigby and Stasinopoulos, 2005) is used in the gamlss package
to optimize the log-likelihood. The usual distribution theory results hold,
i.e. for a collection of parameters θ = {κ , λ, ν} with maximum likelihood
estimators θ̂ = {κ̂ , λ̂, ν̂}, the distribution of

√
n(θ̂−θ) converges to a trivari-

ate normal distribution with zero mean and variance–covariance matrix that
is the inverse of the resulting Fisher information matrix. This form allows
for analysts to obtain the respective standard errors associated with the es-
timates and to construct approximate confidence intervals for θ along with
the survival and risk functions.

3.6.2 The Weibull–CMP (WCMP) Distribution

The WCMP distribution generalizes the ExpCMP. Let C ≥ 1 denote the
number of components in a series system and assume that C has a zero-
truncated CMP(λ, ν) distribution with probability mass function as defined
in Equation (3.69). Letting X1, . . . , XC be independent and identically dis-
tributed Weibull random variables with scale parameter 1/κ and shape
parameter ξ (density function provided, e.g., in Jiang and Murthy (2011))
and Y = min{Xi}C

i=1 being the smallest of these random variables, Y has the
conditional distribution (given C = j)

f (y | j; κ , ξ ) = κξ j(κy)ξ−1e−j(κy)ξ , y > 0.

.
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This combination of distributions compounds to the WCMP distribution
and has density, cumulative distribution, and hazard rate functions of the
form

f (y; κ , λ, ν, ξ ) = κξ (κy)ξ−1

Z(λ, ν) − 1

∞∑

j=1

j[λe−(κy)ξ ]j

(j!)ν

= ξ (κy)ξ−1 κλ
∂Z(λe−(κy)ξ ,ν)

∂λ

Z(λ, ν) − 1
, y > 0, (3.83)

F(y; κ , λ, ν, ξ ) = 1 −
Z
(
λe−(κy)ξ , ν

)
− 1

Z(λ, ν) − 1
(3.84)

h(y; κ , λ, ν, ξ ) =
ξ (κy)ξ−1κZ

(
λe−(κy)ξ , ν

)
E(C‡)

Z
(
λe−(κy)ξ , ν

) − 1
= λξ (κy)

∂Z
(
λe−(κy)ξ ,ν

)

∂λ

Z
(
λe−(κy)ξ , ν

) − 1
(3.85)

for a random variable Y , where C‡ has a CMP
(
λe−(κy)ξ , ν

)
distribution

(Gupta and Huang, 2017). The WCMP(κ , λ, ν, ξ ) distribution allows for
a decreasing, increasing, or downward U-shaped distributional form. It
further has a strictly decreasing density and hazard rate function when
0 < ξ ≤ 1, while the density function is unimodal when ξ > 1. The
WCMP(κ , λ, ν, ξ ) model generalizes the EG, EP, and ExpCMP distribu-
tions; the ExpCMP(κ , λ, ν) is achieved when ξ = 1, while the EG(κ , p =
1 − λ) and EP(κ , λ) distributions are attained when ν = 0 and λ < 1,
and ν = 1, respectively. Finally, the WCMP distribution has the moment
generating function and associated moments

MY(t) =
∞∑

k=0

( t

κ

)k

ξ

(

1 + k

ξ

)

E
(
C−k/ξ
�

)

E(Yr) = κ−rξ

(
r

ξ
+ 1

)

E
(
C−r/ξ
�

)
,

where C� has a CMP(λ, ν) distribution.

Parameter Estimation and Hypothesis Testing

Maximum likelihood estimation can be performed to estimate κ , λ, ν, and ξ .
The log-likelihood stemming from a random sample Y1, . . . , Yn of WCMP
distributed random variables has the form
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ln L(κ , λ, ν, ξ ; y) = n ln (λκξ ) + (ξ − 1)
n∑

i=1

ln (κyi)

+
n∑

i=1

ln

(
∂Z(λe−(κyi)ξ , ν)

∂λ

)

− n ln (Z(λ, ν) − 1). (3.86)

The associated score functions can be obtained and the resulting estimates
{κ̂ , λ̂, ν̂, ξ̂} determined such that they solve the system of equations; see
Gupta and Huang (2017) for details. The Rao’s score test can meanwhile
be utilized for hypothesis testing; the corresponding test statistic is T =
S′I−1S, where S denotes the 4 × 1 score vector and I the 4 × 4 Fisher
information matrix, and each is evaluated at the parameter MLEs under
the null hypothesis; T has a chi-squared distribution where the degrees of
freedom equal the number of null hypothesis constraints. The respective
components that comprise the score vector and information matrix do not
have a closed form, thus computations must be conducted via a computing
tool, e.g. R. Nonetheless, the usual regularity conditions imply convergence,
i.e.

√
n(θ̂ − θ) → N4(0, I(θ )−1), where θ = {κ , λ, ν, ξ}.

Simulation studies show that, given fixed values for λ and κ , ν̂ and ξ̂ are
close to their true respective values as illustrated through a small absolute
bias, and their respective standard errors are close to those obtained via the
observed Fisher information matrix. Per the usual, an increased sample size
associates with decreased standard errors for the estimates. By fixing one
of the two parameters (be it ν or ξ ), the coverage probability associated
with the confidence interval for the other parameter closely approximates
its associated nominal value (Gupta and Huang, 2017).

3.7 CMP-Motivated Generalizations of the Negative
Hypergeometric Distribution

The negative hypergeometric (NH) distribution is a popular classical dis-
tribution recognized as being over-dispersed relative to the Poisson model.
As the NB distribution counts the number of successes in a space where
draws are done with replacement and assuming a certain number of fail-
ures, the NH distribution is derived when those draws are made without
replacement.

The NH distribution can be derived from a NB random variable
conditioned on the sum of two independent NB variables with the
same success probability. As described in Section 3.4, however, the
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NB distribution can allow for several generalizations motivated by the
COM–Poisson distribution to account for added dispersion. This sec-
tion accordingly considers some COM–Poisson-inspired NH distributions
derived from such conditional probabilities in regard to their corre-
sponding COM–Poisson-inspired NB random variables – a COM-negative
hypergeometric (COMNH) (Section 3.7.1), COM–Poisson-type nega-
tive hypergeometric (CMPtNH) (Section 3.7.2), and Conway-Maxwell
negative hypergeometric (CMNH) (Section 3.7.3) distributions.

3.7.1 The COM-negative Hypergeometric (COMNH)
Distribution, Type I

The Type I COM-negative hypergeometric (COMNH) distribution (Zhang
et al., 2018) has the probability mass function

P(Y = y) = 1

N(h, ν, γ1, γ2)

((
h

y

)
B(γ1 + y, γ2 + h − y)

B(γ1, γ2)

)ν
, y = 0, 1, . . . , h

(3.87)

where B(α,β) = �(α)�(β)
�(α+β) denotes the Beta coefficient for two terms α and β,

and N(h, ν, γ1, γ2) = ∑h
y=0

((h
y

)B(γ1+y,γ2+h−y)
B(γ1,γ2)

)ν
is the normalizing constant.

The COMNH(h, ν, γ1, γ2) reduces to the NH distribution when ν = 1.
Two substantive results connect the COMNB and COMNH distribu-

tions. The first result says that two independent random variables, Xi,
i = 1, 2, are COMNB(γi, ν, p) distributed as defined in Section 3.4.2 if
and only if the conditional distribution of X1 given the sum X1 + X2 =
x1 + x2 has a COMNH(h = x1 + x2, ν, γ1, γ2) for all h = x1 + x2. Sec-
ondly, a COMNH(h, ν, γ1, γ2) distributed random variable with finite γ1

and h/(γ2 + h) = p1/ν where p ∈ (0, 1) converges to a COMNB(γ1, ν, p)
distribution as γ2 → ∞.

3.7.2 The COM–Poisson-type Negative Hypergeometric
(CMPtNH) Distribution

The COM–Poisson-type negative hypergeometric (i.e. CMPtNH
(s, η, ξ1, ξ2)) distribution (Chakraborty and Ong, 2016) has the probability
mass function

P(X = x) = 1

(C(s, η, ξ1, ξ2))

ξ
(x)
1 ξ

(s−x)
2

(ξ1 + ξ2)(s)

(
s

x

)η
, x = 0, 1, . . . , s,
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where C(s, η, ξ1, ξ2) = ∑s
x=0

ξ
(x)
1 ξ

(s−x)
2

(ξ1+ξ2)(s)

(s
x

)η
denotes the normalizing constant,

and a(b) denotes the rising factorial for values a, b as defined in Equa-
tion (3.44). For η = 1, this distribution reduces to the NH distribution.
Meanwhile, the CMPtNH distribution converges to a CMB

(
s, ξ1

ξ1+ξ2
, η
)

dis-

tribution (see Section 3.3.1 for details) when ξ1 +ξ2 → ∞ and 0 < ξ1

ξ1+ξ2
<

∞. The CMPtNH distribution likewise converges to the COMtNB(ξ1, p, η)
distribution as described in Section 3.4.3 when η ≥ 1, sη → ∞, 1

ξ2
→ 0,

and sη

ξ2
= p.

Chakraborty and Ong (2016) provide two derivations for the CMPtNH
model – either as a conditional distribution, or via a compounding method.
For two independent COMtNB(ξi, p, η) random variables Xi, i = 1, 2, the
conditional distribution of X1 = x | X1 + X2 = s is CMPtNH(s, η, ξ1, ξ2)
distributed. Alternatively, the CMPtNH distribution can be derived as a
compounded CMB(s, p, η) where p is Beta(ξ1, ξ2) distributed.

3.7.3 The COM-Negative Hypergeometric (CMNH)
Distribution, Type II

Roy et al. (2020) offers the most extensive effort generalizing a NH dis-
tribution, introducing the Type II COM-negative hypergeometric (CMNH)
distribution that further includes the COMNB and CMP distributions as
limiting cases. The CMNH(r, ν, mp, m) has the probability function

P(X = x) =
(x+r−1

x

)ν( m−x−r
m−mp−x

)

H(r, ν, np, m)
, x = 0, 1, . . . , m − mp, (3.88)

where H(r, ν, mp, m) = ∑m−mp
j=0

(j+r−1
j

)ν( m−j−r
m−mp−j

)
is the normalizing con-

stant. This distribution is log-concave with an increasing failure rate when
ν > 0 and 1 < r < mp, and has a U-shaped failure rate when ν < 0. For
the special case where ν = 1, the CMNH reduces to the NH model with
probability

P(X = x) =
(x+r−1

x

)( m−x−r
m−mp−x

)

( m
m−mp

) , x = 0, 1, . . . , m − mp.

Meanwhile, as m → ∞, CMNH converges to the COMNB(r, ν, q) model
as described in Section 3.4.2, which (in turn) converges to CMP(λ, ν) when
r → ∞ and q → 0 simultaneously such that λ = rνq remains fixed (Roy
et al., 2020).
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Dispersion is controlled by the combination of CMNH parameters. For
ν = 1, the NH distribution is always over-dispersed. Through simula-
tion studies, however, Roy et al. (2020) note that the CMNH distribution
can achieve data over- or under-dispersion for certain combinations of its
parameters. In particular, the degree of over-dispersion decreases as r in-
creases while, for certain combinations of r and ν, the CMNH can achieve
data under-dispersion. Likewise, for certain r fixed, it can achieve data
under-dispersion with certain combinations of p and ν.

The CMNH probability generating function is

�(s) = ν+1Fν(r, r, . . . , r, mp − m; 1, 1, . . . , 1, r − m; s)

ν+1Fν(r, r, . . . , r, mp − m; 1, 1, . . . , 1, r − m; 1)

with mean and variance

E(X) = rν(m − mp)

m − r
ν+1Fν(r + 1, r + 1, . . . , r + 1, mp − m + 1; 2, 2, . . . , 2, r − m + 1; 1)

ν+1Fν(r, r, . . . , r, mp − m; 1, 1, . . . , 1, r − m; 1)
V(X) = E(X(X − 1)) + E(X) − (E(X))2,

where

E(X(X − 1)) = (r(r + 1))ν(m − mp)(m − mp − 1)

(m − r)(m − r − 1)2ν−1

· ν+1Fν(r + 2, r + 2, . . . , r + 2, mp − m + 2; 3, 3, . . . , 3, r − m + 2; 1)

ν+1Fν(r, r, . . . , r, mp − m; 1, 1, . . . , 1, r − m; 1)
.

More broadly, the kth moment can be expressed as

E(Xk) = rν(m − mp)

mp + 1
E

(
1

X

)ν−k

.

The mean and variance for the CMNH distribution do not have a closed
form except for the special case where ν = 1, i.e. the NH distribution.

Parameter estimation can be achieved via maximum likelihood estima-
tion where the log-likelihood associated with observations x = (x1, . . . , xn)
from an assumed CMNH random sample is

ln L(ν, p; x) =
n∑

i=1

ν ln

(
xi + r − 1

xi

)

+
n∑

i=1

ln

(
m − xi − r

m − mp − xi

)

−n ln
m−mp∑

j=0

(
j + r − 1

j

)ν( m − j

m − mp − j + r

)

, (3.89)
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where the resulting score equations do not have closed-form solutions, thus
the estimates ν̂, p̂ can be attained numerically via the optim function in R.
Roy et al. (2020) show that, for ν > 0, ν̂ has small standard error with a
smaller bias and better coverage probability when p ≥ 0.5. Meanwhile, p̂
has a small bias and small standard error when ν > 0. They see, however,
that for large, positive ν and small p, the coverage probability of p is less
optimal. The test of hypotheses H0:ν = 1 versus H1:ν �= 1 determines
whether an observed sample stem from a NH distribution or is statistically
significantly different from NH such that the CMNH should be considered,
recognizing some measure of data dispersion. The resulting likelihood ratio
test statistic is � = L(p̂0,ν=1|x)

L(p̂,ν̂|x) where, under H0, −2 ln (�) converges to a
chi-squared distribution with one degree of freedom.

3.8 Summary

The COM–Poisson distribution has motivated an array of various distri-
butional extensions, including flexible analogs of the Skellam, binomial,
multinomial, NB, and NH distributions, etc. As a result, these distributional
extensions can model categorical data with a fixed number of trials (CMB,
gCMB, CMM), unbounded (sCMP, GCMP, COMNB, COMtNB, ECMP)
or bounded (COMNH, CMPtNH, CMNH) count data, differences in counts
(CMS), or life length of systems (ExpCMP, WCMP). The respective distri-
butions maintain distributional relationships that are consistent with their
classical counterparts; yet, they allow for added flexibility to account for
data dispersion.

Unfortunately, only a select few of the discussed models provide a sup-
porting R package. Interested analysts, however, can utilize the associated
section discussion to develop R functionality for the model(s) of interest.
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Multivariate Forms of the COM–Poisson
Distribution

Multivariate count data analysis is gaining interest throughout society, and
such data require multivariate model development that takes into account
the discrete nature while likewise accounting for data dispersion. Given the
potential dependence structures that can exist in a multivariate setting, re-
search has typically been established first for a bivariate distribution whose
definition has then been broadened to satisfy a multivariate framework.
A bivariate Poisson (BP) distribution, for example, is a natural choice for
modeling count data stemming from two correlated random variables. This
construct, however, is limited by the underlying univariate model assump-
tion that the data are equi-dispersed. Alternative bivariate models include
a bivariate negative binomial (BNB) and a bivariate generalized Poisson
(BGP) distribution, which themselves suffer from analogous limitations as
described in Chapter 1. The BNB of Famoye (2010), for example, can-
not address data under-dispersion, while the BGP distribution of Famoye
and Consul (1995) has limited capacity to address data under-dispersion.
Another form of dispersion is measured via a generalized dispersion index
(GDI) (Kokonendji and Puig, 2018). For a random vector X = (X1, . . . , Xd),
the GDI is measured as

GDI(X) = (
√

E(X))′(Cov(X))
√

E(X)

(E(X))′E(X)
, (4.1)

where Cov(X) denotes the variance–covariance matrix of X. The GDI as-
sesses dispersion relative to the uncorrelated multivariate Poisson (MP)
distribution, where GDI = 1 implies equi-dispersion, and GDI > (<)1
infer over-dispersion (under-dispersion) relative to the uncorrelated MP
distribution.

While the aforementioned distributions motivate the need to instead con-
sider a multivariate analog of the univariate CMP, such model development

124
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(as with those for other discrete distributions) varies in order to take into ac-
count (or results in) certain distributional qualities. A variety of approaches
have been proposed in the literature to develop multivariate discrete dis-
tributions; see Kocherlakota and Kocherlakota (1992) and Johnson et al.
(1997) for discussions regarding potential approaches to develop bivariate
and multivariate discrete distributions, respectively. This chapter summa-
rizes such efforts where, for each approach, readers will first learn about
any bivariate COM–Poisson (BCMP) distribution formulations, followed
by any multivariate analogs. Accordingly, because these models are mul-
tidimensional generalizations of the univariate COM–Poisson, they each
contain their analogous forms of the Poisson, Bernoulli, and geometric dis-
tributions as special cases. The methods discussed in this chapter are the
trivariate reduction method (Section 4.1), the compounding method (Sec-
tion 4.2), the Sarmanov family of distributions (Section 4.3), and the use of
copulas (Section 4.4). These methods introduce differing attributes associ-
ated with their model forms; thus, the following discussion will maintain
notation that not only notes the dimensionality (be it bivariate or multi-
variate) but also the approach by which the distribution is established in
order to provide the reader with added clarity regarding the multiple forms
(for example) of BCMP distributions. Section 4.5 illustrates and compares
model performance for these various model constructs on two real datasets.
Finally, Section 4.6 concludes the chapter with a summary and discussion.

While bivariate and multivariate COM–Poisson distributions can be de-
veloped motivated by any of the parametrizations discussed in Section 2.6,
all of the presented models considered in this chapter assume an under-
lying CMP model; hence, we maintain the general acronyms BCMP and
MultiCMP,1 respectively, throughout this chapter to denote bivariate and
multivariate COM–Poisson distributions.

4.1 Trivariate Reduction

The trivariate reduction (also referred to as the “variables in common”)
method is a popular approach for developing bivariate count distributions.
Letting W1, W2, W12 denote independently distributed random variables

1 While notation recognizing multivariate distributions will typically begin simply with “M,”
we avoid doing so in reference to the multivariate CMP distribution to prevent confusion
with the general use of MCMP to denote mean-parametrized COM–Poisson models.
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(with or without commonly associated parameters), the trivariate reduction
approach sets (say)

X1 = W1 + W12

X2 = W2 + W12

to derive the joint probability P(X1 = x1, X2 = x2) that is mutually de-
pendent on W12. Weems et al. (2021) developed a BCMP distribution via
the trivariate reduction method, i.e. letting Wk be CMP(λk, ν) distributed2

(k = 1, 2) as described in Chapter 2 and W12 likewise be CMP(λ12, ν).
Under this construct, the resulting joint probability is

P(X1 = x1, X2 = x2) = λ
x1
1 λ

x2
2

Z(λ1, ν)Z(λ2, ν)Z(λ12, ν)(x1!x2!)ν

×
min (x1,x2)∑

j=0

(
λ12

λ1λ2

)j [(x1

j

)(
x2

j

)

j!
]ν

(4.2)

with the joint probability generating function (pgf)

�(t1, t2) = Z(λ1t1, ν)

Z(λ1, ν)
· Z(λ2t2, ν)

Z(λ2, ν)
· Z(λ12t1t2, ν)

Z(λ12, ν)
.

The trivariate-reduced bivariate CMP (BCMPtriv) distribution contains the
Holgate (1964) BP model as a special case when ν = 1, a trivariate-reduced
bivariate geometric (ν = 0; λk < 1, k = 1, 2; λ12 < 1) distribution, and a
trivariate-reduced bivariate Bernoulli (ν → ∞) distribution, respectively.

More broadly, the BCMPtriv has marginal pgfs

�Xk (t) = Z(λkt, ν)Z(λ12t, ν)

Z(λk, ν)Z(λ12, ν)
, k = 1, 2, (4.3)

which demonstrate that Xk has Poisson(λk + λ12) marginals as a spe-
cial case when ν = 1. Meanwhile, for λ1 = λ2 = λ12 = λ, the

marginal pgfs simplify to
(

Z(λt,ν)
Z(λ,ν)

)2
, i.e. X1 and X2 are then sCMP(λ, ν, 2)

distributed. While these marginal distributions are not themselves CMP
distributed, they contain the Poisson(2λ), binomial

(
2, λ

1+λ
)
, and negative bi-

nomial (NB)(2, 1−λ) distributions as special cases. The respective marginal
(for k = 1, 2) and joint moment generating functions produce the means,
variances, and covariance

2 A more flexible CMP(λk, νk) representation can likewise be considered but introduces
greater mathematical complexity.
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E(Xk) = λk
∂ ln Z(λk, ν)

∂λk
+ λ12

∂ ln Z(λ12, ν)

∂λ12
(4.4)

≈ λ1/ν
k + λ1/ν

12 − ν − 1

ν
(4.5)

E(X2
k ) = λk

∂ ln Z(λk, ν)

∂λk
+ λ2

k

Z(λk, ν)

∂2Z(λk, ν)

∂λ2
k

+ λ12
∂ ln Z(λ12, ν)

∂λ12

+ λ2
12

Z(λ12, ν)

∂2Z(λ12, ν)

∂λ2
12

+ λkλ12
∂ ln Z(λk, ν)

∂λk

∂ ln Z(λ12, ν)

∂λ12
(4.6)

V(Xk) = ∂E(Wk)

∂ ln λk
+ ∂E(W12)

∂ ln λ12
≈ 1

ν

(
λ

1/ν
k + λ1/ν

12

)
(4.7)

E(X1X2)=λ1λ2
∂ ln Z(λ1, ν)

∂λ1

∂ ln Z(λ2, ν)

∂λ2
+λ1λ12

∂ ln Z(λ1, ν)

∂λ1

∂ ln Z(λ12, ν)

∂λ12

+ λ2λ12
∂ ln Z(λ2, ν)

∂λ2

∂ ln Z(λ12, ν)

∂λ12

+ λ12
∂ ln Z(λ12, ν)

∂λ12
+ λ2

12

Z(λ12, ν)

∂2Z(λ12, ν)

∂λ2
12

(4.8)

Cov(X1, X2) = E(X1X2) − E(X1)E(X2) (4.9)

≈ ν − 1

2ν

[

3

(
ν − 1

2ν

)

− λ1/ν
1 − λ1/ν

2 − 2λ1/ν
3

]

+ 1

ν
λ

1/ν
3 (4.10)

from which the correlation and GDI can be obtained. While these measures
do not offer easily represented closed forms, one can recognize from the
bivariate construction and univariate CMP distributional form that the cor-
relation between X1 and X2 is nonnegative. Further, the mean, variance, and
covariance approximations can be used to determine an approximate GDI.
For example, when ν = 1, the GDI for the BCMPtriv distribution reduces
to the GDI of the Holgate (1964) BP distribution,

GDIBCMPtriv(ν=1)(X1, X2) = GDIBP(X1, X2) = 1 + 2λ12
√
λ1 + λ12

√
λ2 + λ12

(λ1 + λ12)2 + (λ2 + λ12)2
≥ 1,

implying that the BCMPtriv when ν = 1 is equi-dispersed (over-dispersed)
if and only if λ12 = ( > ) 0.

4.1.1 Parameter Estimation

Weems et al. (2021) consider parameter estimation via a modified method
of moments approach and the method of maximum likelihood to deter-
mine estimates for the BCMPtriv parameters, i.e. λ1, λ2, λ12, and ν. While
the method of moments estimators are typically obtained by equating the
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system of true moments (Equations (4.4)–(4.8)) with their corresponding
sampling estimators, Xk, X2

k, and X1X2, the lack of a closed-form solution
motivates a modified approach that approximates the method of moments
estimates by minimizing the squared-error loss function

�(λ1, λ2, λ12, ν; (x1, x2)) =
(

E(X1)−X1

)2 +
(

E(X2)−X2

)2+
(

E(X2
1)−X2

1

)2

+
(

E(X2
2) −X2

2

)2 +
(

E(X1X2) −X1X2

)2
.

(4.11)

The maximum likelihood estimators meanwhile optimize the log-
likelihood function,

ln L(λ1, λ2, λ12, ν; (x1, x2)) =
2∑

k=1

n∑

i=1

xki ln λk − n
2∑

k=1

ln Z(λk, ν)

− n ln Z(λ12, ν) − ν
2∑

k=1

n∑

i=1

ln (xki!)

+
n∑

i=1

ln

⎛

⎝
min (x1i,x2i)∑

j=0

(
λ12

λ1λ2

)j [(x1i

j

)(
x2i

j

)

j!
]ν
⎞

⎠.

(4.12)

Both functions are optimized via the optim function with constraints,
ν ≥ 0, and positive-valued λ1, λ2, and λ12. The BP estimates can serve
as starting values in both cases, or the method of moments estimates can
likewise serve as starting values for the maximum likelihood approach.
The corresponding standard errors associated with the respective estimates
can meanwhile be determined with the aid of the approximate Hessian
matrix available in the optim output. Simulation studies showed good
performance by both estimators, with the method of maximum likelihood
outperforming the modified method of moments (Weems et al., 2021).

4.1.2 Hypothesis Testing

Respective hypothesis tests can address important questions of interest; in
both cases, analysts can use the likelihood ratio test to perform testing.
The first test considers the hypotheses H0 : ν = 1 versus H0 : ν �= 1, in-
vestigating whether statistically significant data dispersion exists such that
the BCMPtriv distribution is preferred over the BP distribution to model a
given dataset. For this scenario, the resulting test statistic is

�ν = max L(λ1, λ2, λ12, ν = 1)

max L(λ1, λ2, λ12, ν)
, (4.13)
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where the numerator and denominator of Equation (4.13) denote the respec-
tive maximized likelihood values under H0 and in general. The null hypoth-
esis represents the BP special case; thus, associated statistical computing
can be conducted via the bivpois package (Karlis and Ntzoufras, 2008) in
R. The lm.bp function provides the maximum likelihood estimates (MLEs)
(reported outputs lambda1 = λ̂1, lambda2 = λ̂2, lambda3 = λ̂12) and
the associated log-likelihood value (loglikelihood) in the subsequent
output. Meanwhile, the MLEs and associated log-likelihood for the general
BCMPtriv model can be determined, e.g. via the optim function in R where
the function to be minimized is the negated form of Equation (4.12).

The second test of interest considers the hypotheses, H0 : λ12 = 0 ver-
sus H1 : λ12 �= 0, assessing whether there exists a statistically significant
relation between X1 and X2. Here, the associated test statistic is

�12 = max L(λ1, λ2, λ12 = 0, ν)

max L(λ1, λ2, λ12, ν)
, (4.14)

where the denominator remains the likelihood value associated with the
BCMPtriv distribution evaluated at the MLEs (λ̂1, λ̂2, λ̂12, ν̂), while the
numerator is the maximized likelihood evaluated at its estimates given the
constraint that λ12 = 0. Both of these results can be attained via the optim
function. Under each scenario with the usual regularity conditions assumed
true, the respective −2 ln� variables converge to a chi-squared distribution
with one degree of freedom, where �ν and �12 are defined in Equations
(4.13) and (4.14). These convergence results aid in determining the associ-
ated respective p-values to draw inference regarding the hypothesis tests.

As a follow-up from the first test, the extent to which statistically
significant dispersion exists can then introduce the question whether a
trivariate-reduced bivariate Bernoulli (H0 : ν → ∞) or bivariate geometric
(H0 : ν = 0) distribution is more appropriate. These tests can be consid-
ered via a likelihood ratio test statistic whose numerator is the maximized
log-likelihood for the null-hypothesized special-case distribution, and the
denominator is the maximized log-likelihood for the general BCMPtriv dis-
tribution. These tests converge to a mixture between a point mass and the
χ2

1 distribution to account for the respective boundary cases for ν.

4.1.3 Multivariate Generalization

This trivariate reduction approach is easily generalizable to d dimensions
by defining

Xi = Wi + W, i = 1, 2, . . . , d, (4.15)
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where Wi, i = 1, . . . , d, and W are mutually independent CMP random
variables with varying intensity values, λi, i = 1, . . . , d, and λ, respectively,
and a common dispersion parameter, ν. This trivariate-reduced multivari-
ate CMP (MultiCMPtriv) construct likewise contains marginal distributions
that are Poisson distributed with respective intensity parameters, λi + λ,
i = 1, . . . , d, when ν = 1. Meanwhile, for the special case where λ1 =
· · · = λd = λ, X1, . . . , Xd are each sCMP(λ, ν, 2) marginally distributed;
refer to Section 3.2 for discussion regarding the sCMP distribution. The
MultiCMPtriv marginal and joint first moments are, for i, j ∈ {1, . . . , d},
where i �= j,

E(Xi) = λi
∂ ln Z(λi, ν)

∂λi
+ λ∂ ln Z(λ, ν)

∂λ
(4.16)

E(X2
i ) = λi

∂ ln Z(λi, ν)

∂λi
+ λ2

i

Z(λi, ν)

∂2Z(λi, ν)

∂λ2
i

+ λ∂ ln Z(λ, ν)

∂λ

+ λ2

Z(λ, ν)

∂2Z(λ, ν)

∂λ2
+ λiλ

∂ ln Z(λi, ν)

∂λi

∂ ln Z(λ, ν)

∂λ
(4.17)

E(XiXj) = λiλj
∂ ln Z(λi, ν)

∂λi

∂ ln Z(λj, ν)

∂λj
+ λiλ

∂ ln Z(λi, ν)

∂λi

∂ ln Z(λ, ν)

∂λ

+λjλ
∂ ln Z(λj, ν)

∂λj

∂ ln Z(λ, ν)

∂λ
+λ∂ ln Z(λ, ν)

∂λ
+ λ2

Z(λ, ν)

∂2Z(λ, ν)

∂λ2

(4.18)

which again aid in determining the marginal variances, covariances, and
correlations. Under the d-dimensional form, the respective correlations
remain nonnegative.

The method of moments and maximum likelihood estimations as de-
scribed above are generalizable for the d-dimensional analog. Similarly, the
hypothesis tests for data dispersion and dependence still hold in concept for
the multivariate distribution. The likelihood ratio test statistic −2 ln� asso-
ciated with the hypotheses H0 : ν = 1 versus H1 : ν �= 1 now equals twice
the difference between the respective maximized log-likelihood values
associated with the MultiCMPtriv and multivariate Poisson (MP) distri-
butions. Similarly, testing H0 : λ = 0 versus H1 : λ �= 0 produces the
test statistic −2 ln� that equals twice the difference between the maxi-
mized log-likelihood values stemming from the MultiCMPtriv distributions
that are structured as described in Equation (4.15) versus its independent
construct, respectively.
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4.2 Compounding Method

While the BCMPtriv model when ν = 1 simplifies to the Holgate (1964)
BP, it does not likewise contain the other bivariate special cases (i.e. bi-
variate Bernoulli and geometric distributions as described in Marshall
and Olkin (1985)). Alternatively, the BCMP distribution obtained via the
compounding method (BCMPcomp) has the joint probability

p(x1, x2) = 1

Z(λ, ν)

∞∑

n=0

λn

(n!)ν ×
n∑

a=n−x1−x2(
n

a, n − a − x2, n − a − x1, x1 + x2 + a − n

)

pa
00pn−a−x2

10 pn−a−x1
01 px1+x2+a−n

11 , (4.19)

where p(x1, x2)
.= P(X1 = x1, X2 = x2) and p00 + p01 + p10 + p11 = 1,

and it introduces a flexible bivariate model that contains all three special
bivariate cases. Let (X1, X2 | n) denote a joint conditional bivariate binomial
distribution with pgf

�X1,X2 (t1, t2 | n) = (p00 + p10t1 + p01t2 + p11t1t2)
n ,

where n denotes the number of trials and assumes a CMP(λ, ν) distribution.
These definitions produce the joint unconditional pgf

�X1,X2 (t1, t2) = Z (λ[1 + p1+(t1 − 1) + p+1(t2 − 1) + p11(t1 − 1)(t2 − 1)], ν)

Z(λ, ν)
(4.20)

for (X1, X2), where Z(ψ , ν) = ∑∞
s=0

ψ s

(s!)ν is the usual notation for the
CMP(ψ , ν) normalizing constant for some intensity ψ > 0 and disper-
sion ν ≥ 0. For the special case where pij = pi+p+j, for i, j = 0, 1, Equation
(4.20) simplifies to

�X1,X2 (t1, t2) = Z (λ[1 + p1+(t1 − 1)][1 + p+1(t2 − 1)], ν)

Z(λ, ν)
. (4.21)

The BCMPcomp(λ, ν, p = (p00, p01, p10, p11)) distribution contains
three special-case bivariate discrete distributions. This construct contains
the Holgate (1964) BP3 with parameters λ, p00, p01, p10, p11, where

3 The Holgate (1964) BP distribution has the same form whether obtained via trivariate
reduction or via the compounding method: λ1 + λ3 = λp1+, λ2 + λ3 = λp+1, and
λ3 = λp11.
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p00 + p01 + p10 + p11 = 1, pj+ = pj0 + pj1, and p+j = p0j + p1j, for
j = 0, 1, when ν = 1; the bivariate Bernoulli distribution described in
Marshall and Olkin (1985) with p∗

00 = 1+λp00

1+λ , p∗
10 = λp10

1+λ , p∗
01 = λp01

1+λ , and
p∗

11 = λp11

1+λ as ν → ∞; and a bivariate geometric distribution when ν = 0,
λ < 1 and λ {p1+(t1 − 1) + p+1(t2 − 1) + p11(t1 − 1)(t2 − 1)} < 1. While
X1 and X2 do not have CMP marginal distributions, they contain respective
Poisson distributions as special cases when ν = 1; X1 and X2 are, respec-
tively, Poisson(λp1+) and Poisson(λp+1) distributed when ν = 1 with the
associated marginal pgfs

�X1 (t) = Z[λ{1 + p1+(t − 1)}, ν]

Z(λ, ν)
and

�X2 (t) = Z[λ{1 + p+1(t − 1)}, ν]

Z(λ, ν)
. (4.22)

While Equations (4.21) and (4.22) demonstrate some similarity when pij =
pi+p+j, for i, j = 0, 1, it verifies that this constraint does not imply an
independence result for X1 and X2.

The joint, marginal, and factorial moment generating functions and
cumulant generating function can analogously be attained to aid in deter-
mining the distributional probabilities, moments, factorial moments, and
cumulants of interest. Defining Z(k)(ψ , ν)

.= ∂k

∂ψk Z(ψ , ν) for a general in-
tensity ψ > 0, the marginal and product means for the BCMPcomp
distribution, along with the variances and covariance, are

E(X1) = λp1+

{
∂ ln Z(λ, ν)

∂λ

}

, (4.23)

E(X2) = λp+1

{
∂ ln Z(λ, ν)

∂λ

}

, (4.24)

E(X1X2) = Z′′(λ, ν)

Z(λ, ν)
λ2p1+p+1 + Z′(λ, ν)

Z(λ, ν)
λp11, (4.25)

Cov(X1, X2) = λ2p1+p+1

{
∂2 ln Z(λ, ν)

∂λ2

}

+ λp11

{
∂ ln Z(λ, ν)

∂λ

}

, (4.26)

V(X1) = λ2p2
1+

{
∂2 ln Z(λ, ν)

∂λ2

}

+ λp1+

{
∂ ln Z(λ, ν)

∂λ

}

, (4.27)

V(X2) = λ2p2
+1

{
∂2 ln Z(λ, ν)

∂λ2

}

+ λp+1

{
∂ ln Z(λ, ν)

∂λ

}

, (4.28)

where Equations (4.26)-(4.28) determine the correlation ρ ≥ 0 whose
range varies with ν. This construction only allows for positive association
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with regard to dispersion, i.e., either X1 and X2 are either both over- or
under-dispersed. The conditional pgf of X2 given X1 = x1 is

�X2 (t | X1 = x1) =
{
λp1+ + λp11(t − 1)

λp1+

}x1 Z(x1){λp0+ + λp01(t − 1), ν}
Z(x1)(λp0+, ν)

,

and the regression of X2 on X1 is E(X2 | X1 = x1) = p11

p1+
x1 + λp01Z(x1+1)(λp0+,ν)

Z(x1)(λp0+,ν) .
The compounding method can likewise be used to develop the broader

bivariate sCMP distribution (Sellers et al., 2016); here, the joint conditional
pgf has a bivariate Bernoulli distribution conditioned on the number of tri-
als, which itself has a univariate sCMP distribution (see Section 3.2). The
resulting unconditional pgf for the bivariate sCMP distribution is

�(t1, t2)=
(

Z
[
λ{1 + p1+(t1−1) + p+1(t2 − 1) + p11(t1−1)(t2−1)}, ν]

Z(λ, ν)

)n

,

(4.29)

and it contains the following special-case bivariate distributions described
in Johnson et al. (1997): BP when ν = 1, BNB when ν = 0, and the
bivariate binomial when ν → ∞.

4.2.1 Parameter Estimation

Two approaches to estimate the BCMPcomp parameters λ, ν, p =
(p00, p01, p10, p11) are the method of moments or the method of maximum
likelihood. The method of moments estimators λ̃, ν̃, p̃ = (p̃00, p̃01, p̃10, p̃11)
can be determined via the system of equations,

p̃11 =
m11 − λ̃2p̃1+p̃+1

(
∂2 ln Z(λ̃,ν̃)
∂λ2

)

λ̃
(
∂ ln Z(λ̃,ν̃)
∂λ

) ,

p̃01 = p̃+1

⎛

⎝1 −
⎡

⎣
m11 − λ̃2p̃1+

{
∂2 ln Z(λ̃,ν̃)
∂λ2

}

λ̃
{
∂ ln Z(λ̃,ν̃)
∂λ

}

⎤

⎦

⎞

⎠ ,

p̃10 = p̃1+

⎛

⎝1 −
⎡

⎣
m11 − λ̃2p̃+1

{
∂2 ln Z(λ̃,ν̃)
∂λ2

}

λ̃
{
∂ ln Z(λ̃,ν̃)
∂λ

}

⎤

⎦

⎞

⎠ ,

p̃00 = 1 − p̃10 − p̃01 − p̃11,

where p̃1+ = x̄1

[
λ̃
{
∂ ln Z(λ̃,ν̃)
∂λ

}]−1
and p̃+1 = x̄2

[
λ̃
{
∂ ln Z(λ̃,ν̃)
∂λ

}]−1
, and the

sample covariance is m11 = 1
n

∑
x1

∑
x2

(x1 − x̄1)(x2 − x̄2)nx1x2 ; nx1x2 is the
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observed frequency in the (x1, x2) cell and n is the total sample size. The
MLEs (λ̂; ν̂; p̂) meanwhile maximize the log-likelihood ln L(λ, ν, p; x) =∑

x1

∑
x2

nx1x2 ln P(X1 = x1, X2 = x2), where P(X1 = x1, X2 = x2) is defined
in Equation (4.19).

4.2.2 Hypothesis Testing

Hypothesis tests can be conducted to assess whether statistically significant
data dispersion exists (via H0 : ν = 1 versus H1 : ν �= 1), thus arguing
against a BP distribution in favor of the BCMPcomp model. This two-sided
test does not address the direction of data dispersion but merely assesses
whether statistically significant dispersion (of either type) exists. Utilizing
a likelihood ratio test approach, the resulting test statistic is

� = max L(λ, ν = 1, p)

max L(λ, ν, p)
. (4.30)

The null hypothesis represents the BP special case; thus, associated statis-
tical computing can be conducted via the bivpois package (Karlis and
Ntzoufras, 2008) by substituting the appropriate definitions for λj, j =
1, 2, 3. Given that the Holgate (1964) BP distribution can be derived either
via the trivariate reduction or confounding methods with λ1 + λ3 = λ0p1+,
λ2 +λ3 = λ0p+1, and λ3 = λ0p11, analysts can utilize the bivpois package
with lambda1 = λ0p10, lambda2 = λ0p01, and lambda3 = λ0p11, where λ0

denotes the value of λ under H0. In the context of parameter estimation via
the lm.bp function, however, this approach faces an identifiability problem
in that lm.bp can produce MLEs λ̂j, j = 1, 2, 3; yet, analysts cannot back-
solve to uniquely determine λ0, p10, p01 and p11. Instead, analysts can use
optim to determine the log-likelihoods, both in the general parameter space
and given the BP constraint (ν = 1), in order to determine the likelihood
ratio test statistic −2 ln�, where � is defined in Equation (4.30).

For data that express statistically significant dispersion, analysts can con-
sider whether a bivariate Bernoulli (H0 : ν → ∞) or bivariate geometric
(H0 : ν = 0) distribution attained via the compounding method is an ap-
propriate model of choice. Here, the likelihood ratio test statistic has the
maximized log-likelihood under H0 and under the general parameter space
for the numerator and denominator, respectively. Given the usual regularity
conditions, the resulting test statistic for the H0 : ν = 1 versus H1 : ν �= 1
test converges to a χ2

1 distribution, while the latter tests (i.e. whether con-
sidering H0 : ν = 0 or H0 : ν → ∞ versus H1: otherwise) converge to a



4.2 Compounding Method 135

mixture between a point mass and the χ2
1 distribution to account for the

respective boundary cases for ν.

4.2.3 R Computing

The dbivCMP function contained in the R package multicmp (Sellers
et al., 2017a) computes the joint probability of the BCMPcomp distribu-
tion P(X1 = x1, X2 = x2) with parameters, λ, ν, p. The analyst supplies the
intensity and dispersion parameters of interest λ and ν, along with bivariate
probabilities (bivprob = c(p00, p01, p10, p11)) such that

∑1
i=0

∑1
j=0 pij =

1, and the number of terms maxit used to estimate the infinite summa-
tion of the associated normalizing constants. Setting nu = 1, this function
produces probabilities equal to those using the pbivpois function in the
bivpois (Karlis and Ntzoufras, 2005) package with lambda1 = λp10,
lambda2 = λp01, and lambda3 = λp11. Meanwhile letting nu = 0,
dbivCMP can obtain probabilities equal to those from dbinom2.or, the
bivariate Bernoulli distribution function contained in the VGAM (Yee, 2010)
package.

To illustrate dbivCMP, suppose that one is interested in determining the
probability P(X1 = 1, X2 = 2) from a BCMPcomp(λ = 10, ν = 1,
p = (0.4, 0.3, 0.2, 0.1)) distribution. This result can be determined ex-
plicitly via dbivCMP by defining all of the relevant inputs (lambda, nu,
bivprob=p, x=x1, y=x2) accordingly. For illustrative purposes, maxit is
set here to 100, but analysts are encouraged to try several values for maxit
to assess approximation accuracy; in this example, 100 (indeed) suffices.

> dbivCMP(lambda=10, nu=1, bivprob=c(0.4, 0.3, 0.2, 0.1),
x=1, y=2, maxit = 100) [1] 0.02974503

Note that ν = 1 implies that the BCMPcomp equates to a BP distribution
where λ1 = λp10 = 2, λ2 = λp01 = 3, and λ3 = λp11 = 1.

The multicmp package also contains the function multicmpests to
conduct maximum likelihood estimation for the BCMPcomp(λ, ν, p) dis-
tribution. The only required input is data, a two-column entity of observed
(x1, x2) locations used to tabulate the total number of observations at each
location. Additional optional inputs, however, include startvalues used
to begin the Newton-type optimization iterative process, and max that serves
as the upper bound used to approximate the infinite summation in the nor-
malizing constant. The values (λ = ν = 1, p = (0.25, 0.25, 0.25, 0.25))
serve as the default starting values, but analysts have the ability to supply
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their own starting values. Meanwhile, the input max is defaulted to 100, but
analysts are encouraged to try different values for max to gauge estimate
accuracy and robustness. Function outputs from the multicmpests call
include the resulting parameter estimates for λ, ν, p, the associated negated
log-likelihood, and a likelihood ratio test statistic and associated p-value
from conducting a dispersion test for the hypotheses H0 : ν = 1 versus
H1 : ν �= 1. Prior to reporting the parameter estimates, analysts can moni-
tor the iterative scheme progress as it works toward optimizing the negated
log-likelihood via unconstrained optimization. Because the latter four esti-
mates are intended to represent probabilities, those resulting estimates are
first scaled to ensure that their sum equals 1; the scaled estimates are thus
presented for p.

Code 4.1 provides an illustrative code example, including the function
call and associated output; this example maintains the default settings
for max and startvalues. The illustration contains 11 observations:
four at (0,0), two at (0,1), two at (1,0), and three at (1,1). Upon run-
ning the multicmpests command, we see the iteration updates where
the reports are offered for every 10 steps until convergence is achieved,
followed by the resulting outputs: the parameter estimates, the negated log-
likelihood, and the likelihood ratio test statistic and p-value. The resulting
parameter estimates for this example are λ̂ ≈ 12.1956, ν̂ ≈ 33.7667,
and p̂ ≈ (0.3115, 0.1967, 0.1967, 0.2951), which produced an associated
log-likelihood of approximately −14.763. Meanwhile, the corresponding
dispersion test found these data to be statistically significantly dispersed
such that they cannot be estimated via a BP model (−2 ln� ≈ 4.9789 with
1 df; p-value = 0.0257). In fact, the estimated dispersion value implies that
the data are approximately bivariate Bernoulli. This makes sense because
all of the outcomes are contained within the bivariate Bernoulli space.

Code 4.1 Illustrative codes and output using multicmpests to conduct maximum
likelihood estimation for the BCMPcomp parameters, λ, ν, p.

> x1=c(0 ,0 ,0 ,1 ,0 ,1 ,1 ,0 ,0 ,1 ,1)
> x2=c(0 ,0 ,0 ,1 ,1 ,0 ,1 ,0 ,1 ,0 ,1)
> ex <- cbind (x1 ,x2)
> multicmpests (ex)
Iterating ...

0: 17.284630: 1.00000 1.00000 0.250000
0.250000 0.250000 0.250000

10: 14.788795: 3.15429 9.58827 0.721030
1.17692 1.17692 1.83347

20: 14.763292: 6.90457 19.5713 3.29352
2.53269 2.53269 3.78791
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30: 14.763252: 7.96702 22.4503 4.00982
2.89264 2.89264 4.34215

40: 14.763245: 11.3693 31.5584 6.32790
4.06862 4.06862 6.10312

The parameter estimates ($par) are as follows :
Parameter MLE

lambda 12.1955518
nu 33.7666649

p00 0.3114534
p10 0.1967291
p01 0.1967291
p11 0.2950884

Log - likelihood ($ negll ): 14.76324

Dispersion hypothesis test statistic ($ LRTbpd )
and p-value ($pbpd ): Likelihood .ratio .test p.value

4.978879 0.0256586

4.2.4 Multivariate Generalization

The compounding method can likewise be applied to create a MultiCMP
distribution. Let X1, X2, . . . , Xd denote d random variables that have a joint
conditional multivariate binomial distribution with pgf

�X1,...,Xd (t1, . . . , td | n) =
(

1∑

x1=0

1∑

x2=0

· · ·
1∑

xd=0

px1x2···xd

d∏

i=1

(ti)
xi

)n

given the CMP(λ, ν) distributed number of trials, n. The unconditional joint
pgf for X1, X2, . . . , Xd now becomes

�X1,...,Xd (t1, . . . , td) =
Z
[
λ
(∑1

x1=0 · · ·∑1
xd=0 px1x2···xd

∏d
i=1 (ti)xi

)
, ν
]

Z(λ, ν)
.

(4.31)

The multivariate CMP distribution obtained via the compounding method
(MultiCMPcomp) likewise contains the MP described in Johnson et al.
(1997) when ν = 1, the multivariate Bernoulli (i.e. the Krishnamoor-
thy (1951) multivariate binomial with one trial) when ν → ∞, and the
multivariate geometric (i.e. the Doss (1979) multivariate negative binomial
(MNB) with one success) when ν = 0. While X1, . . . , Xd do not have CMP
marginal distributions, they contain the Poisson distribution as special cases
when ν = 1. Further, as with the BCMPcomp, the correlation between any
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two of the d random variables is likewise nonnegative. Meanwhile, because
the MultiCMPcomp involves only one dispersion parameter (ν), it is only
suitable for data with similar dispersion levels in every dimension (Sellers
et al., 2021b).

Method of moments or maximum likelihood estimation approaches
can again be pursued to conduct parameter estimation, and the proposed
hypothesis tests are likewise relevant for consideration in the broader mul-
tivariate space. The test for statistically significant data dispersion (H0 : ν =
1 versus H1 : ν �= 1) assesses the appropriateness of the MP distribu-
tion versus the MultiCMPcomp distribution to model the data. Analogous
tests can likewise consider the appropriateness of the multivariate Bernoulli
(H0 : ν → ∞) or multivariate geometric (H0 : ν = 0) distribution (both at-
tained via the compounding method). Again, the resulting likelihood ratio
test statistic −2 ln� for H0 : ν = 1 versus H1 : ν �= 1 converges to a χ2

1

distribution, while the latter tests (whether H0 : ν = 0 or H0 : ν → ∞
versus otherwise) converge to a mixture between a point mass and the χ2

1

distribution to account for the respective boundary cases for ν (Balakrish-
nan and Pal, 2013). As noted for the BCMPcomp distribution, a test for
independence is not easily represented mathematically.

4.3 The Sarmanov Construction

While the trivariate reduction and compounding methods offer easy BCMP
and MultiCMP constructs, a significant drawback to their construction is
their inability to allow for negatively correlated data. In contrast, Sarmanov
(1966) constructed a bivariate family of distributions that maintains uni-
variate marginal distributions and allows for a broad (−1,1) correlation
structure. Given two random variables X1 and X2 with respective proba-
bilities P(Xj = xj) and mixing functions φj(Xj) such that E[φj(Xj)] = 0,
j = 1, 2, and 1 + φ1(x1)φ2(x2) ≥ 0, a bivariate distribution can be attained
of the form

P(X1 = x1, X2 = x2) = P(X1 = x1)P(X2 = x2)[1 + γφ1(x1)φ2(x2)],

xj ∈ R, j = 1, 2, (4.32)

where γ ∈ [ − 1, 1]. Inspired by this family of distributions, Ong et al.
(2021) used it to develop two versions of a BCMP distribution that maintain
CMP marginal forms as described in Chapter 2; for ease in discussion, we
refer to these models as BCMPsar1 and BCMPsar2, respectively. The first
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approach (producing BCMPsar1) is motivated by a larger weighted Pois-
son distributional framework (Kokonendji et al., 2008) such that Equation
(4.32) with

φj(xj) = pα(xj) − E(pα(Xj)), j = 1, 2, (4.33)

produces the joint probability mass function

P(X1 = x1, X2 = x2) = P(X1 = x1)P(X2 = x2)

{1 + γ [pα(x1) − E(pα(X1))][pα(x2) − E(pα(X2))]} ,

where P(Xj = xj), j = 1, 2, denotes the CMP(λj, νj) marginal probability
as defined in Equation (2.8), p(xj) is the Poisson(λj) probability provided in
Equation (1.1), α > 0, and

E[pα(Xj)] = e−λjαZ(λ2
j , νj + 1)

Z(λj, νj)

∞∑

x=0

λ
xj(α+1)
j

(xj!)νj+αZ(λ2
j , νj + 1)

≤ 1,

where Z(φ,ψ) = ∑∞
j=0

φj

(j!)ψ for two parameters φ and ψ ; see Section 2.8 for
detailed discussion regarding the Z function. The BCMPsar1 distribution
has the correlation

ρ = γ (λ1 − μ1)(λ2 − μ2)

σ1σ2
, (4.34)

where μj and σj, respectively, denote the marginal mean and standard
deviation for Xj, j = 1, 2.

The second approach (which produces BCMPsar2) considers Equation
(4.32) with

φj(xj) = θ xj − Z(λjθ , νj)

Z(λj, νj)
, j = 1, 2, (4.35)

where 0 < θ < 1, thus producing the joint probability mass function

P(X1 = x1, X2 = x2) = P(X1 = x1)P(X2 = x2)
[

1 + γ
(

θ x1 − Z(λ1θ , ν1)

Z(λ1, ν1)

)(

θ x2 − Z(λ2θ , ν2)

Z(λ2, ν2)

)]

.

The BCMPsar2 distribution contains the Lee (1996) BP distribution as a
special case when ν1 = ν2 = 1 and θ = e−1 and has the correlation
coefficient

ρ =
γ

⎛

⎜
⎝θ
∂

Z(λ1θ ,ν1)
Z(λ1,ν1)
∂θ

−μ1
Z(λ1θ ,ν1)
Z(λ1,ν1)

⎞

⎟
⎠

⎛

⎜
⎝θ
∂

Z(λ2θ ,ν2)
Z(λ2,ν2)
∂θ

−μ2
Z(λ2θ ,ν2)
Z(λ2,ν2)

⎞

⎟
⎠

σ1σ2
. (4.36)
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4.3.1 Parameter Estimation and Hypothesis Testing

Ong et al. (2021) introduce the method of moments or maximum likeli-
hood as methods for parameter estimation for either model. For the method
of moments approach, the first and second marginal sample moments are
equated with their theoretical marginal approximations (Equations (2.14)
and (2.15)) to estimate λj and νj, while γ is estimated by equating the
correlation coefficient with either Equation (4.37) or (4.38), depending
on the BCMP formulation of interest (BCMPsar1 or BCMPsar2). Recall,
however, that utilizing the approximations for the marginal mean and vari-
ance assumes that the necessary constraints hold, i.e. ν ≤ 1 or λ > 10ν

(Shmueli et al., 2005). Meanwhile, maximum likelihood estimation can
be conducted by optimizing the log-likelihood associated with a random
sample x = {(x1i, x2i) : i = 1, . . . , n},

ln L(λ1, λ2, ν1, ν2, γ ; x) = −n( ln Z(λ1, ν1) + ln Z(λ2, ν2))

+
n∑

i=1

[x1i ln λ1 + x2i ln λ2 − ν1( ln x1i!) − ν2( ln x2i!)]

+
n∑

i=1

ln

{

1 + γ
(

θ x1i − Z(λ1θ , ν1)

Z(λ1, ν1)

)(

θ x2i − Z(λ2θ , ν2)

Z(λ2, ν2)

)}

.

Under either approach, Ong et al. (2021) conduct infinite summation com-
putations (namely, Z(λj, νj), the means μj, and variances σ 2

j , j = 1, 2) via
recursion with double-precision accuracy; the computations for the means
and variances aid in determining the correlation coefficient.

Two hypothesis tests can be considered, namely a test for dispersion
(H0 : ν1 = ν2 = 1 versus H1 : otherwise), and a test for independence
between the two random variables (H0 : γ = 0 versus H1 : γ �= 0). For
both cases, associated inference can be conducted via the likelihood ratio
or score tests. The usual regularity conditions imply that these test statistics
have an approximate chi-squared distribution with two degrees of freedom
for the dispersion test and an approximate chi-squared distribution with one
degree of freedom for the independence test.

4.3.2 Multivariate Generalization

Lee (1996) extended the Sarmanov family bivariate distributional form to
the multivariate case. Given d random variables Xj with probability P(Xj =
xj) and bounded nonconstant functions φj(t) such that E[φj(Xj)] = 0, for
all j = 1, . . . , d, Equation (4.32) is broadened to produce the multivariate
probability mass function
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P(X1 = x1, . . . , Xd = xd) =
(

d∏

i=1

P(Xi = xi)

)(

1+
n−1∑

j1<

n∑

j2

γj1j2φj1 (xj1 )φj2 (xj2 )

+
n−2∑

j1<

n−1∑

j2<

n∑

j3

γj1j2j3φj1 (xj1 )φj2 (xj2 )φj3 (xj3 ) + · · · + γ1,2,...,d

d∏

i=1

φi(xi)

)

.

While a published work developing a MultiCMP distribution based on this
method does not yet exist, the definitions provided in Ong et al. (2021) seem
like natural choices for model development, i.e. let φj(xj), j = 1, . . . , d, be as
defined in Equations (4.33) or (4.35) to, respectively, produce a MultiCMP-
sar1 or MultiCMPsar2 distribution. The respective two-way correlations are
thus

ρ = γ (λj − μj)(λk − μk)

σjσk
, j �= k, (4.37)

for the MultiCMPsar1 distribution, and

ρ =
γ

(

θ
∂

Z(λjθ ,νj)
Z(λj,νj)
∂θ

− μj
Z(λjθ ,νj)
Z(λj,νj)

)(

θ
∂

Z(λkθ ,νk)
Z(λk ,νk)
∂θ

− μk
Z(λkθ ,νk)
Z(λk ,νk)

)

σkσk
, j �= k,

(4.38)

for the MultiCMPsar2 distribution, where μj and σj, respectively, denote
the marginal mean and standard deviation for Xj, j = 1, 2, . . . , d.

4.4 Construction with Copulas

Copulas are a popular tool for multivariate distributional development. The
foundation underlying copula function consideration is Sklar’s theorem that
states that, for any collection of random variables X1, . . . , Xd with joint
and marginal cumulative distribution functions, F(x1, . . . , xd) = P(X1 ≤
x1, . . . , Xd ≤ xd) and Fi(x) = P(Xi ≤ x), for i = 1, . . . , d, respectively, there
exists a copula C such that

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (4.39)

This result is helpful for determining a joint probability mass function for
a multivariate discrete distribution because the multivariate probabilities
P(X1 = x1, . . . , Xd = xd) can be determined by
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P(X1 = x1, . . . , Xd = xd) =
1∑

j1=0

· · ·
1∑

jd=0

( − 1)j1+···+jd F(x1 − j1, . . . , xd − jd)

(4.40)

=
1∑

j1=0

· · ·
1∑

jd=0

( − 1)j1+···+jd C(F1(x1 − j1), . . . , Fd(xd − jd)) (4.41)

for the copula. For example, a bivariate discrete distribution has probabili-
ties

P(X1 = x1, X2 = x2) = C(F1(x1), F2(x2)) − C(F1(x1 − 1), F2(x2))

− C(F1(x1), F2(x2 − 1)) + C(F1(x1 − 1), F2(x2 − 1)). (4.42)

Suggested copulas have been proposed through the literature for Mul-
tiCMP model development because of their distinctive qualities (Alqawba
and Diawara, 2021; Ötting et al., 2021); see, for example, Table 4.1 that
lists various copula functions considered to develop BCMP or MultiCMP
distributions. Trivedi and Zimmer (2017), for example, use the Gaussian,
Clayton, and Gumbel copulas to develop various BP models; these copu-
las can likewise be considered for BCMP development. Gaussian copulas
are proposed for symmetric distributions, while the Gumbel and reflected
Gumbel copulas are suggested for distributions with tail dependence. The
Ali–Mikhail–Haq, Clayton, Frank, and Gaussian copulas allow for negative
dependence with the Frank and Gaussian copulas likewise being reflec-
tion symmetric. More broadly, a max-infinitely-divisible (max-id) copula

C satisfies the property that C
(

u1/m
1 , u1/m

2

)m
is a copula for all m > 0.

Alqawba and Diawara (2021) propose using Gaussian or max-id copulas to
determine joint probabilities associated with MultiCMP distributions.

Sklar’s theorem not only notes the existence of a copula function such
that Equation (4.39) holds; it further notes that, for continuous cumula-
tive distribution functions, the copula is unique. This uniqueness property,
however, does not apply for discrete (e.g. the CMP) distributions. Copulas
for discrete outcomes are not identifiable, particularly for count distribu-
tion families; see Trivedi and Zimmer (2017) and Genest and Nešlehová
(2007) for extensive discussion regarding identifiability of copulas and the
associated dependence parameter ζ .
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Table 4.1 Bivariate copula functions

Copula name Copula function, C(u1, u2) Range for ζ

Ali–Mikhail–Haq u1u2
1−ζ (1−u1)(1−u2) [−1,1)

Clayton
(

max (u−ζ
1 + u−ζ

2 − 1, 0)
)−1/ζ

[−1, 0)∪ (0, ∞)

Frank − 1
ζ

ln
(

1 + ( exp (−ζu1)−1)( exp (−ζu2)−1)
exp (−ζ )−1

)
(−∞, 0)∪(0, ∞)

Gaussian  ζ ( −1(u1), −1(u2)) [−1,1]
Gumbel exp [ − (( − ln (u1))ζ + ( − ln (u2))ζ )1/ζ ] [1, ∞)

Plackett [1+(ζ−1)(u1+u2)]−
√

[1+(ζ−1)(u1+u2)]2−4u1u2ζ (ζ−1)
2(ζ−1) [0, ∞)

Reflected Gumbel u1 + u2 − 1 + exp [ − (( − ln (u1))ζ +
( − ln (u2))ζ )1/ζ ]

[1, ∞)

4.5 Real Data Examples

This section illustrates the aforementioned models through two real data
examples where, for consistency and optimal model comparison, both ex-
amples involve bivariate count data. Section 4.5.1 considers a frequently
studied over-dispersed dataset regarding the number of shunter accidents
that occurred over two consecutive time periods. Section 4.5.2 meanwhile
considers the number of professional basketball players from two positions
(forward and center, respectively) selected for the 2000–2016 National
Basketball Association’s (NBA’s) All Star games. The latter dataset is an
under-dispersed data example that further illustrates the flexibility of the
BCMP models.

Both illustrative examples consider and compare (among others) the
BCMPtriv, BCMPcomp, BCMPsar1, and BCMPsar2 models. Given the
expansive list of potential copulas for consideration in BCMP develop-
ment (only some of which are listed in Table 4.1) and identifiability issues
discussed in Section 4.4, however, the copula approach is not included in
subsequent discussion.

4.5.1 Over-dispersed Example: Number of Shunter Accidents

We revisit a dataset first introduced by Arbous and Kerrick (1951) that has
received extensive attention in the literature for various bivariate model
considerations and developments. This dataset reports the number of ac-
cidents incurred by 122 shunters in two consecutive year periods; X1 and
X2, respectively, denote the number of accidents observed between 1937–
1942 and 1943–1947. While Holgate (1964) models the data via a BP
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distribution, the data are recognized as being over-dispersed. Other consid-
ered models for analysis include the BNB and the BGP distributions, along
with the BCMPtriv, BCMPcomp, BCMPsar1, and BCMPsar2 distributions,
respectively.

Table 4.2 provides the reported MLEs for the respective models, along
with their associated log-likelihood, number of model parameters, the
Akaike information criterion (AIC), and difference in AIC (�i) values for
model comparison as described in Chapter 1; see Table 1.2 for inferred
model support levels based on �i as described in Burnham and Anderson
(2002). The BP model MLEs are determined via the bivpois package,
while the BNB and BGP estimates are provided from Famoye and Consul
(1995), and the respective BCMP estimates are discussed in recent works
(Ong et al., 2021; Sellers et al., 2016; Weems et al., 2021). The BNB model
has the minimum AIC (691.2) among all of the models considered for
comparison, while the BCMPtriv distribution has the smallest AIC among
the BCMP models. Further, the BCMPtriv demonstrates substantial sup-
port relative to the BNB model (�BCMPtriv = 0.8). Among the other BCMP
models considered, the BCMPcomp obtains associated MLEs with a larger
log-likelihood than that obtained for the BCMPtriv distribution. This oc-
curs however at the expense of two additional parameters; thus, the AIC
for the BCMPcomp model is larger than that obtained via the BCMPtriv
distribution.

All of the BCMP models recognize the statistically significant over-
dispersion present in the data; for all associated distributions, the estimated
dispersion parameter(s) is/are less than 1 and the associated likelihood ra-
tio test statistics produce small, associated p-values. The BCMPtriv has an
estimated dispersion ν̂ = 0.438 with test statistic −2 ln� = 7.25 and p-
value < 0.01. The BCMPcomp method has ν̂ = 0.084 with associated
test statistic −2 ln� = 7.862 and p-value equaling 0.0005. Meanwhile, the
Sarmanov BCMP distributions each have marginal dispersions that are re-
portedly less than 1 (ν̂1 = 0.57 and ν̂2 = 0.53 for the BCMPsar1; ν̂1 = 0.59
and ν̂2 = 0.56 for the BCMPsar2); however, Ong et al. (2021) do not report
on their statistical significance.

The observed and estimated shunter accident frequency data stemming
from all of the associated model MLEs are provided in Tables 4.3 and
4.4.4 All of the BCMP models appear to reasonably estimate the observed
number of shunter accidents over the combination of respective time pe-
riods. The same holds true for the marginal expected frequencies, where

4 BCMPsar1 and BCMPsar2 estimated frequencies are as reported in Ong et al. (2021)



Table 4.2 Parameter maximum likelihood estimates (MLEs), log-likelihood (ln L), Akaike information criterion (AIC), difference in AIC
(�i = AICi − AICmin), goodness-of-fit (GOF = ∑ (O−E)2

E , where O and E denote the observed and expected cell frequencies,
respectively) measures and associated p-values for various bivariate distributions on the shunters accident dataset: bivariate Poisson
(BP); bivariate negative binomial (BNB); bivariate generalized Poisson (BGP); and the BCMP obtained via the trivariate reduction
(BCMPtriv), compounding (BCMPcomp), or either Sarmanov family (BCMPsar1 and BCMPsar2, respectively) method.

Model Parameter MLEs ln L No. of param. AIC �i GOF p-values

BP
λ̂1 = 0.717, λ̂2 = 1.012, −345.635 3 697.3 6.1 48.05 0.13
λ̂3 = 0.258

BNB
m̂ = 0.891, r̂ = 3.876, −341.610 4 691.2 − 21.92 0.97
α̂1 = 1.331, α̂2 = 0.095

θ̂1 = 0.560, θ̂2 = 0.837,
BGP θ̂3 = 0.305, λ̂1 = 0.151, −341.513 6 695.0 3.8 23.59 0.93

λ̂2 = 0.123, λ̂3 = 0.031

BCMPtriv
λ̂1 = 0.517, λ̂2 = 0.684, −342.009 4 692.0 0.8 23.36 0.96
λ̂3 = 0.270, ν̂ = 0.438

λ̂ = 1.328, ν̂ = 0.084,
BCMPcomp p̂00 = 0.939, p̂01 = 0.034, −341.704 5 693.4 2.2 22.16 0.95

p̂10 = 0.025, p̂11 = 0.002

λ̂1 = 0.92, ν̂1 = 0.57,
BCMPsar1 λ̂2 = 0.73, ν̂2 = 0.53, −345.553 6 703.1 11.9 37.06 0.37

α̂ = 0.58, β̂ = 1.00

λ̂1 = 0.94, ν̂1 = 0.59,
BCMPsar2 λ̂2 = 0.75, ν̂2 = 0.56, −343.503 5 697.0 5.8 31.46 0.68

β̂ = 1.00
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Table 4.3 Observed accident data among 122 shunters along with associated
count estimates from various bivariate distributions: bivariate negative binomial
(BNB), bivariate Poisson (BP), bivariate generalized Poisson (BGP), bivariate
geometric (BG), and BCMP obtained via the compounding (BCMPcomp),
trivariate reduction (BCMPtriv), or either Sarmanov family (BCMPsar1 and
BCMPsar2) methods. Estimated counts determined from MLEs for respective
model parameters reported in Table 4.2.

x y = 0 y = 1 y = 2 y = 3 y = 4 y = 5 y = 6+
0 OBS 21 18 8 2 1 – – 50

BP 16.72 16.92 8.56 2.89 0.73 0.15 0.02 46.00
BNB 21.90 16.67 7.98 3.07 1.04 0.32 0.13 51.11
BGP 22.21 16.44 7.88 3.12 1.11 0.37 0.17 51.32
BCMPtriv 22.52 15.40 7.77 3.28 1.22 0.41 0.18 50.78
BCMPcomp 22.48 16.10 7.88 3.14 1.09 0.34 0.13 51.16
BCMPsar1 18.08 16.60 10.02 4.82 1.99 0.73 0.24 52.47
BCMPsar2 21.09 15.44 8.63 4.05 1.65 0.59 0.19 51.65

1 OBS 13 14 10 1 4 1 – 43
BP 11.99 16.45 10.51 4.28 1.27 0.29 0.07 44.87
BNB 12.52 13.18 8.06 3.77 1.50 0.53 0.26 39.83
BGP 10.70 14.51 8.67 3.84 1.46 0.51 0.25 39.93
BCMPtriv 11.64 14.04 8.17 3.79 1.52 0.54 0.258 39.96
BCMPcomp 12.11 12.94 8.14 3.90 1.57 0.55 0.25 39.46
BCMPsar1 12.98 11.95 7.38 3.62 1.51 0.56 0.18 38.18
BCMPsar2 11.56 12.43 8.12 4.05 1.69 0.61 0.20 38.66

2 OBS 4 5 4 2 1 0 1 17
BP 4.30 7.45 5.89 2.89 1.01 0.27 0.07 21.88
BNB 4.50 6.06 4.54 2.52 1.16 0.47 0.26 19.52
BGP 3.97 6.11 4.93 2.55 1.06 0.39 0.19 19.20
BCMPtriv 4.44 6.18 4.89 2.56 1.12 0.43 0.22 19.83
BCMPcomp 4.46 6.12 4.68 2.62 1.20 0.47 0.23 19.78
BCMPsar1 6.36 5.90 3.82 1.95 0.83 0.31 0.10 19.28
BCMPsar2 5.08 6.48 4.43 2.25 0.94 0.34 0.11 19.63

3 OBS 2 1 3 2 0 1 0 9
BP 1.03 2.15 2.05 1.20 0.49 0.15 0.05 7.11
BNB 1.30 2.13 1.90 1.23 0.65 0.30 0.19 7.69
BGP 1.35 2.18 1.92 1.19 0.56 0.22 0.12 7.53
BCMPtriv 1.42 2.17 1.93 1.25 0.61 0.25 0.14 7.77
BCMPcomp 1.34 2.21 1.97 1.26 0.64 0.28 0.16 7.85
BCMPsar1 2.54 2.37 1.59 0.83 0.36 0.14 0.05 7.87
BCMPsar2 1.94 2.65 1.84 0.94 0.39 0.14 0.05 7.95

(continued)



4.5 Real Data Examples 147

Table 4.3 (cont.)

x y = 0 y = 1 y = 2 y = 3 y = 4 y = 5 y = 6+
4 OBS 0 0 1 1 – – – 2

BP 0.18 0.45 0.51 0.35 0.17 0.06 0.02 1.73
BNB 0.33 0.64 0.66 0.49 0.29 0.15 0.11 2.66
BGP 0.45 0.73 0.67 0.44 0.23 0.10 0.06 2.67
BCMPtriv 0.40 0.66 0.64 0.46 0.26 0.12 0.08 2.60
BCMPcomp 0.35 0.67 0.68 0.48 0.27 0.13 0.08 2.66
BCMPsar1 0.88 0.82 0.56 0.30 0.13 0.05 0.02 2.76
BCMPsar2 0.65 0.91 0.64 0.33 0.14 0.05 0.02 2.74

the perceived goodness of fit among the BCMP models appears best with
the BCMPtriv and BCMPcomp models, followed by the BCMPsar1 and
BCMPsar2 distributions. These assessments are validated through the ap-
proximate goodness-of-fit statistics provided in Table 4.2, where all of the
reported goodness-of-fit statistics stem from an approximate chi-squared
distribution with 41 − c degrees of freedom, where c equals the number of
estimated parameters; see Weems et al. (2021) for details. As assessed via
Tables 4.3 and 4.4, the BCMPtriv (GOF = 23.36; p = 0.96) and BCMP-
comp (GOF = 22.16; p = 0.95) were better models with regard to the
goodness of fit than the BCMP models derived via the Sarmanov fam-
ily (BCMPsar1: GOF = 37.06; p = 0.37; BCMPsar2: GOF = 31.46;
p = 0.68).

4.5.2 Under-dispersed Example: Number of All-Star
Basketball Players

The Kaggle site (https://www.kaggle.com/datasets/fmejia21/
nba-all-star-game-20002016) contains data regarding the NBA play-
ers who were selected as All-Stars from 2000 to 2016, along with their
respective positions and other information. Summaries of these data allow
for analysts to note the number of All-Star players represented in the re-
spective positions on the basketball court (Sellers et al., 2021b; Weems
et al., 2021). Focusing on the number of Forwards (F) or Centers (C) over
2000–2016, Weems et al. (2021) found the resulting data to be an under-
dispersed bivariate dataset, while Sellers et al. (2021b) likewise determined
that the resulting trivariate dataset stemming from the additional inclu-
sion of the number of Forward-centers (FC) is also under-dispersed. Here,

https://www.kaggle.com/datasets/fmejia21/nba-all-star-game-20002016
https://www.kaggle.com/datasets/fmejia21/nba-all-star-game-20002016
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Table 4.4 Observed accident data (continued from Table 4.3) among
122 shunters.

x y = 0 y = 1 y = 2 y = 3 y = 4 y = 5 y = 6+
5 OBS – – – – – – – 0

BP 0.03 0.07 0.10 0.08 0.04 0.02 0.01 0.34
BNB 0.08 0.17 0.20 0.17 0.11 0.06 0.05 0.84
BGP 0.15 0.24 0.22 0.15 0.08 0.04 0.03 0.90
BCMPtriv 0.10 0.18 0.18 0.14 0.09 0.05 0.03 0.78
BCMPcomp 0.08 0.18 0.20 0.16 0.10 0.05 0.03 0.80
BCMPsar1 0.27 0.26 0.18 0.09 0.04 0.02 0.01 0.86
BCMPsar2 0.20 0.28 0.20 0.10 0.04 0.02 0.01 0.83

6 OBS – – – – – – – 0
BP 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.06
BNB 0.02 0.04 0.06 0.05 0.04 0.02 0.02 0.25
BGP 0.05 0.08 0.07 0.05 0.03 0.01 0.01 0.30
BCMPtriv 0.02 0.04 0.05 0.04 0.03 0.02 0.01 0.21
BCMPcomp 0.02 0.04 0.05 0.05 0.03 0.02 0.01 0.22
BCMPsar1 0.08 0.07 0.05 0.03 0.01 0.00 0.00 0.24
BCMPsar2 0.05 0.08 0.05 0.03 0.01 0.00 0.00 0.23

7+ OBS – 1 0 – – – – 1
BP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
BNB 0.00 0.01 0.02 0.02 0.02 0.01 0.02 0.10
BGP 0.02 0.04 0.03 0.02 0.01 0.01 0.00 0.14
BCMPtriv 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.07
BCMPcomp 0.00 0.01 0.02 0.01 0.01 0.01 0.00 0.07
BCMPsar1 0.02 0.02 0.01 0.01 0.00 0.00 0.27 0.34
BCMPsar2 0.01 0.02 0.01 0.01 0.00 0.00 0.25 0.31

OBS 40 39 26 8 6 2 1 122
BP 34.24 43.51 27.64 11.70 3.72 0.94 0.24 121.98
BNB 40.65 38.90 23.41 11.32 4.80 1.87 1.02 122.00
BGP 38.90 40.32 24.38 11.36 4.55 1.65 0.83 122.00
BCMPtriv 40.54 38.67 23.66 11.54 4.85 1.82 0.91 121.96
BCMPcomp 40.84 38.27 23.62 11.62 4.91 1.84 0.90 122.00
BCMPsar1 41.21 37.99 23.61 11.65 4.87 1.81 0.87 122.01
BCMPsar2 40.58 38.29 23.92 11.76 4.86 1.75 0.83 121.99

we illustrate model flexibility by comparing various associated bivariate
discrete distributions and their ability to model the number of Forwards
and Centers from 2000 to 2016 in the All-Star game: the BP, BNB, BGP,
BCMPtriv, BCMPcomp, BCMPsar1, and BCMPsar2.
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Table 4.5 Respective maximum likelihood estimates (MLEs), log-likelihood (ln L)
values, Akaike information criterion (AIC), and �i = AICi − AICmin values for
various bivariate models, namely the bivariate Poisson distribution (BP),
bivariate negative binomial (BNB), bivariate generalized Poisson (BGP), and four
BCMP models attained via trivariate reduction (BCMPtriv), compounding
(BCMPcomp), and two Sarmanov family approaches (BCMPsar1 and
BCMPsar2), respectively, on the number of Forward and Center players dataset.

No. of
Model Parameter MLEs ln L param. AIC �i

BP
λ̂1 = 2.941, λ̂2 = 2.647, −54.395 3 114.790 14.269
λ̂3 = 0

BNB
m̂ = 2.938, r̂ = 100,000, −54.397 4 116.794 16.273
α̂1 = 0.899, α̂2 = 0

θ̂1 = 0.560, θ̂2 = 0.605,
BGP θ̂3 = 4.048, λ̂1 = 0.324, −46.661 6 105.322 4.801

λ̂2 = -0.133, λ̂3 = -1.000

BCMPtriv
λ̂1 = 67.249, λ̂2 = 48.573, −46.262 4 100.521 −
λ̂3 = 0, ν̂ = 3.515

λ̂ = 1, 082, 035, ν̂ = 8.370,
BCMPcomp p̂00 = 0, p̂01 = 0.158, −47.986 5 105.972 5.451

p̂10 = 0.185, p̂11 = 0.658

λ̂1 = 10.000, ν̂1 = 2.193,
BCMPsar1 λ̂2 = 10.000, ν̂2 = 2.015, −46.800 6 105.600 5.079

α̂ = 0.208, β̂ = −1.000

λ̂1 = 10.000, ν̂1 = 2.196,
BCMPsar2 λ̂2 = 10.000, ν̂2 = 2.018, −48.067 5 106.134 5.613

β̂ = 1.000

Table 4.5 provides the reported MLEs for the respective models, along
with their associated log-likelihood, number of model parameters, Akaike
information criterion (AIC), and associated AIC difference values �i for
model comparison as described in Chapter 1; again, see Table 1.2 for in-
ferred model support levels based on �i as described in Burnham and
Anderson (2002). The BCMPtriv model performs optimally among the
considered models, producing the largest log-likelihood (−46.262) and
smallest AIC (AICmin = 100.521). The BGP and BCMPsar1 models
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meanwhile, respectively, produce log-likelihoods that are close to that from
the BCMPtriv model (−46.661 and −46.8, respectively); however, they
each require two more model parameters; thus, their respective �i values
(4.801 and 5.079) imply that there is considerably less support for these
models than the BCMPtriv model. Similarly, there is considerably less sup-
port for the BCMPcomp and BCMPsar2 models (�i = 5.451 and 5.613,
respectively) than the BCMPtriv model.

All of the BCMP models recognize that these data are under-dispersed;
in all cases, the relevant dispersion parameter(s) is (are) greater than 1. The
BCMPtriv and BCMPcomp models, for example, detect statistically sig-
nificant under-dispersion (Weems et al., 2021). Thus, all of the associated
BCMP models report larger log-likelihood values than those of the BP and
BNB models (both approximately −54.4). In fact, it makes sense that the
BP and BNB models would report equal log-likelihoods because neither
model can sufficiently account for data under-dispersion. The best that the
BNB model can do is perform in-kind with the BP model by r̂ → ∞ in
that the BNB can only accommodate data equi- or over-dispersion. Neither
the BP nor BNB models can address data under-dispersion; yet, the BNB
model requires an extra parameter; thus, even though the BP and BNB mod-
els produce the same log-likelihood, the BNB reports a larger AIC than the
BP. Regardless, there is essentially no empirical support associated with ei-
ther the BP or BNB models (�i > 10 in both cases) when compared with
the BCMPtriv model. In this example, the BCMPtriv proves itself to offer
a simple, optimal form.

4.6 Summary

This chapter summarizes the various approaches that have been imple-
mented to establish a BCMP or MultiCMP distribution. While each of these
methods is motivated by the univariate CMP distribution, they each contain
different attributes and qualities associated with its multivariate form; Ta-
ble 4.6 summarizes the BCMP distributions described in this chapter, along
with their respective characteristics.

Among the qualities featured, the correlation is arguably the most per-
tinent measure. The correlation receives prominent attention because the
ideal bivariate or multivariate model would have a form that attains the
[−1,1] correlation structure that is achieved for the multivariate continuous
(e.g. the multivariate Gaussian) distributions. To that end, the Sarmanov
and copula approaches both produce such desired correlations, while the
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Table 4.6 Bivariate CMP development approaches (trivariate reduction;
compounding; the Sarmanov families considering the CMP distribution as a
weighted Poisson (Sarmanov 1) or based on the CMP probability generating
function (Sarmanov 2), respectively; and copulas) and associated qualities. For
each of the considered approaches, the correlation range and reported
special-case distributions attainable for the bivariate (Biv.) and marginal (Marg.)
distributions are supplied.

Method

Triv Red. Compounding Sarm. 1 Sarm. 2 Copulas

Correlation [0,1] [0,1] [−1,1] [−1,1] [−1,1]
Marg. special

cases
sCMP Poisson CMP CMP CMP

Biv. special
cases

Holgate
(1964)
Poisson

Holgate (1964)
Poisson,
Bern, Geom

− Lee (1996)
Poisson

See Discussion

trivariate reduction and compounding approaches are limited to nonneg-
ative correlations. Another property of interest is to establish a bivariate
or multivariate distribution whose marginal structure is a familiar form. To
some, the ideal distribution has marginals that are themselves the univariate
form of the multivariate distribution. Among the featured bivariate distri-
butions in this chapter, the copula approach is the only means by which to
establish a BCMP distribution that contains univariate CMP marginal dis-
tributions by definition (and, hence, its special-case distributions, namely
the Poisson, Bernoulli, and geometric models). The BCMPtriv model,
however, produces sCMP (discussed in Section 3.2) marginals; hence, its
marginal distributions can be Poisson, negative binomial, or binomial dis-
tributions as special cases. Finally, the BCMPsar1 and BCMPsar2 models
do not have known marginal distributional structures.

For all of the considered BCMP distributions, an appealing quality is
their flexibility to accommodate count data containing dispersion. Accord-
ingly, various BCMP distributions contain well-studied discrete bivariate
models as special cases. Both the BCMPtriv and BCMPcomp models con-
tain the Holgate (1964) BP distribution as a special case; however, the
BCMPcomp further contains the bivariate Bernoulli and bivariate geomet-
ric distributions (Johnson et al., 1997; Marshall and Olkin, 1985). While
Ong et al. (2021) do not report the existence of any special distributions
ascertained from the BCMPsar1 model; the BCMPsar2 contains the Lee
(1996) BP distribution as a special case. The copula approach does allow
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for BP distributions as special cases, although they are not contained in
Table 4.6. These cases are not included here because identifying the special-
case distribution is contingent on the choice of copula function used for
BP and BCMP development. Given the numerous choices of copula func-
tion, we refer the interested reader to Joe (2014) and Nelsen (2010) for
discussion.

Each of these approaches appears to be naturally generalizable, thus
allowing for the development of analogous MultiCMP distributions; how-
ever, the literature does not yet exist regarding their explicit developments
and associated statistical properties; to date, only the MultiCMPcomp dis-
tribution has been developed and studied (Sellers et al., 2021b). Further
generalizations can likewise be considered, for example, the development
of a bivariate and multivariate zero-inflated CMP distribution (Santana
et al., 2021). All cases generalizing from the bivariate to multivariate
CMP, however, introduce computational complexity as the dimensionality
increases.



5

COM–Poisson Regression

Regression modeling is a fundamental statistical method for describing
the association between a (set of) predictor variable(s) and a response
variable. For scenarios where the response variable describes count data,
one must further account for the conditional data dispersion of the re-
sponse variable given the explanatory variable(s). This chapter introduces
the Conway–Maxwell–Poisson1 (COM–Poisson) regression model, along
with adaptations of the model to account for zero-inflation, censoring,
and data clustering. Section 5.1 motivates the consideration and develop-
ment of the various COM–Poisson regressions considered in this chapter
by first providing a broader context of generalized linear models, and
then the constraints associated with several such models that are popular
for analysis. Section 5.2 introduces the COM–Poisson regression model
and discusses related issues, including parameter estimation, hypothesis
testing, and statistical computing in R (R Core Team, 2014). Section 5.3
advances that work to address excess zeroes, while Section 5.4 describes
COM–Poisson models that incorporate repeated measures and longitudi-
nal studies. Section 5.5 focuses attention on the R statistical packages and
functionality associated with regression analysis that accommodates ex-
cess zeroes and/or clustered data as described in the two previous sections.
Section 5.6 considers a general additive model based on COM–Poisson.
Finally, Section 5.7 informs readers of other statistical computing software

1 “Conway–Maxwell–Poisson” is abbreviated in various literatures as COM–Poisson or
CMP. To avoid confusion for the reader, this reference will maintain the use of “COM–
Poisson” for general referencing of Conway–Maxwell–Poisson models, and “CMP” will
be reserved for discussion that uses the CMP(λ, ν) parametrization as described in Sec-
tion 2.2. Other COM–Poisson parametrizations are similarly defined, and their respective
abbreviations are noted in Section 2.6.
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applications that are also available to conduct the COM–Poisson regres-
sion, discussing their associated functionality. This section acknowledges
the broader impact attained by the COM–Poisson regression as it relates
to statistical computing and its recognized flexibility and significance to
statistical analysis. Section 5.8 summarizes and concludes the chapter with
discussion.

5.1 Introduction: Generalized Linear Models

Generalized linear modeling describes a class of models that associate the
mean of a collection of independent response values with predictor vari-
ables via a specified link function. Consider a collection of n independent
responses Y = (Y1, . . . , Yn)′ that stem from an exponential family distri-
bution with mean μi, i = 1, . . . , n. Further, consider a linear predictor
based on explanatory variables Xi = (Xi1, . . . , Xi,p1−1), p1 parameters β =
(β0, . . . ,βp1−1)′, and some link function g( · ) such that g(μi) = Xiβ = β0 +
β1Xi1 +· · ·+βp1−1Xi,p1−1. Table 5.1 provides the common link functions as-
sociated with the usual Gaussian/normal regression, as well as the logistic
and Poisson regression. Sections 5.1.1 through 5.1.3 highlight generalized
linear models that motivate and develop consideration for a COM–Poisson
regression – logistic (Section 5.1.1), Poisson (Section 5.1.2), and nega-
tive binomial (NB) (Section 5.1.3) regressions. Each of these regressions
serve as fundamental tools for analyzing associations between a discrete
response variable of a type Y and a collection of explanatory variables. The
popularity of these models is demonstrated in part through their available
functionality via many statistical software packages (e.g. R and SAS).

5.1.1 Logistic Regression

Logistic regression is an example of a generalized linear model where the
response variable is binary (typically {0, 1}). This representation naturally

Table 5.1 Structure of various generalized linear models.

Regression Link function g(μ)

Gaussian Identity g(μ) = μ
Logistic Logit g(μ) = logit(μ) = ln

(
μ

1−μ
)

Poisson Log g(μ) = ln (μ)
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allows for the Bernoulli distribution with associated success probability
E(Y) = p to describe the distribution. A popular link function for modeling
the relationship between the success probability of interest and the covari-
ates is the logit link function as defined in Table 5.1. This link’s popularity
in association with modeling logistic regression functions stems from its
ability to transform the parameter space from the unit interval to the uncon-
strained real line for easy association with the linear model. The mean of
the Bernoulli distribution equals p ∈ (0, 1); the logit function transforms the
parameter space to ln

(
p

1-p

)
∈ ( − ∞, ∞), ensuring that the model relation-

ship describing p remains confined within the unit interval. Another benefit
to this construct lies in its ability for coefficient interpretability based on
the odds of an outcome.

Given the n independent Bernoulli random variables Yi, i = 1, . . . , n,
with respective success probability pi, the associated likelihood function is

L(β0,β1; y) =
n∏

i=1

pyi
i (1 − pi)

1−yi ,

where ln
(

p
1-p

)
= Xβ; hence, the log-likelihood is

ln L(β0,β1; y) =
n∑

i=1

[yi(β0 + β1Xi)] +
n∑

i=1

ln [1 + exp (β0 + β1Xi)]. (5.1)

Equation (5.1) does not have a closed-form solution for the corresponding
normal equations; thus, the maximum likelihood estimators can be deter-
mined via numerical optimization procedures. Statistical computing in R is
achieved via the glm function (contained in the stats package) with the
specified input family = logit.

5.1.2 Poisson Regression

Poisson regression is another generalized linear model – the response vari-
able is now represented by discrete count values N = {0, 1, 2, . . .}. Count
data are naturally represented by the Poisson distribution with associated
intensity or rate parameter E(Y) = λ as described in Chapter 1. A pop-
ular choice for modeling the relationship between this parameter and the
covariates is the log link function ln (λ) = Xβ so that the parameter space
for λ ∈ (0, ∞] transforms to the real line R. The loglinear model likewise
allows for understandable coefficient interpretation as a multiplicative ef-
fect associating with the mean outcome. Several references provide detailed
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insights regarding Poisson regression, e.g. McCullagh and Nelder (1997),
Hilbe (2014), Dobson and Barnett (2018); interested readers are encour-
aged to refer to these references. The glm function in R allows analysts to
conduct Poisson regression by specifying the input family = poisson.

5.1.3 Addressing Data Over-dispersion: Negative Binomial
Regression

A significant criticism of the Poisson distribution is that its mean and vari-
ance equal, i.e. data equi-dispersion holds; see Chapter 1 for details. In
the regression context, this implies a constraint that the conditional mean
and variance equal; however, real data do not generally conform to this as-
sumption. Over-dispersion occurs more prevalently in count data and is
caused by any number of factors, including the positive correlation be-
tween responses, excess variation between response probabilities or counts,
or other violations in distributional assumptions associated with the data
(Hilbe, 2007). This is a serious problem in data analysis because it can
cause statistical significance to be overestimated (i.e. explanatory variable
associations identified as statistically significant may not actually be so, or
at least not to the same level as initially noted from the perspective of a
Poisson regression).

A popular approach to address data over-dispersion is via NB regression.
Under this construct, the response variables Yi are NB(r, r

r+μi
) distributed

as described in Equation (1.9) with r > 0 and success probabilities r
r+μi

,
where μi > 0 denotes the mean of the response random variable Yi, and
we assume the log link relation, ln (μi) = Xiβ, i = 1, . . . , n; see Section
1.2 for details. With the mean μi and variance μi + μ2

i

r , respectively, the
NB distribution allows for data over-dispersion because the variance clearly
exceeds the mean. The NB regression is well studied and, because of its
nice properties, widely used for analyzing over-dispersed data. Statistical
computing in R is achieved via the glm.nb function (contained in the MASS
package).

There are significant drawbacks, however, associated with the NB model.
As described, the variance is always greater than or equal to the mean; thus,
the NB distribution is unable to address data under-dispersion. Further, the
NB regression requires fixing r in order to express the log-likelihood in the
form of a generalized linear model (McCullagh and Nelder, 1997). Focus-
ing their attention on crash data, Lord et al. (2008) likewise note several
documented limitations associated with the Poisson and NB models. For
data containing a small sample mean, goodness-of-fit methods associated
with either Poisson or NB generalized linear models where the method of
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maximum likelihood is used for parameter estimation have been found to be
biased and therefore unreliable. In particular, the dispersion parameter asso-
ciated with NB models is significantly biased for datasets with small sample
size and/or small sample mean, whether determined via maximum like-
lihood (Clark and Perry, 1989; Lord, 2006; Piegorsch, 1990) or Bayesian
estimation (Airoldi et al., 2006; Lord and Miranda-Moreno, 2008). Such er-
rors impact empirical Bayesian estimation and constructions of confidence
intervals.

5.1.4 Addressing Data Over- or Under-dispersion: Restricted
Generalized Poisson Regression

Data under-dispersion, while often believed to be the result of some
anomaly, is surfacing more frequently in some applications. For example,
some crash data have expressed under-dispersion, particularly when the
sample mean is small (Oh et al., 2006). An alternative to the Poisson model
that accounts for data over- or under-dispersion is the restricted generalized
Poisson (RGP) regression (Famoye, 1993). This model has the form

P(Yi = yi | μi,α) =
(

μi

1 + αμi

)yi (1 + αyi)yi−1

yi! exp

(−μi(1 + αyi)

1 + αμi

)

,

yi = 0, 1, 2, . . . , (5.2)

where the link function is ln (μi) = Xiβ and α is restricted such that
1 + αμi > 0 and 1 + αyi > 0. Poisson regression is noted as the spe-
cial case of RGP regression where α = 0, while α > 0 and −2

μi
< α < 0,

respectively, address data over- and under-dispersion. The obvious benefit
of this regression model lies in its ability to address data over- or under-
dispersion; however, the RGP regression can only handle under-dispersion
in a limited sense because of the constrained space for α. For such data, the
RGP can violate probability axioms in that the probability mass function
“gets truncated and does not necessarily sum to one” (Famoye et al., 2004).
Further, the regression model belongs to an exponential family only for a
constant α. Accordingly, a model with observation-specific dispersion no
longer belongs to the exponential family (Sellers and Shmueli, 2010).

5.2 Conway–Maxwell–Poisson (COM–Poisson) Regression

Conway–Maxwell–Poisson (COM–Poisson) regression is an alternative
model that addresses data over- or under-dispersion that avoids the perfor-
mance constraints and associated implications that exist with the aforemen-
tioned count regression models. This section utilizes the statistical qualities
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of the COM–Poisson distribution as outlined in Chapter 2 to describe an
associated regression framework. The COM–Poisson generalized linear
model is a flexible model that can better accommodate under-dispersed data
and model over-dispersed data in a manner comparable in performance with
the NB regression (Guikema and Coffelt, 2008; Sellers and Shmueli, 2010).

5.2.1 Model Formulations

Several model formulations have been proposed for COM–Poisson regres-
sion, motivated by the respective parametrizations described in Chapter
2 (particularly Section 2.6). Early work in this area assumes a constant
dispersion parameter, focusing the model association on the relevant inten-
sity parameter for the COM–Poisson parametrization under consideration.
COM–Poisson regression analysis, however, can generalize to allow for
both observation-level intensity and dispersion modeling.

Sellers and Shmueli (2010) work with the original CMP(λ, ν)
parametrization and associate the respective parameters directly to the
covariates, utilizing the log link function ln (λi) = Xiβ to describe the
relationship between the response and explanatory variables while assum-
ing constant dispersion. This choice of formulation does not necessarily
consistently allow for easy coefficient interpretation; however, it remains
quite useful because it generalizes the formulations described for logistic
and Poisson regression (see Sections 5.1.1 and 5.1.2). In Poisson regres-
sion, this link precisely associates the mean and explanatory variables,
as described earlier. Meanwhile, in logistic regression, the success prob-
ability is p = λ

1+λ
, and the proposed CMP link function reduces to

logit(p) = ln (λ). The CMP regression link ln (λ) further leads to elegant
estimation, inference, and diagnostics, given the CMP properties described
in Chapter 2.

Some researchers argue against CMP regression because any specified
link function for generalized linear modeling does not offer a straightfor-
ward association between the mean response and explanatory variables,
making coefficient interpretation difficult. Neither λ nor ν offer a clear cen-
tering parameter; while λ is close to the mean when ν is near 1, this is
not true for cases of significant dispersion (Guikema and Coffelt, 2008).
Particularly, in cases of data over-dispersion, Lord et al. (2008) argue that
the small ν makes a CMP model difficult with regard to parameter esti-
mation. They instead use the ACMP(μ∗, ν) parametrization with ln (μ∗) =
ln
(
λ1/ν

) = Xβ, arguing that the approximate COM–Poisson (ACMP) re-
gression better allows analysts to interpret coefficients by describing their
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association with the centering parameter μ∗; the dispersion ν can mean-
while be assumed constant or varying with the link function ln (ν) = Gγ

(Guikema and Coffelt, 2008; Lord and Guikema, 2012; Lord et al., 2008).
Other works consider a broader loglinear model for μ∗, namely

ln

(
μ∗i

hi

)

= xiβ + φi (5.3)

while defining the loglinear model allowing for varying dispersion as
ln (νi) = −giγ (Chanialidis et al., 2014, 2017). As represented in Equation
(5.3), μ∗ can further allow for varying offset hi and spatial autocorrelation
through random effects φi; see Section 5.2.2 for further discussion. Mean-
while, considering the latter approach where the model for ν is negated
allows for positive (negative) values for γ to associate now with poten-
tial data over- (under-)dispersion. While these ACMP formulations offer
some promising considerations, analysts should use them with caution.
Lord et al. (2008) report that this configuration links to the mean or vari-
ance; thus, the regression can model data that are over- or under-dispersed
or a mix of the two (when allowing for a varying dispersion model). Cha-
nialidis et al. (2017) likewise stress that the approximations to the mean
and variance achieved via ACMP regression are reasonable when μ∗ and
ν are sufficiently large; however, this implies that ACMP regression is not
necessarily appropriate on under-dispersed response data. The underlying
reparametrization as μ∗ = λ1/ν further approximates the already approxi-
mate closed-form representation of the expected value provided in Equation
(2.14) that holds only if the dataset is conditionally over-dispersed (ν ≤ 1)
or for λ sufficiently large (λ > 10ν); thus, this refined approximation is
satisfied only in an even more constrained space. Francis et al. (2012),
in fact, note that the ACMP-generalized linear model inferences display
bias when the data have a low mean and are under-dispersed. Further,
while the ACMP parametrization views μ∗ as a centering parameter, it is
not the distribution mean. Thus, analysts must bear in mind these issues
when conducting ACMP regression, particularly with regard to accuracy
and coefficient interpretation.

Alternative parametrizations based on better approximations of the mean
have likewise resulted in the development of associated regression mod-
els. The MCMP1 regression considers the model where Y (conditioned on
the design matrix X) has an MCMP1(μ, ν) distribution (Equation (2.51))
with link function ln (μ) = Xβ and constant dispersion ν. The under-
lying motivation for this construct stems from the fact that the MCMP1
parametrization produces mean and dispersion parameters (μ and ν) that
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are orthogonal, a beneficial quality in a regression setting. The maximum
likelihood estimators for the regression coefficients β̂ = (β̂0, β̂1, . . . , β̂p1 )
will be asymptotically efficient and asymptotically independent of ν̂. This
reparametrization further allows one to easily incorporate offsets into the
model where the mean is updated accordingly to exp (offset)×μ(Xβ),
i.e. the MCMP1 distribution is now updated to MCMP1( exp (offset) ×
μ(Xβ), ν) and (say) assuming a log linear link function; we now have
ln (μ) = Xβ+ offset. MCMP2 regression is analogously developed assum-
ing that the response vector Y has an MCMP2(μ,φ) distribution (Equation
(2.51)), where ln (μ) = Xβ for μ

.= λ1/ν − ν−1
ν

and φ = ln (ν) is con-
stant. Like MCMP1, MCMP2 regression converges quickly because of the
orthogonality of the resulting parameters and provides natural coefficient
interpretation under the usual generalized linear model construct. Con-
vergence via MCMP2 regression is arguably faster than that for MCMP1
because μ under the MCMP2 model is obtained algebraically (thus provid-
ing a simpler form) rather than computationally as is done with MCMP1
regression (Ribeiro Jr. et al., 2019). Analysts, however, should utilize
MCMP2 regression with caution. While its approximation for the mean
is more precise than that provided for the ACMP regression, it still relies
on the constraints for the mean approximation described in Equation (2.23)
to hold.

While all of the model formulations are introduced assuming a con-
stant dispersion parameter, data dispersion can likewise vary and thus
be modeled via an appropriate link function (e.g. ln (νi) = Giγ , where
γ = (γ0, γ1, . . . , γp2−1) ) to associate the amount of dispersion with ex-
planatory variables of interest across measurements (Sellers and Shmueli,
2009, 2013). This approach of considering varying dispersion is consistent
with that for the NB regression described in Miaou and Lord (2003) and
offers an insight into the relative effects of different covariates for both the
mean and variance of the counts.

5.2.2 Parameter Estimation

Coefficient and parameter estimations in the COM–Poisson regression for-
mat have been achieved via the method of maximum likelihood, moment-
based estimation methods, including the marginal and joint generalized
quasi-likelihood, and Bayesian estimation via the Markov Chain Monte
Carlo and Metropolis–Hastings. The following subsections detail these
three ideas.
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Maximum Likelihood Estimation

The most popular approach for COM–Poisson regression coefficient esti-
mation is the method of maximum likelihood; it is the only method pursued
for each of the respective COM–Poisson parametrizations. Consider first a
CMP(λi, ν) regression model that allows for constant dispersion. The log-
likelihood provided in Equation (2.10) is thus modified to allow for varying
λi, updating the log-likelihood to

ln L(β, ν | x, y) =
n∑

i=1

yi ln (λi) − ν
n∑

i=1

ln (yi!) −
n∑

i=1

ln (Z(λi, ν)), (5.4)

where we assume ln (λ) = Xβ with an n × p1 design matrix X and p1-
parameter vector β. Differentiating Equation (5.4) with respect to βj, j =
0, . . . , p1 − 1, and ν, the corresponding score equations satisfy

n∑

i=1

yixij =
n∑

i=1

{

xij

∑∞
s=0 sesXiβ/(s!)ν

∑∞
s=0 esXiβ/(s!)ν

}

, j = 0, . . . , p1 − 1 (5.5)

n∑

i=1

ln yi! =
n∑

i=1

{∑∞
s=0 ln (s!)esXiβ/(s!)ν
∑∞

s=0 esXiβ/(s!)ν
}

. (5.6)

Similarly, the ACMP(μ∗i, ν) reparameterized form (Equation (2.48)) pro-
duces the log-likelihood

ln L(β, ν | x, y) = ν
n∑

i=1

yiηi − ν
n∑

i=1

ln (yi!) −
n∑

i=1

ln (Z1(ηi, ν)), (5.7)

where ηi = ln (μ∗i) = xiβ, while the MCMP1(μi, ν) log-likelihood re-
sembles Equation (5.4) with λi updated to λ(μi, ν), and the MCMP2(μi,φ)
log-likelihood is

ln L(β,φ | x, y) = eφ
[

n∑

i=1

yi ln

(

μi + eφ − 1

2eφ

)

−
n∑

i=1

ln (yi!)
]

−
n∑

i=1

ln (Z2(μi,φ)), (5.8)

where ln (μi) = xiβ and φ = ln (ν). Each of the respective log-likelihoods
can be used to produce their corresponding score equations.

As is the case for all of these COM–Poisson parametrizations, the re-
sulting score equations are nonlinear with respect to the coefficients and
do not have a closed form; thus, numerical approaches must be considered
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to obtain the maximum likelihood estimates (MLEs). Sellers and Shmueli
(2010) suggest using the generalized linear model framework to formulate
the CMP likelihood maximization as a weighted least-squares procedure
and solving it iteratively. Consider a reweighted least squares of the form

B′WBθ (m) = B′WT, (5.9)

where B = [X | h(Y)] is an n × (p1 + 1) matrix that binds the

design matrix X with h(Y) =
(

− ln (Y1!)+E( ln (Y1!))
Y1−E(Y1) , · · · , − ln (Yn!)+E( ln (Yn!))

Yn−E(Yn)

)′
,

W = diag(V(Y1), . . . , V(Yn)) is an n × n diagonal matrix, θ (m) =
(β̂ (m)

0 , . . . , β̂ (m)
p1−1, ν̂(m))′ is the mth iteration of the estimated coefficient vector

of length (p1 + 1), and T is a vector of length n, with elements involving
coefficients estimated in the previous step,

ti = x′
iβ

(m−1) + h(yi)ν
(m−1) + Yi − E(Yi)

V(Yi)
. (5.10)

Standard errors associated with the estimated coefficients are meanwhile
derived via the (p1 + 1) × (p1 + 1) Fisher information matrix with the block
form

I =
(

Iβ Iβ,ν

Iβ,ν Iν

)

, (5.11)

where Iβ is a p1 × p1 matrix denoting the estimated variance–covariance
matrix associated with β̂, Iν equals the estimated variance for ν̂, and Iβ,ν

is a p1-length vector of covariance estimates between β̂ and ν̂. These
components have the form

Iβ

j,k =
n∑

i=1

xijxik

{∑∞
s=0 s2esXiβ/(s!)ν

∑∞
s=0 esXiβ/(s!)ν −

[∑∞
s=0 sesXiβ/(s!)ν

∑∞
s=0 esXiβ/(s!)ν

]2
}

,

j, k = 0, . . . , p1 − 1

Iν =
n∑

i=1

xijxik

{∑∞
s=0 ( ln (s!))2esXiβ/(s!)ν
∑∞

s=0 esXiβ/(s!)ν −
[∑∞

s=0 ( ln (s!))esXiβ/(s!)ν
∑∞

s=0 esXiβ/(s!)ν
]2
}

Iβj,ν =
n∑

i=1

xijxik

{∑∞
s=0 s( ln (s!))esXiβ/(s!)ν
∑∞

s=0 esXiβ/(s!)ν −
(∑∞

s=0 sesXiβ/(s!)ν
∑∞

s=0 esXiβ/(s!)ν
)

(∑∞
s=0 ( ln (s!))esXiβ/(s!)ν
∑∞

s=0 esXiβ/(s!)ν
)}

.

The iterative reweighted least-squares form provided in Equation (5.9)
stems from a Newton–Raphson iterative formulation, θ (m) = θ (m−1) +I−1U,
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where I is the Fisher information matrix defined in Equation (5.11)
and U = (U0, . . . , Up1−1, Uν)′ is a vector of length (p1 + 1) with

components Uj = ∑n
i=1

{
xij

∑∞
s=0 sesXiβ/(s!)ν

∑∞
s=0 esXiβ/(s!)ν

}
, for j = 0, . . . , p1 − 1, and

Uν = ∑n
i=1

{∑∞
s=0 ln (s!)esXiβ/(s!)ν
∑∞

s=0 esXiβ/(s!)ν
}

. Left multiplying both sides by I = B′WB
produces Equation (5.9). This iterative reweighted least-squares approach
is one of several Newton-type iteration procedures that can be considered
for optimization and can be directly programmed for statistical computing.
Other Newton-type numerical optimization tools are readily available in
R, e.g. optim, nlminb, or nlm. Ribeiro Jr. et al. (2019), for example, adopt
the optim function’s BFGS algorithm to obtain the MCMP2 regression
coefficient MLEs. The added benefit to optim is that it can supply the
corresponding Hessian matrix that can be used to produce the Fisher
information matrix in order to approximate the corresponding estimate
standard errors. Analysts can represent the dispersion parameter on a
log-scale in order to allow for unconstrained optimization procedures to
be considered for parameter estimation; this approach circumvents any
potential convergence issues that would arise if optimization procedures
are conducted on the original dispersion scale (Francis et al., 2012).
Constrained optimizers such as nlminb (in the stats package), however,
also exist to address such situations.

While the above framework assumes a constant dispersion ν, one can
likewise allow for varying dispersion that assumes (say) a loglinear rela-
tionship, i.e. ln (ν) = Gγ , where G = (g1, . . . , gn)′ is an n × p2 design
matrix whose predictors can be either shared with or distinct from X, and
γ = (γ1, . . . , γp2 ). Focusing our attention first on the CMP regression,
the weighted least-squares equation (Equation (5.9)) now has B = (X |
(h(Y) · G))′, θ (m) = (β (m) | γ (m))′, and T = (t1, . . . , tn)′ with components

ti = x′
iβ

(m−1) + h(Yi)g′
iγ

(m−1) + Yi − E(Yi)

V(Yi)
.

Motivated by the above constant dispersion iterative reweighted least
squares, Chatla and Shmueli (2018) suggest an analogous two-step algo-
rithm for parameter estimations of both β and γ that uses the expected
information matrix to update estimates efficiently and allows for the CMP
regression to be extended to include additive components or least abso-
lute shrinkage and selection operator, i.e. LASSO (see Section 5.6 for
discussion); Algorithm 4 provides the iterative reweighted least-squares al-
gorithm. The authors offer three tips for performing this algorithm. First, set
the suggested starting values for the algorithm to an approximate method
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1. Initialize values ν(0)
i and λ(0)

i = (yi + 0.1)ν
(0)
i , i = 1, . . . , n.

2. Compute ln (λ(0)
i ) and ln (ν(0)

i ), i = 1, . . . , n.
3. Compute initial deviance,

D(0)(λ(0), ν(0)) = −2
∑n

i=1 ln L(yi; λ
(0)
i , ν(0)

i ).
4. Compute [E(yi)](0) and [V(yi)](0), i = 1, . . . , n.
5. For k in 1 : itermax,

(a) Compute t(k)
i1 = ln (λ(k−1)

i ) + yi−[E(yi)](k−1)

[V(yi)](k−1) , i = 1, . . . , n.

(b) Regress T(k)
1 = (t11, . . . , tn1)′ on X via weighted least-squares

regression with weights
W(k−1)

1 = diag([V(y1)](k−1), . . . , [V(yn)](k−1)) to determine β (k).
(c) Compute ln (λ(k)

i ) = x′
iβ

(k) and λ(k)
i , i = 1, . . . , n.

(d) Compute [E( ln (yi!))](k−1) and [V( ln (yi!))](k−1), i = 1, . . . , n.
(e) Compute t(k)

i2 = ν(k−1)
i ln (ν(k−1)

i ) + − ln (yi!)+[E( ln (yi!))](k−1)

[V( ln (yi!))](k−1) ν
(k−1)
i .

(f) Regress T(k)
2 = (t12, . . . , tn2)′ on ν(k−1) · G = (ν(k−1)

1 g1, . . . ,
ν(k−1)

n gn) via weighted least-squares regression with weights
W(k−1)

2 = diag([V( ln (y1!))](k−1), . . . , [V( ln (yn!))](k−1)) to
determine γ (k)

(g) Compute ln (ν(k)
i ) = g′

iγ
(k) and ν(k)

i , i = 1, . . . , n.
(h) Compute deviance, D(k)(λ(k), ν(k)) = −2

∑n
i=1 ln L(yi; λ

(k)
i , ν(k)

i ).
i. if D(k)−D(k−1)

D(k) > 10−6, then initiate step size optimization;
end if.

ii. if
∣
∣
∣D(k)−D(k−1)

D(k)

∣
∣
∣ < 10−6, then convergence achieved; end

loop. Else compute [E(yi)](k) and [V(yi)](k), i = 1, . . . , n;
end if.

end for

Algorithm 4 Iterative reweighted least-squares algorithm proposed by
Chatla and Shmueli (2018) to conduct parameter estimation to determine
the CMP regression coefficients, β̂ and γ̂ .

of moments estimator for λi (i.e., λ(0)
i = (yi + 0.1)ν

(0)
i ) and ν(0)

i close to
zero (e.g. ν(0)

i = 0.25). Second, a modification of the deviance criterion
(namely −2

∑n
i=1 ln L(yi; λ̂i, ν̂i)) is proposed as the stopping rule in order

to circumvent computational complexities associated with the estimates for
λ and ν under the saturated model. Finally, in order to address common
convergence issues associated with iterative reweighted least squares, the
step-halving approach of Marschner (2011) is encouraged; this approach
uses step-halving at the boundary or when experiencing an increasing
deviance in order to ensure staying within the interior support space for
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convergence (Chatla and Shmueli, 2018). The optimization procedure de-
scribed above as well as those in R are analogously applicable for the
varying dispersion framework under any parametrization.

Simulation studies show that each of the COM–Poisson generalized lin-
ear models (i.e. assuming any parametrization) can effectively model data
under-, equi-, or over-dispersion through the flexible model and produce
reasonable (properly scaled) parameter estimates and fitted values. The
COM–Poisson models all likewise produce comparable confidence inter-
vals that are larger (smaller) than Poisson confidence intervals when the
data are over- (under-) dispersed. The MCMP1 and MCMP2 regressions are
particularly appealing; however, because they can produce coefficient esti-
mates that are similar across various generalized linear models (e.g. Pois-
son, NB, and GP). This is to be expected because these parametrizations
better allow for generalized linear models where the function associating
the mean to the explanatory variables is roughly identical across regres-
sion constructs. Accordingly, MCMP1 and MCMP2 most easily allow for
an apples-to-apples comparison of coefficient estimates (followed by the
ACMP regression), whereas any reported CMP coefficient estimates are
not easily comparable to these reparametrized forms. Nonetheless, analysts
should remain cautiously optimistic when utilizing the ACMP or MCMP2
parametrizations as they rely on the moment approximations and associated
constraints for accuracy. As such, while asymptotic efficiency and normal-
ity hold for the coefficients under any parametrization, the orthogonality
property attained via MCMP1 regression further implies that the coefficient
estimates β̂ are asymptotically independent of ν̂ (Huang, 2017); analogous
results hold for the case with varying dispersion. Simulation studies fur-
ther show all regression MLEs (under any parametrization) to be at least
asymptotically unbiased and consistent. The empirical coverage rates of
the confidence intervals stemming from the asymptotic distribution of the
MLEs are likewise close to their nominal levels. Some anamolies, however,
can surface for various parametrizations. For small sample sizes, for exam-
ple, the MCMP2 dispersion estimator is over estimated with an empirical
distribution that is right-skewed and lower than nominal empirical cover-
age rates; the lowest empirical coverage rates occur in scenarios with small
sample size and strong over-dispersion (Ribeiro Jr. et al., 2019).

Moment-based Estimation

The method of maximum likelihood is arguably a computationally expen-
sive process for parameter estimation because evaluating the likelihood
function depends on the infinite sum that can be slow to converge. Some of
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the alternative approaches that have garnered attention for COM–Poisson
regression coefficient estimation are based on the method of generalized
quasi-likelihood. Jowaheer and Mamode Khan (2009) conduct joint gen-
eralized quasi-likelihood estimation where the respective COM–Poisson
mean and variance approximations (Equations (2.23) and (2.24)) along with
the moment recursion formula (Equation (2.16)) aid in deriving the joint
quasi-likelihood equations. Assuming the approximations to be exact, the
joint quasi-likelihood equations are

n∑

i=1

D′
iV

−1
i (f i − τ i) = 0, (5.12)

where Vi is a 2 × 2 variance–covariance matrix of f ′
i = (Yi, Y2

i ), τ i =
(τ1i, τ2i)′ such that τki approximates E(Yk

i ) as determined from Equations
(2.23) and (2.24), and

Di =

⎛

⎜
⎜
⎝

∂τ1i

∂β0
· · · ∂τ1i

∂βp−1

∂τ1i

∂ν
∂τ2i

∂β0
· · · ∂τ2i

∂βp−1

∂τ2i

∂ν

⎞

⎟
⎟
⎠ .

The Newton–Raphson method

(
β (m+1)

ν(m+1)

)

=
(

β (m)

ν(m)

)

+
[

n∑

i=1

D′
i,(m)V

−1
i,(m)Di,(m)

]−1

[
n∑

i=1

D′
i,(m)V

−1
i,(m)(f i,(m) − τ i,(m))

]

(5.13)

is used until convergence is reached to solve Equation (5.12). The resulting
joint quasi-likelihood estimators (βJQ, νJQ) are consistent, and (under mild
regularity conditions)

√
n((βJQ, νJQ) − (β, ν))′ is asymptotically normal as

n → ∞.
Mamode Khan and Jowaheer (2010) instead consider the marginal

generalized quasi-likelihood equations
{ ∑n

i=1 D′
i,βV−1

i,β (yi − τ 1i) = 0
∑n

i=1 D′
i,νV

−1
i,ν (y2

i − τ 2i) = 0
(5.14)

to estimate the coefficient parameters, βMQ and νMQ, where τ 1i and τ 2i

again denote the approximated first and second CMP moments, Di,β = ∂τ1i

∂β ′

has dimension p × 1, Vi,β = λ
1/ν
i

ν
,
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Di,ν = 1

2ν3

(
2λ1/νν ln (λi) + ν− 1 − 4λ2/ν

i ln (λi)ν− 4λ1/ν
i ν− rλ1/ν

i ln (λi)
)

,

(5.15)

and Vi,ν = τ4i − (τ2i)2, where

τ4i = 1

ν3

(
λ

1/ν
i ν2 + 4λ3/ν

i ν2 + 10λ2/ν
i ν − 4λ1/ν

i ν + 4λ1/ν
i − 4λ2/ν

i ν2
)

+
[
λ

1/ν
i

ν

(

λ
1/ν
i − ν − 1

2ν

)2
]2

. (5.16)

Again using the Newton–Raphson method produces the scheme

β (m+1) = β (m) +
[

n∑

i=1

D′
i,β,(m)V

−1
i,β,(m)Di,β,(m)

]−1

(m)[
n∑

i=1

D′
i,β,(m)V

−1
i,β,(m)(yi,(m) − τ 1i,(m))

]

ν(m+1) = ν(m) +
[

n∑

i=1

D′
i,ν,(m)V

−1
i,ν,(m)Di,ν,(m)

]−1

(m)[
n∑

i=1

D′
i,ν,(m)V

−1
i,ν,(m)(y

2
i,(m) − τ 2i,(m))

]

,

where the convergence scheme oscillates for a fixed β or ν to opti-
mize either of the respective equations. This pattern repeats until conver-
gence is reached for both equations and the marginal generalized quasi-
likelihood estimators are obtained. Again, these estimators are consistent
where, as n → ∞ and under mild regularity conditions,

√
n(βMQ − β)

and
√

n(νMQ − ν) are asymptotically normally distributed.
Jowaheer and Mamode Khan (2009) perform simulation studies from

which they conclude that the joint generalized quasi-likelihood approach
outperforms maximum likelihood estimation. They find that the joint quasi-
likelihood approach produces estimates that are nearly as efficient as those
attained via maximum likelihood estimation (showing a loss of no more
than 1% even for small samples) while experiencing fewer convergence
issues, particularly for ν > 1 and n ≤ 100. However, their study only con-
siders values of ν within the dual space (i.e. 0.5 ≤ ν ≤ 2); thus, given
the required assumptions underlying their approach (ν ≤ 1 or λ> 10ν), it is
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unclear whether the same level of success would hold for ν > 2. Meanwhile,
Mamode Khan and Jowaheer (2010) report that the marginal generalized
quasi-likelihood estimates are comparable to the joint generalized quasi-
likelihood estimates. The larger concern for analysts, however, remains that
the method of quasi-likelihood estimation presumes the existence of data
over-dispersion; under that scenario, it is reasonable to use the moment ap-
proximations considered here. For cases of data under-dispersion, however,
the approximations rely on λi> 10ν ; thus, λi must be considerably large for
ν > 2. Accordingly, unless analysts are already informed of the underlying
type of data dispersion present in their study, caution should be used when
performing either of the proposed quasi-likelihood methods.

Bayesian Estimation

There do not exist closed-form solutions for the MLEs because of the
complex nature of the score equations stemming from the resulting log-
likelihood function in Equation (5.4). Some researchers argue that nu-
merical approaches toward addressing maximum likelihood estimation
can be challenging, and thus instead they propose conducting Bayesian
COM–Poisson regression. This not only lets analysts update probabili-
ties based on prior knowledge but further allows for posterior predictive
distributions to be determined for a new observation associated with the
covariates of interest, given the observed response data. As noted in Sec-
tion 5.2.1, the first works in Bayesian COM–Poisson regression considered
an ACMP(μ∗i, νi) regression where ln (μ∗) = Xβ and either constant or
varying dispersion via ln (ν) = Gγ (Guikema and Coffelt, 2008; Lord and
Guikema, 2012; Lord et al., 2008), while other works further allow for
an offset and spatial autocorrelation through random effects φi (Equation
(5.3)) and instead consider ln (ν) = −Gγ . Under the broader construct,
for example, φi can be assumed to have a normally distributed condi-
tional autoregressive prior (Chanialidis et al., 2014, 2017). Huang and
Kim (2019) meanwhile developed a Bayesian MCMP1(μ, ν) regression
where ln (μ) = Xβ, while ν is assumed an additional (constant) dispersion
parameter.

One would think the COM–Poisson conjugate prior (Equation (2.34))
to be a natural choice for COM–Poisson Bayesian analysis; however,
arguments against its use include that (1) computing the normalizing con-
stant associated with the resulting posterior distribution requires numerical
integration, Markov Chain Monte Carlo (MCMC) sampling, or another es-
timation method; (2) the process for determining proper hyperparameters is
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not transparent; and (3) the conjugacy property only holds true for regres-
sion models involving only the intercept (Huang and Kim, 2019). Instead,
early works first assumed the regression coefficients to have noninformative
normally distributed priors2 and are subsequently estimated via MCMC
sampling. The resulting procedure is implemented via WinBUGS3 for
ACMP regression with Z1(μ∗, ν) approximated by bounding it via a ge-
ometric series comparable to that described in Minka et al. (2003), where
the level of precision is inputted by the analyst (Guikema and Coffelt, 2008;
Lord et al., 2008). While the Bayesian approach provides added flexibil-
ity allowing analysts to incorporate (non)informative priors that represent
expert knowledge and/or opinion, this approach significantly impacts com-
putation time. In particular, because the normalizing constant does not have
a closed form, there exists a computational expense associated with deter-
mining the likelihood, and sampling from a posterior distribution of the
COM–Poisson regression model parameters can prove difficult.

Various alternatives exist for approximating the ACMP normalizing con-
stant Z1(μ∗, ν) for use in an MCMC algorithm; see Section 2.8 for details.
Alternatively, approximate Bayesian computation methods can circumvent
evaluating Z1(μ∗, ν) precisely. Chanialidis et al. (2014), for example, pro-
pose a modified version of retrospective sampling where probability bounds
are based on approximated bounds for Z1(μ∗, ν). Thus, the bounds on the
acceptance probability stem from upper and lower bounds on the likelihood
function. Such algorithms, however, may not sample from the distribu-
tion of interest and are considerably less efficient than more standard
MCMC approaches. Because each of these approaches suffers from sig-
nificant drawbacks, Chanialidis et al. (2017) instead consider an MCMC
algorithm that utilizes the exchange algorithm in order to conduct the
Bayesian ACMP regression; thus, the regression analysis can be performed
without computing the normalizing constant (thereby improving the com-
putational speed and accuracy of the analysis); see Algorithm 5. This
algorithm likewise relies on constructing a piecewise truncated geometric
envelope distribution to enclose the ACMP distribution, while the sampling

2 Guikema and Coffelt (2008) initializes the MCMC procedure with a normal prior distri-
bution with mean zero and variance 1 × 106. Lord et al. (2008) assume normal(0,100)
distributed β coefficients associated with μ∗, and a gamma(0.03, 0.1) prior for ν, but note
that the choice of prior did not significantly impact posterior parameter estimates.

3 The interested reader can locate the associated codes at the WinBUGS developer web page,
www.winbugsdevelopment.org.uk/.

http://www.winbugsdevelopment.org.uk/
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1. Denote M = �μ∗� the ACMP mode and s = �√μ∗/
√
ν� the

approximate standard deviation.
2. Construct an ACMP upper bound rμ∗,ν(y)/Zg(μ∗, ν) based on a

piecewise geometric distribution with three cut-offs (M − s, M,
M + s, where without loss of generality assume M − s ≥ 0), where

rμ∗,ν(y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qμ∗,ν(M−s) ·
(

M−s
μ∗

)ν·(M−s−y)
for y = 0, . . . , M − s

qμ∗,ν(M−1) ·
(

M−1
μ∗

)ν·(M−1−y)
for y = M − s + 1, . . . , M −1

qμ∗,ν(M) · ( μ∗
M+1

)ν·(y−M)
for y = M, . . . , M + s − 1

qμ∗,ν(M+s) · ( μ∗
M+s+1

)ν·(y−M−s)
for y = M + s, M + s + 1, . . .

(5.17)

and Zg(μ∗, ν) = ∑∞
y=0 rμ∗,ν(y), where qμ∗,ν(y) =

(
μ

y
∗

y!
)ν

and
rμ∗,ν(y) ≥ qμ∗,ν(y).

3. Sample from p(y | μ∗, ν) via the rejection method with rejection
envelope Zg(μ∗,ν)

Z1(μ∗,ν) gμ∗,ν(y), where gμ∗,ν(y) = rμ∗ ,ν (y)
Zg(μ∗,ν) . In other words,

draw an outcome y from gμ∗,ν(y) and accept that outcome with
probability qμ∗ ,ν (y)

rμ∗ ,ν (y) ; otherwise, reject it.

Algorithm 5 Chanialidis et al. (2017) algorithm to generate random data
from ACMP(μ∗, ν).

method only requires the unnormalized densities, circumventing the need
for Z1(μ∗, ν).

Benson and Friel (2017) advance the Chanialidis et al. (2017) work, in-
troducing a new/different rejection sampling algorithm that significantly
increases computational speed. This algorithm suggests a “less intensive”
sampler that stems from a single-envelope distribution that depends on
the ACMP dispersion parameter. While this distribution infers a higher
rejection rate than the Chanialidis et al. (2017) envelope, it circumvents
the setup and sampling costs associated with producing the truncated ge-
ometric envelope distribution. Under the ACMP regression allowing for
observation-level dispersion, the associated likelihood function involves
multiple normalizing constants that each have a complex form, and the pos-
terior distribution cannot be normalized. While rejection sampling is not
applicable to all complicated likelihoods, Benson and Friel (2017) show
that an unbiased estimate of the likelihood is guaranteed to be positive and
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can be obtained via an unbiased estimate of the normalizing constant when
rejection sampling is available.

Bayesian MCMP1 regression can be conducted via a Metropolis–
Hastings algorithm, assuming (for example) a multivariate normal (MVN)
N(μβ , 	β) distribution for β and a log-normal(μν , σ 2

ν ) for ν, where large
	β and σ 2

ν produce improper flat priors (Huang and Kim, 2019). The
MCMP1 structure and assumed MVN and lognormal priors infer that the
joint posterior distribution for β and ν given a sample y = (y1, . . . , yn) is

p(β, ν | y, X) ∝
n∏

i=1

λ( exp (xiβ), ν)yi

(yi!)νZ(λ( exp (xiβ), ν), ν)

· exp

[

−1

2
(β − μβ)′	β

−1(β − μβ)

]

· 1

ν
exp

[

− ( ln (ν) − μν)2

2σ 2
ν

]

. (5.18)

The posterior predictive distribution of a new observation y∗ given a
predictor matrix of interest X∗ and response outcomes y, namely

p(y∗ | X∗, y) =
∫

p(y∗ | β, ν, X∗)p(β, ν | y, X)d(β, ν), (5.19)

is approximated by first obtaining the posterior distribution (Equation
(5.18)) via the Metropolis–Hastings algorithm, and then by conducting
Monte Carlo averaging of p(y∗ | β, ν, X∗) evaluated at draws (β, ν) from
the said posterior distribution.

The Metropolis–Hastings algorithm (Algorithm 6) uses the MLEs as
starting values (β (0) = β̂ and ν(0) = ν̂) in lieu of a burn-in period for the
algorithm and alternates updates for each parameter in order to speed up
convergence in the Markov chain. The estimated variance–covariance as-
sociated with β̂ serves as the variance matrix, Sβ , for the MVN distribution
from which proposed draws are obtained. While any proposal densities can
be considered to determine the acceptance probabilities, Huang and Kim
(2019) illustrate the procedure using an MVN, N(β (0), Sβ), for the proposed
coefficients β (1) associated with the MCMP1 means, and the exponential
distribution Exp(1/ν(0)) with pdf p(ν(1)) = 1

ν(0)
exp ( − ν(1)/ν(0)) for the pro-

posed dispersion parameters ν(1); analysts are not restricted, however, to
these proposal densities. The respective acceptance probabilities are
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Given data X and y, and starting points β (0) and ν(0),

1. Draw a sample from β (1) ∼ N(β (0), Sβ).

2. Accept β (1) with probability min
(

1,αβ = p(β(1),ν(0)|y,X)
p(β(0),ν(0)|y,X)

)
; otherwise,

maintain β (0).
3. Draw sample from ν(1) ∼ Exp(1/ν(0)), i.e. an exponential

distribution with pmf p(ν(1)) = 1
ν(0)

exp ( − ν(1)/ν(0)).
4. Accept ν(1) with probability

min
(

1,αν = p(β(0),ν(1)|y,X)
p(β(0),ν(0)|y,X)

ν(1)

ν(0)
exp

(
ν(1)

ν(0)
− ν(0)

ν(1)

))
; otherwise, maintain

ν(0).
5. Repeat Steps 1–4 until N MCMC samples are produced.

Algorithm 6 Huang and Kim (2019) Metropolis–Hastings algorithm for
MCMP1 regression illustrated assuming MVN and exponential proposal
distributions, respectively, for β and ν.

αβ = p(β (1), ν(0) | y, X)

p(β (0), ν(0) | y, X)
(5.20)

αν = p(β (0), ν(1) | y, X)

p(β (0), ν(0) | y, X)

ν(1)

ν(0)
exp

(
ν(1)

ν(0)
− ν(0)

ν(1)

)

. (5.21)

While this approach does not produce the most efficient algorithm, it serves
as a starting point for Bayesian MCMP1 regression modeling; code reflect-
ing this algorithm can be obtained as a plug-in with the mpcmp package
(Huang and Kim, 2019).

The COM–Poisson regressions (under any parametrization and frame-
work) produce estimates, fitted values, and intervals that remain impressive.
In fact, whether considering confidence or credible intervals, the COM–
Poisson models effectively reflect and account for data dispersion. For
over-dispersed data, the COM–Poisson models perform in a manner close
to the NB, both of which outperform the Poisson model. Meanwhile for
under-dispersed data, the COM–Poisson confidence and credible intervals
are more appropriate; Poisson and NB models produce confidence and
credible intervals that are too wide because they do not account for the
smaller amount of data variation. Analysts are warned against using the
ACMP regressions, however, for analyzing considerably under-dispersed
data. Under any parametrization, the COM–Poisson model has proven
its ability to handle data dispersion both under correctly specified and
mis-specified data constructs.
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5.2.3 Hypothesis Testing

The hypothesis test for data dispersion described in Section 2.4.5 eas-
ily extends to a regression framework. Assuming a COM–Poisson model
with constant dispersion (under any parametrization) implies the null
and alternative hypotheses, H0 : ν = 1 versus H1 : ν �= 1. The
corresponding likelihood ratio test statistic is Cν = −2 ln�ν =
−2

[
ln L

(
β̂

(0)
, ν̂ = 1

)
− ln L

(
β̂, ν̂

)]
, where β̂

(0)
are the Poisson regres-

sion coefficient estimates and (β̂, ν̂) are the COM–Poisson estimates under
the appropriate parametrization. Under the null hypothesis, the test statistic
Cν has an asymptotic χ2 distribution with 1 degree of freedom; asymp-
totic confidence intervals can be attained accordingly. When allowing for
the variable dispersion model, the aforementioned hypothesis test gener-
alizes to H0 : γ0 = · · · = γp2 = 0 versus H1 : at least one γk �= 0
for some k = 1, . . . , p2. The likelihood ratio test statistic then becomes
Cγ = −2 ln�γ = −2

[
ln L

(
β̂

(0)
, γ̂ = 0

)
− ln L

(
β̂, γ̂

)]
, where β̂

(0)
still

denotes the Poisson estimates, while
(
β̂, γ̂

)
denote the COM–Poisson co-

efficient estimates under the variable dispersion model. Under the null
hypothesis with the variable dispersion model, Cγ now has an asymptotic
chi-squared distribution with p2 degrees of freedom, and asymptotic con-
fidence intervals or p-values can be determined for the coefficients. When
analyzing small samples under either construct, the test statistic distribu-
tion and confidence intervals can be obtained via bootstrapping (Ribeiro Jr.
et al., 2019; Sellers and Shmueli, 2010).

5.2.4 R Computing

Five R packages conduct COM–Poisson regression. Four of the packages
are available on the Comprehensive R Archive Network (R Core Team,
2014): CompGLM (Pollock, 2014a), COMPoissonReg (Sellers et al., 2019),
mpcmp (Fung et al., 2020), and DGLMExtPois (Saez-Castillo et al., 2020).
Functions in these packages perform maximum likelihood estimation via
an optimization procedure where starting values for the optimization are as-
sumed to be the Poisson model estimates unless otherwise specified by the
analyst. The mpcmp package is also equipped to conduct Bayesian MCMP1
regression as described in Huang and Kim (2019), but it requires a plug-in
that is only available through the first author. The fifth package, combayes,
likewise conducts Bayesian COM–Poisson regression and is available via
GitHub (Chanialidis, 2020).



174 COM–Poisson Regression

All of the aforementioned packages contain functions that allow users
to obtain a coefficient table and other summary results, including the
resulting log-likelihood value and Akaike information criterion (AIC).
COMPoissonReg can further supply the Bayesian information criterion
(BIC), leverage, and parametric bootstrapping results, and can conduct
a likelihood ratio test to account for statistically significant (constant or
variable) data dispersion. The CompGLM package can meanwhile provide
predicted outcomes, and the mpcmp package can supply various diagnos-
tic plots. While all of these functions share similarities among them, the
COMPoissonReg::glm.cmp function distinguishes itself by further allow-
ing analysts to conduct zero-inflated CMP regression with varying p via
ln (p/(1 − p)) = Dδ (Sellers and Raim, 2016; Sellers et al., 2019). This
allows analysts to consider model relationships for both CMP parameters
and the success probability associated with excess zeroes; see Sections 5.3
and 5.5 for further details.

Maximum likelihood Estimation for CMP Regression

The glm.comp function (contained in the CompGLM package) allows the
analyst to conduct CMP-generalized linear modeling of the form

ln (λ) = Xβ and (5.22)

ln (ν) = Gγ , (5.23)

where X and G are design matrices associated with λ and ν, respec-
tively, through the parameters β and γ . The model formulae for Equations
(5.22) and (5.23) are inputted as usual in lamFormula and nuFormula,
respectively, where the default setting for nuFormula assumes constant
dispersion. As noted in Chapter 2, the loglinear relationship for ν al-
lows for unconstrained optimization to be performed via optim in order
to determine the MLEs. The optim function assumes method="BFGS",
thus performing the Broyden–Fletcher–Goldfarb–Shanno algorithm (also
referred to as a variable metric algorithm); however, analysts are able to
modify the choice of Newton-type algorithm. Other method options are
"Nelder-Mead", "CG", "L-BFGS-B", "SANN", or "Brent"; see the optim
help page for a detailed discussion. In all cases, unless starting values are
otherwise supplied by the user in lamStart and nuStart, the glm.comp
function assumes Poisson estimates for β in Equation (5.22) and γ = 0
in Equation (5.23). Another input for the glm.comp function is sumTo
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that determines the number of terms used to approximate the infinite sum-
mation for Z(λ, ν). As noted in Section 2.8, sumTo = 100 is the default
setting for this input, but it can be supplied by the analyst. As with the
standard glm function, glm.comp can accommodate other R functions pro-
viding model analysis, including summary, logLik, extractAIC, and
predict.

The glm.cmp function (contained in the COMPoissonReg package) op-
erates in a similar manner to that described in glm.comp considering the
loglinear models described in Equations (5.22) and (5.23); these model
formulae are inputted in formula.lambda and formula.nu, respectively.
This function likewise assumes a constant dispersion model but allows for
flexible dispersion and uses optim to determine the MLEs. The glm.cmp
function, however, uses the defaulted "Nelder-Mead" quasi-Newton al-
gorithm in optim to perform the optimization, where starting values can
be supplied by the user in beta.init (usually Poisson estimates) and
gamma.init (presumably γ = 0 to agree with the Poisson model esti-
mates as starting values). Consistent with the discussion in Section 2.8, the
Z(λ, ν) function is computed in a hybrid fashion to optimize computation
speed and efficiency. For λ sufficiently large and ν sufficiently small, the
closed-form approximation (Equation (2.12)) is used to estimate Z(λ, ν). If
those conditions are not satisfied, then the infinite summation is approxi-
mated to meet a desired accuracy level. The glm.cmp can accommodate
other R functions providing model analysis, including summary, logLik,
AIC and BIC, and predict. The glm.cmp model output can further be
supplied as input in other COMPoissonReg functions such as equi.test,
leverage, deviance, and parametric_bootstrap.

The glm.cmp (COMPoissonReg) and glm.comp (CompGLM) share sev-
eral similarities. Both functions allow for a variable dispersion model via
the log link, can accommodate an offset in the model formulation, and use
optim to maximize the likelihood function and output gradient information
in order to obtain corresponding standard errors. However, glm.comp com-
putes these results at a faster rate than glm.cmp due to the way in which the
support functions were implemented; support functions for glm.cmp were
implemented in R, while those for glm.comp were implemented in C++.
An unfortunate feature shared by both functions is their inability to handle
larger counts. Even one large count value in a dataset can cause both meth-
ods to produce errors (Chatla and Shmueli, 2018). While both functions
can conduct CMP regression, glm.cmp allows the analyst to also consider
zero-inflated CMP models.
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Maximum Likelihood Estimation for MCMP1 Regression

The glm.cmp (mpcmp) and glm.CMP (DGLMExtPois) functions likewise
conduct regression analysis and share several similarities; however these
functions focus on MCMP1 regression (Fung et al., 2020; Saez-Castillo
et al., 2020). Both functions consider a loglinear link ln (μ) = Xβ for the
mean with an additional ability to include an offset, and they likewise allow
for variable dispersion via a loglinear model. Both functions use the form
ln (ν) = Gγ ; however, mpcmp::glm.cmp follows this notation explicitly,
while DGLMExtPois::glm.CMP replaces gamma with delta as their co-
efficient definition relating to the dispersion. Poisson estimates serve as
reasonable starting values for these functions. They are provided for the
mpcmp::glm.cmp and DGLMExtPois::glm.CMP inputs betastart and
init.beta, respectively, while the associated corresponding starting val-
ues to account for dispersion (gammastart or init.delta, respectively)
are set equal to zero. Both functions also allow analysts to address how to
handle missing data via the na.action input and to specify a subset of
observations via the subset input. Along with these similarities, however,
differences exist between the two functions. For example, both functions
include a tol input; however, they have different meanings in the respec-
tive functions; mpcmp uses this as an overall convergence threshold for λ,
while tol in DGLMExtPois is used to approximate the infinite sum cal-
culation for the normalizing constant, Z(λ(μ, ν), ν). Broader differences
between the two functions stem from additional respective inputs available
in their respective codes. The mpcmp::glm.cmp function allows contrasts
for μ and ν (contrasts_mu and contrasts_nu, respectively), as well
as a user-contributed input regarding the maximum allowable number of
iterations to determine λ (maxlambdaiter), and a specified range of pos-
sible values for λ (the lower and upper bounds lambdalb and lambdaub
are defaulted as 1 × 10−10 ≤ λ ≤ 1900). DGLMExtPois::glm.CMP
meanwhile includes inputs (1) maxiter_series to predetermine the num-
ber of iterations used to compute the normalizing constant, (2) opts to
supply options to the nonlinear optimizer function nloptr, and (3) the
logical values for x, y, and z to determine whether or not to return the
model matrix for μ, the response vector, and the model matrix for ν,
respectively.

Beyond creating the respective MCMP1 regression objects, mpcmp and
DGLMExtPois share an array of analogous capabilities, including sum-
marizing the regression results via the summary command, obtaining
confidence interval information (confint), determining fitted values and
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residuals, producing residual plots of interest, obtaining predicted values
(predict), conducting a likelihood ratio test, and computing information
criterions of interest. Some of these functions (e.g. summary, confint, and
predict) operate as usual and do so in conjunction with either MCMP1
regression object. The cmplrtest function in mpcmp performs a likeli-
hood ratio test between two glm.cmp objects, object1 and object2,
representing the respective (nested) MCMP1 models considered in asso-
ciation with a dataset of interest. More specifically, the LRTnu function
performs the likelihood ratio test comparing the Poisson and MCMP1
(based on the glm.cmp object) models, thus checking for statistically sig-
nificant data dispersion. Similarly, the lrtest function (DGLMExtPois)
conducts the likelihood ratio test for two nested models stemming from the
glm.CMP objects. The mpcmp::AIC.cmp and DGLMExtPois::AIC_CMP
functions each compute an information criterion for the associated ob-
ject (glm.cmp (mpcmp) or glm.CMP (DGLMExtPois), respectively). They
both default to compute the AIC (k = 2) but can be used to compute (for
example) the BIC (setting k=log(n), where n equals the sample size).
The DGLMExtPois package likewise offers the BIC function to directly
determine the BIC.

The plot command maintains its ability to provide residual plots asso-
ciated with an MCMP1 regression. When applied to a glm.cmp (mpcmp)
object, the plot command produces four figures by default, namely a (1)
fitted values versus deviance residuals plot, (2) nonrandomized probability
integral transform histogram, (3) scale-location plot associating the square-
root of the absolute value of the residuals with the fitted values, and (4)
leverage versus Pearson residuals plot. Additional plots accessible to ana-
lysts include a Q–Q plot comparing the nonrandomized probability integral
transform with the uniform distribution, a histogram and Q–Q plot of the
normal randomized residuals, and a Cook’s distance plot. Meanwhile, using
the plot command on a glm.CMP object (DGLMExtPois) can produce two
residual plots, namely a fitted versus residual plot, and a normal Q–Q plot.
The default option for the residuals via the mpcmp package is to produce de-
viance residuals, while the DGLMExtPois package uses quantile residuals.
Both packages, however, also allow for type to be updated as "pearson"
or "response". The residuals command is likewise available in both
packages in order to extract residuals associated with an MCMP1 re-
gression object. One should, however, be cautious using the residuals
function in DGLMExtPois; be sure to specify type="quantile" because
the function instead has "pearson" as the default type.
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Bayesian Estimation for ACMP Regression

The combayes package (Chanialidis, 2020) conducts the Bayesian ACMP
regression via exact samplers. While help pages are not currently available
with this package, one can gain a rudimentary understanding of pack-
age functionality based on an illustrative example provided in GitHub.
The supplied codes allow analysts to sample from an ACMP distribu-
tion via rejection sampling, and to evaluate bounds for Z1(μ∗, ν), where
the MCMC is conducted with algorithm = "bounds" or "exchange"
(the default setting). Selecting algorithm = "bounds", however, causes
the MCMC to perform more slowly (Chanialidis, 2020). The combayes
package particularly contains the cmpoisreg function that produces the
samples of interest and reports the acceptance probabilities. Along with
the provided response and explanatory variable inputs (y and X, re-
spectively) required for the cmpoisreg function, analysts supply the
desired number of samples (num_samples), burn-in (burnin), and the
variance–covariance structures for the MVN prior distributions for β

and γ , respectively. Note, however, that the combayes package denotes
the parameter delta (instead of, say, gamma for consistency with no-
tation provided in this reference) to associate with ν; thus, the respec-
tive prior variance–covariance inputs are named prior_var_beta and
prior_var_delta. Given these inputs, cmpoisreg generates a list of five
results: respective dataframes posterior_beta and posterior_delta
of size num_samples representing the generated posterior distributions for
β and γ ; and accept_beta, accept_delta, accept_mixed providing
the respective acceptance probabilities for β, γ , and (β, γ ). Analysts can
use these outputs to conduct MCMC and produce trace plots and caterpil-
lar plots associated with the respective regression coefficients associated
with μ∗ and ν.

5.2.5 Illustrative Examples

Over- and under-dispersed data examples demonstrate the ability of the
COM–Poisson regression to address and account for data dispersion, thus
resulting in improved performance relative to the Poisson regression.
Over-dispersed examples tend to show that the COM–Poisson regression
performs at best as well as a NB regression while under-dispersed ex-
amples demonstrate more optimal performance for analyzing such data.
Nonetheless, this model flexibility allows for the COM–Poisson regression
to provide an additional tool for determining proper model selection be-
cause varying levels of dispersion may attribute to the perceived dispersion
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initially identified by the analyst when, in truth, there could be differing
levels or even types of dispersion present (Sellers and Shmueli, 2013).
This section considers three data examples where various COM–Poisson
regressions are illustrated and compared with other models: two exam-
ples contain under-dispersed observed response outcomes and one contains
over-dispersed response data. Much of the presented analysis assumes a
constant dispersion for ease of discussion and interpretation; however, one
can consider varying dispersion for these examples as well.

Example: Number of Children in a Subset of German Households

More substantive illustrative examples of COM–Poisson regression are in
its ability to address under-dispersed data. One example of such accommo-
dation is with a well-studied dataset regarding the number of children in
a subset of German households. As introduced in Chapter 2, Winkelmann
(1995) presents data from the 1985 German Socio-Economic Panel where
a random sample of 1,243 women over 44 years of age and in their first
marriages is studied. Let us consider a regression for the number of chil-
dren in association with other variables from the dataset, including years
of schooling (edu), type of training (whether vocational (voc) or univer-
sity (uni)), religious denomination (whether Catholic (cath), Protestant
(prot), or Muslim (musl)), and age at marriage (agemarr). This dataset
allows for direct comparison between the Poisson regression and various
COM–Poisson regression alternatives in order to assess and compare how
different computational techniques impact resulting output and statistical
inference.

Table 5.2 reports the resulting regression coefficients and
standard errors (in parentheses) from the Poisson, CMP (via
COMPoissonReg::glm.cmp and CompGLM::glm.comp, respectively),
and MCMP1 (via mpcmp::glm.cmp and DGLMExtPois::glm.CMP,
respectively) regressions computed in R. The table clearly demonstrates the
superior model performance of the COM–Poisson regressions (i.e. larger
log-likelihood and smaller AIC) than the Poisson model because of the
ability of the former to properly account for data dispersion. In particular,
the COM–Poisson dispersion estimate (under either parametrization) is
approximately γ̂ = 0.355 > 0; thus, ν̂ = exp (γ̂ ) ≈ 1.4262 > 1, which
denotes the presence of data under-dispersion; this result is consistent with
what was initially recognized in Section 2.4.4. Thus, as an aside, it is worth
noting that the NB regression produces the same coefficient estimates
and standard errors as reported for the Poisson model, while the resulting
output regarding the NB dispersion parameter reads



Table 5.2 Coefficient estimates and standard errors (in parentheses) associated with the number of children from women over 44 years of
age and in their first marriage. Respective outputs likewise report the associated log-likelihood and Akaike information criterion (AIC)
associated with each model. The glm.cmp (COMPoissonReg) and glm.comp (CompGLM) functions conduct CMP regression, while the
glm.cmp (mpcmp) and glm.CMP (DGLMExtPois) functions conduct MCMP1 regression. NR = not reported.

Poisson CMP MCMP1
COMPoissonReg::glm.cmp CompGLM::glm.comp mpcmp::glm.cmp DGLMExtPois::glm.CMP

Variable Coeff. SE Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Constant 1.2163 (0.2945) 1.8000 (0.3508) 1.7971 (0.0468) 1.2146 (0.2564) 1.2146 (0.2566)
German −0.1874 (0.0710) −0.2521 (0.0827) −0.2493 (0.3498) −0.1862 (0.0616) −0.1862 (0.0616)
Years of

schooling
0.0345 (0.0325) 0.0477 (0.0375) 0.0457 (0.0825) 0.0348 (0.0283) 0.0348 (0.0284)

Vocational
training

−0.1617 (0.0430) −0.2137 (0.0501) −0.2131 (0.0373) −0.1625 (0.0374) −0.1625 (0.0375)

University −0.1750 (0.1579) −0.2873 (0.1833) −0.2313 (0.0500) −0.1794 (0.1377) −0.1794 (0.1379)
Catholic 0.2176 (0.0707) 0.2904 (0.0822) 0.2880 (0.1811) 0.2164 (0.0615) 0.2165 (0.0616)
Protestant 0.1155 (0.0762) 0.1572 (0.0878) 0.1530 (0.0820) 0.1142 (0.0664) 0.1142 (0.0665)
Muslim 0.5470 (0.0850) 0.7479 (0.1035) 0.7398 (0.0876) 0.5466 (0.0733) 0.5466 (0.0734)
Rural 0.0572 (0.0381) 0.0774 (0.0440) 0.0759 (0.1033) 0.0565 (0.0330) 0.0565 (0.0331)
Age at marriage −0.0286 (0.0062) −0.0386 (0.0074) −0.0380 (0.0439) −0.0286 (0.0054) −0.0286 (0.0054)
Dispersion

parameter
— — 0.3594 (0.0468) 0.3551 (0.0073) 0.3570 (NR) 0.3549 (0.0468)

Log-likelihood −2101.8 −2078.6 −2078.6 −2078.6 −2078.6
AIC 4224.6 4179.3 4179.1 4179.2 4179.2
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Theta: 39037
Std. Err.: 183425

Warning while fitting theta: iteration limit reached

This report illustrates that, because the response data are actually under-
dispersed, the NB regression output mirrors that of the Poisson regression
because the NB model is unable to address data under-dispersion; it can
only account for data equi- or over-dispersion. The large dispersion esti-
mate θ̂ implies that the variance V(Y) = μ + μ2/θ ≈ μ because 1/θ̂ =
2.562 × 10−5 ≈ 0, implying that the variance and mean are approximately
equal (i.e. the data are equi-dispersed). Accordingly, given the constrained
parameter space for optimization, the resulting NB estimates equal the cor-
responding Poisson estimates, while the dispersion parameter θ continues
to grow toward infinity, thus converging to the Poisson model; see Section
1.2 for discussion. The resulting AIC value for the NB model equals 4226.6
(i.e. two more than the Poisson AIC value), accounting for the (unneces-
sary) additional dispersion parameter. Meanwhile, the mpcmp::glm.cmp
function does not allow for varying dispersion; hence, it explicitly reports
the estimated dispersion on the original scale (1.429 ≈ exp (0.3570) in this
example). While all of the COM–Poisson regressions produce the same ap-
proximate log-likelihood, their reported AIC values differ slightly due to
roundoff error.

The MCMP1 regression functions produce nearly identical coefficient
estimates and associated standard errors. The mpcmp::glm.cmp function,
however, does not report a standard error associated with the dispersion
parameter. The MCMP1 regression coefficient and standard error esti-
mates more closely align with the corresponding Poisson values for a
more relatable model comparison, and coefficient interpretation is consis-
tent with that of the usual generalized linear model. The CMP estimates,
however, do not allow for an easy apples-to-apples comparison with the
Poisson estimates because the CMP model considers an association be-
tween λ (which is not the mean vector) and the explanatory variables.
The COMPoissonReg::glm.cmp and CompGLM::glm.comp functions pro-
duce different coefficient estimates and standard errors; however, these
respective estimate results produce the same log-likelihood values; this
demonstrates that the respective computations for the gradient function at
these values is within the error bound. Taking the associated uncertainty
into account as estimated by the reported standard errors likewise shows
that the respective coefficients are reasonably similar under either model.

While all of the COM–Poisson regression model functions
produce output containing the corresponding coefficient tables,
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COMPoissonReg::glm.cmp also reports the estimate and standard
error for ν on the original scale, along with a chi-squared test for
equi-dispersion. For this example, we find that statistically significant
data dispersion exists in this example (Cν = 47.3513, df = 1, p-value
= 5.9338 × 10−12), where COMPoissonReg::glm.cmp likewise reports
that ν̂ = 1.4324 (with standard error 0.067); this infers the presence of
statistically significant data under-dispersion. COMPoissonReg::glm.cmp
further reports the optimization method, elapsed time for estimation,
and convergence status. The mpcmp::glm.cmp meanwhile reports the
null and residual deviance, and AIC along with the coefficient table; the
corresponding log-likelihood value reported in Table 5.2 was deduced
from this function’s reported AIC.

Example: Airfreight Breakage Study

Another illustrative example of an under-dispersed dataset is a small air-
freight study that considers the association between the amount of damage
attained over a series of transit flights. Consider the airfreight breakage
dataset provided in Table 5.3 (supplied in Kutner et al. (2003)), where data
from 10 air shipments is supplied. In this example, each flight carries 1,000
jars on the flight where broken (Yi) denotes the number of broken jars

Table 5.3 Airfreight breakage
dataset, where broken denotes
the number of broken jars
detected following a flight that
involved a number of transfers,
transfers (Kutner et al.,
2003).

broken transfers

16 1
9 0

17 2
12 0
22 3
13 1

8 0
15 1
19 2
11 0
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detected following a flight that involved a number of carton transfers in or-
der for the shipment to reach its destination; transfers (Xi) denotes the
number of times the carton is transferred to subsequent flights (Sellers and
Shmueli, 2010).

Table 5.4 reports the resulting regression coefficients and standard errors
(in parentheses) from the Poisson, CMP, and MCMP1 regressions com-
puted in R. Again, compared to the Poisson model, the COM–Poisson
regressions outperform because of their ability to handle data under-
dispersion. The MCMP1 functions produce nearly identical coefficient
estimates to those from the Poisson model. This is to be expected because
the MCMP1 functions likewise allow for the traditional representation
of a generalized linear model for a loglinear relationship between the
distribution mean and the considered explanatory variables. The corre-
sponding standard errors associated with the MCMP1 models, however,
are smaller than those reported for the Poisson regression. This is a natural
by-product of the MCMP1 model’s ability to address the existing under-
dispersion contained in this dataset. The reported standard errors stemming
from the mpcmp::glm.cmp and DGLMExtPois::glm.CMP functions are
likewise similar to each other, when represented on the same scale. The
mpcmp::glm.cmp function, however, actually reports the dispersion pa-
rameter on the original scale; for this example, it produces a reported ν̂ =
5.306 (i.e. approximately exp (1.6688)). The DGLMExtPois::glm.CMP
function meanwhile reports a dispersion parameter (on the log scale) as
1.7466. The difference in estimated dispersion parameters is presumably
the cause for the slight difference in reported log-likelihoods (−18.6943
and −18.6799) and AICs (43.3886 and 43.3597) for mpcmp::glm.cmp and
DGLMExtPois::glm.CMP, respectively. Such minute differences in the re-
spective metrics, however, demonstrate relatively equivalent performance
between the two functions.

The coefficient estimates stemming from the CMP regressions cannot
readily be compared with those from the MCMP1 regressions because
the underlying CMP parametrization directly associates λ with the ex-
planatory variables via a loglinear model; yet λ does not define the mean
of a CMP distribution. What is curious in this illustration, however, is
that the respective CMP functions do not produce similar coefficient es-
timates. While both functions report estimates based on iterative schemes
that reportedly attain convergence, it is clear from Table 5.4 that the
CompGLM::glm.comp estimates do not adequately represent the poten-
tial MLEs because the associated log-likelihood is smaller than the log-
likelihood reported in association with the COMPoissonReg::glm.cmp



Table 5.4 Coefficient estimates and standard errors (in parentheses) associating the number of broken jars detected following a flight
that involved a number of transfers. Respective outputs likewise report the associated log-likelihood and Akaike information criterion
(AIC) associated with each model. The glm.cmp (COMPoissonReg) and glm.comp (CompGLM) functions conduct CMP regression,
while the glm.cmp (mpcmp) and glm.CMP (DGLMExtPois) functions conduct MCMP1 regression. NA = not applicable; NR = not
reported.

Poisson CMP MCMP1
COMPoissonReg::glm.cmp CompGLM::glm.comp mpcmp::glm.cmp DGLMExtPois::glm.CMP

Variable Coeff. SE Coeff. SE Coeff SE Coeff. SE Coeff. SE

Constant 2.3530 (0.1317) 13.8314 (6.2643) 5.3924 (NA) 2.3534 (0.0582) 2.3533 (0.0560)
transfers 0.2638 (0.0792) 1.4844 (0.6916) 0.5560 (NA) 0.2635 (0.0349) 0.2636 (0.0336)
ln (ν̂) — — 1.7552 (0.4509) 0.8105 (NA) 1.6688 (NR) 1.7466 (0.4491)

Log-
likelihood

−23.1973 −18.6449 −20.3180 −18.6943 −18.6799

AIC 50.3946 43.2898 46.6361 43.3886 43.3597
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function MLEs; clearly, the log-likelihood function has not achieved a max-
imum via the CompGLM::glm.comp function. Even more interesting, the
CompGLM::glm.comp function appears unable to quantify the uncertainty
associated with the coefficient estimates, thus reporting NA for the corre-
sponding standard errors, test statistics, and p-values (see below); this does
not occur with any of the other COM–Poisson regression R functions.

> freight.comp <- glm.comp(lamFormula=broken~transfers,
data = freight)

> summary(freight.comp)

Call:
glm.comp(lamFormula = broken ~ transfers, data = freight)

Beta:
Estimate Std.Error t.value p.value

(Intercept) 5.39239 NA NA NA
transfers 0.55602 NA NA NA

Zeta:
Estimate Std.Error t.value p.value

(Intercept) 0.8105 NA NA NA

AIC: 46.63607
Log-Likelihood: -20.31804

Modifying the starting values for the optimization introduces different
resulting coefficient estimates; however, this does not appear to circum-
vent the issue of uncertainty quantification. Additional input updates in-
cluding the consideration of a different optimization method in optim
or changing the Winsorization bound for the normalizing constant via
sumTo also do not resolve the matter. Upon further inspection of the
freight.comp object, freight.comp$hessian reports a 3 × 3 matrix
whose elements are all NaN. Clearly, this causes the standard errors to
be reported as NA; however, it remains unclear what is causing the Hes-
sian matrix to be reported as NaN. This illustration thus demonstrates
the superior performance of the COMPoissonReg over the CompGLM, and
the need for analysts to use the CompGLM package with caution. Even
still, all of the COM–Poisson models outperform the Poisson regres-
sion because of their ability to account for data under-dispersion. The
COMPoissonReg::glm.cmp object further contains the hypothesis testing
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results ($equitest) that can be used to infer the existence of statistically
significant data dispersion. For this example, $equitest reports the test
statistic ($teststat) equaling 9.104771 with the corresponding p-value
($pvalue) (approximately 0.0025). These results (partnered with either the
reported coefficient estimate associated with the regression model for ν or
the direct ν estimate reported in $DF.nu) imply that the data are statisti-
cally significantly under-dispersed because ν̂ = exp (γ̂0) = exp (1.7552) =
5.7845 > 1.

Example: Number of Faults in Textile Fabrics

Hinde (1982) provided data regarding the number of faults in rolls of fabric
along with the length of the respective rolls. The resulting 32 observa-
tions were then analyzed and modeled via a compound Poisson regression
model where the number of faults served as the response variable, and the
roll length (i.e. the explanatory variable) was considered on the log-scale.
While the discussion of the compound Poisson regression is outside of the
scope of this reference, it was observed that the textile fabric data were
over-dispersed. Subsequent discussion here thus considers various regres-
sion models for analyzing these count data, including the Poisson, NB, and
MCMP1 (via the mpcmp and DGLMExtPois packages), where each model
considers the loglinear relation

ln (μ) = β0 + β1 ln (X), (5.24)

with X denoting the roll length of the fabric. The CMP regression (via
COMPoissonReg) is likewise considered with the model ln (λ) = β0 +
β1 ln (X).

Table 5.5 reports the resulting coefficient estimates and standard errors
(in parentheses) for the respective models, along with the correspond-
ing AIC. The dispersion estimates are likewise reported, along with their
respective standard error; these measures, however, are reported on dif-
fering scales, and thus are not necessarily directly comparable. Of the
five considered models, the NB regression is the optimal selection (AIC
= 181.38), while the Poisson regression is the worst performer (AIC =
191.82) showing essentially no empirical support (�P = 10.44) rela-
tive to the NB model. The COM–Poisson models perform at comparable
levels with the CMP model (via COMPoissonReg) having the smallest
AIC (183.61 versus 183.80 for mpcmp and DGLMExtPois) among the
COM–Poisson models. They all fall just shy of being considered to have
substantial empirical support relative to the NB model (�CMP = 2.23 and
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Table 5.5 Coefficient estimates and standard errors (in parentheses) associating
the number of faults in rolls of fabric with the logarithm of the corresponding roll
length. Respective outputs likewise report the corresponding Akaike information
criterion (AIC) for each model. CMP regression was conducted via the
COMPoissonReg package, while MCMP1 regressions were performed via the
mpcmp and DGLMExtPois packages, respectively. NR = not reported. Dispersion
measures are reported on varying scales (with standard errors rounded to two
decimal places) as provided in the respective outputs and do not allow for direct
comparison.

Constant log(RollLength) Dispersion
Est. SE Est. SE Est. SE AIC

Poisson −4.1741 (1.1352) 0.9971 (0.1759) — — 191.82
Negative

binomial
−3.7959 (1.4576) 0.9379 (0.2279) 8.6713 (4.17) 181.38

CMP
(COMPoisson-
Reg)

−2.2647 (0.9375) 0.5052 (0.1742) −0.7869 (0.30) 183.61

MCMP1
(mpcmp)

−4.1306 (1.5296) 0.9904 (0.2375) 0.4666 (NR) 183.80

MCMP1
(DGLMExtPois)

−4.0896 (1.5350) 0.9841 (0.2384) −0.7773 (0.30) 183.80

�MCMP1 = 2.42, respectively); however, they are considerably closer to that
designation rather than classifying as having considerably less empirical
support relative to the NB; see Table 1.2.

The Poisson, NB, and MCMP1 models allow analysts to compare coeffi-
cient estimates for β0 and β1 directly because each of these regressions has a
traditional generalized linear model form, as illustrated in Equation (5.24).
Accordingly, the respective estimates for β0 and β1 all lie within one stan-
dard deviation from each other. Their corresponding dispersion estimates
are not directly comparable, however; the NB dispersion is reported on the
raw scale, while dispersion for the MCMP1 regression (whether mpcmp or
DGLMExtPois) is reported on the logarithmic scale. The MASS::glm.nb
output for the NB regression reports the dispersion parameter as θ = r;
recall the discussion of the NB distribution in Section 1.2. In this example,
r̂ = 8.6713 > 1 infers a less extreme case of over-dispersion than repre-
sented by the geometric distribution, while at the same time, the dispersion
measure is not substantially large to argue potential convergence toward in-
finity (and thus considers the Poisson regression). This contributes toward
explaining why the NB regression outperforms all of the other presented
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models with respect to AIC, including the COM–Poisson regressions (irre-
spective of parametrization and the associated R package and code). At the
same time, however, it is interesting to note that both MCMP1 regression
packages (i.e. mpcmp and DGLMExtPois) report the same approximate AIC
value (to two decimal places), while their respective dispersion estimates
have different signs. Their reported dispersion estimates are directly com-
parable because both models consider the same loglinear model to describe
dispersion (ln (ν̂) = γ̂0), where the dispersion estimate obtained via mpcmp
implies that the dispersion ν̂ = exp (0.4666) > 1 (i.e. under-dispersion),
while ν̂ = exp (−0.7773) < 1 (i.e. over-dispersion) via DGLMExtPois. The
COMPoissonReg package likewise produces dispersion and standard er-
rors that align with those supplied by DGLMExtPois; the COMPoissonReg
ν̂ = exp (−0.7869) < 1 with a reported standard error equal to that from
DGLMExtPois. The COMPoissonReg and DGLMExtPois dispersion esti-
mates indicate data over-dispersion, agreeing with the assessment obtained
via the NB regression; however, we cannot directly compare the estimated
amount of dispersion between the NB and COM–Poisson distributions, re-
spectively, on the basis of their respective reported dispersion estimates.
All three models (NB and the COM–Poisson regressions attained via the
COMPoissonReg and DGLMExtPois packages) report estimated standard
errors that infer a statistically significant level of data over-dispersion. Un-
fortunately, however, the mpcmp output only reports a dispersion estimate
(which, in this case, implies data under-dispersion) without a correspond-
ing standard error, so it is unclear if the quantified variation in their estimate
perhaps infers that the dispersion may not be statistically significant (i.e.
the standard error may be sufficiently large); this would help to explain the
differing sign for the estimate.

The cmpoisreg function (combayes) performs the Bayesian ACMP
regression with the aid of the mvnfast package. For this example, the code

textile.res <- cmpoisreg(y=textile$NoOfFaults,
X=log(textile$RollLength),
num_samples=1e4, burnin=1e3,
prior_var_beta=diag(2),
prior_var_delta=diag(2))

considers the model of interest for both μ∗ and ν (i.e. ln (μ∗) = β0 +
β1 ln (RollLength) and ln (ν) = γ0 + γ1 ln (RollLength)) with 10,000 gen-
erated values for β and γ , respectively, starting from bivariate normal
prior distributions each with 2 × 2 identity matrices for the respective
variance–covariance matrices and an initial burn-in of 1,000 generated
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(a) (b)
Figure 5.1 Trace and density plots associated with textile fabrics example for (a) β

(b) γ ; RL = RollLength.

outcomes; recall (as discussed in Section 5.2.4) that the combayes package
uses delta instead of gamma to denote the parameters associated with ν.
The resulting trace and density plots associated with β and γ , respectively,
are contained in Figures 5.1(a)–(b), while the acceptance probabilities are
0.185 for β, 0.525 for γ , and 0.183 for (β, γ ).

Figures 5.2(a)–(b) supply the respective caterpillar plots that show the
estimates, and 68% and 95% credible intervals for β and γ , respectively.
The respective means are approximately β̂ = (−1.1103, 0.4927) and
γ̂ = (−0.4292, 0.2371). Of the four credible intervals displayed, however,
only the 95% credible interval for β1 does not contain 0. Meanwhile, the
68% credible intervals for β0, β1, and γ1 do not contain 0; only the 68%
credible interval for γ0 contains 0. Recalling that the underlying model for
ν is ln (ν) = −Gγ , we then see that the variable model for ν implies vary-
ing levels of potential data over-dispersion regarding the number of faults
observed relative to the roll length of the fabric.

The cmpoisreg function seems to currently require the same model
form for μ∗ and ν. Naive attempts to modify the variance–covariance struc-
ture for γ (e.g. to only consider constant dispersion via γ0) produced errors
noting unequal size in relation to the number of columns for the design ma-
trix. Further, it is currently unclear how to conduct a comparable Bayesian
analysis that allows only for a constant dispersion.
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Figure 5.2 Credible intervals associated with textile fabrics example for (a) β (b)
γ ; RL = RollLength. Inner and outer intervals, respectively, represent 68% and
95% credible intervals.

5.3 Accounting for Excess Zeroes: Zero-inflated
COM–Poisson Regression

Excess zeroes relative to a chosen distribution are frequently encountered
in count datasets (in particular, those with substantially small sample mean
values). A common feature of such data is that the expected number of
zeroes decreases as the count distribution’s mean increases (Brooks et al.,
2017). While excess zeroes give way to apparent data over-dispersion, NB
models do not necessarily perform well with such data because they may
under-predict the frequency of zeroes (or overestimate nonzero count val-
ues). In fact, any sort of analysis that ignores zero-inflation or attempts to
compensate for it via a model for over-dispersion runs the risk of producing
parameter estimates that are biased. Accordingly, many works (e.g. Famoye
and Singh, 2006; Greene, 1994; Lambert, 1992) consider zero-inflation
along with various count data models. Several such distributions (including
zero-inflated Poisson (ZIP), and zero-inflated negative binomial regression)
are available for modeling, for example, in the Vector Generalized Linear
and Additive Models (VGAM) package in R (Yee, 2008).

Excess zeroes are commonly cited as a cause for data over-dispersion;
see, for example, Hilbe (2007). This is generally true because, while also
affecting the variance, the zero observations contribute to a smaller mean
than an analogous dataset where excess zeroes do not exist. The assertion
that excess zeroes cause data over-dispersion, however, is not unilaterally
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accurate. There can exist data structures with underlying data under-
dispersion such that the inclusion of excess zeroes can result in perceived
data equi- or (still) under-dispersion (Sellers and Shmueli, 2013). Sellers
and Raim (2016) argue that analysts should consider a flexible distribution
that not only can account for excess zeroes but can also address potential
underlying over- or under-dispersion, and develop a zero-inflated Conway–
Maxwell–Poisson (ZICMP) regression to model the relationship between
response and explanatory variables while accounting for excess zeroes
and significant data dispersion. Other models based on ZI COM–Poisson
parametrizations can likewise be considered; Section 5.3.1 discusses the
various possible model formulations for ZI COM–Poisson regression.

This section focuses solely on addressing excess zeroes; therefore, re-
search that incorporates zero-inflation within a broader analytical context
(e.g. clustered data analysis in Section 5.4 (Choo-Wosoba and Datta, 2018;
Choo-Wosoba et al., 2016)) is discussed in later sections.

5.3.1 Model Formulations

The COM–Poisson distribution (under any parametrization) can be gener-
alized to allow for excess zeroes by considering a random sample Yi, i =
1, . . . , n, where

Yi ∼
{

0 w.p. πi∗
COM–Poisson w.p. 1 − πi∗.

(5.25)

Under this framework, the resulting probability mass function can be
represented as a Bernoulli probability form where the associated proba-
bilities stemming from the respective COM–Poisson parametrization for
y = 1, 2, 3, . . . are multiplied by 1−πi∗, and the zero probability equals the
sum of πi∗ and (1−πi∗) times the corresponding COM–Poisson probability
mass at zero. For example, the CMP parametrization described in Equation
(2.8) implies that the ZICMP distribution has the form

P(Yi = yi) =
(

πi∗ + 1 − πi∗
Z(λi, νi)

)ui
[

(1 − πi∗)λyi
i

(yi!)νi Z(λi, νi)

]1−ui

, y = 0, 1, 2, . . . ,

(5.26)

for ui = 1(0) if yi = (�=)0. The corresponding log-likelihood function is
(Sellers and Raim, 2016)
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ln L(λ, ν, π∗;y) =
n∑

i=1

{ui ln (πi∗Z(λi, νi) + (1 − πi∗))

+ (1 − ui)[ ln (1 − πi∗) + yi ln (λi)

−νi ln (yi!)] − ln Z(λi, νi)} . (5.27)

Similarly, the MCMP1 form described in Equation (2.51) produces a zero-
inflated MCMP1 (ZIMCMP1) model with an analogous log-likelihood
form as displayed in Equation (5.27) where λ(μi, νi) replaces λi. For the
special case where equi-dispersion holds (i.e. νi = 1 for all i), ZICMP and
ZIMCMP1 modeling reduce to ZIP modeling. Meanwhile, when νi = 0
and λi < 1 for all i, they reduce to zero-inflated geometric (ZIG) modeling;
and when νi → ∞ for all observations, the ZICMP and ZIMCMP1 models
reduce to a (model-adjusted) logistic regression.

The ACMP probability mass function (Equation (2.48)) meanwhile
implies that zero-inflated ACMP (ZIACMP) has the probability

P(Yi = yi) =
(

πi∗ + 1 − πi∗
Z1(μi∗, νi)

)ui
[

(1 − πi∗)
1

Z1(μi∗, νi)

(
μ

yi
i∗

yi!
)νi

]1−ui

,

y = 0, 1, 2, . . . (5.28)

thus producing the associated log-likelihood

ln L(μ∗, ν, π∗; y) =
n∑

i=1

{ui ln (πi∗Z1(μi∗, νi) + (1 − πi∗))

+ (1 − ui)[ ln (1 − πi∗)

+νiyi ln (μi∗) − νi ln (yi!)] − ln Z1(μi∗, νi)} . (5.29)

Similarly, the MCMP2 probability mass function (Equation (2.53)) induces
a zero-inflated MCMP2 (ZIMCMP2) probability

P(Yi = yi) =
(

πi∗ + 1 − πi∗
Z2(μi,φi)

)ui

[

(1 − πi∗)

(

μi + eφi − 1

2eφi

)yeφi

(y!)−eφi

Z2(μi,φi)

]1−ui

, y = 0, 1, 2, . . .

(5.30)
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thus producing a log-likelihood of the form

ln L(μ, φ, π∗; y) =
n∑

i=1

{

ui ln (πi∗Z2(μi,φi) + (1 − πi∗))

+ (1 − ui)
[

ln (1 − πi∗)

+yie
φi ln

(

μi + eφi−1

2eφi

)

−eφi ln (yi!)
]
− ln Z2(μi,φi)

}

.

(5.31)

Under all of the aforementioned COM–Poisson formulations, the pa-
rameters can be modeled via the canonical link-generalized linear models
(e.g. a loglinear model associating the intensity parameter (whether λ,
μ∗, λ(μ, ν), or μ) with Xβ, where β = (β1, . . . ,βp1 )

T; and a logis-
tic model for the zero probability vector, i.e. logit(π∗) = Wζ where
ζ = (ζ0, . . . , ζp3−1)T). The dispersion parameter ν can either be consid-
ered as a constant across observations (i.e., νi ≡ ν for all i) or likewise
modeled via the loglinear link, ln (ν) = Gγ , where γ = (γ0, . . . , γp2−1), to
ensure nonnegativity in the resulting value for ν. The ZIMCMP2 construct,
however, already accounts for and reparametrizes the dispersion as ν = eφ;
hence, one can directly consider φ = Gγ .

A Further Extension: The ZISCMP Regression

The sum-of-CMPs (sCMP) distribution introduced in Section 3.2 proves
valuable in many contexts. Here, it is helpful in establishing a zero-inflated
sCMP (ZISCMP) regression. Constructed analogously to the Lambert
(1992) ZIP and Sellers and Raim (2016) ZICMP models, this model is like-
wise a flexible tool for analyzing count data containing an excess number of
zeroes among response counts that also contain significant data dispersion.
Defining Y = (Y1, . . . , Yn)′ to be the response vector where

Yi ∼
{

0 with probability πi∗
sCMP(λi, νi, m) with probability 1 − πi∗,

(5.32)

the resulting probability mass function is

P(Yi = yi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

πi∗Zm(λi, νi) + (1 − πi∗)

Zm(λi, νi)
for yi = 0

(1 − πi∗)λyi
i

(yi!)νi Zm(λi, νi)

yi∑

c1,...,cm=0
c1+···+cm=yi

(
yi

c1 · · · cm

)ν

for yi = 1, 2, 3, . . . ,

(5.33)
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where m is a count value, and the association between the response and
covariate terms is modeled via analogous canonical forms as considered
for the CMP parameters above, namely ln (λ) = Xβ, ln (ν) = Gγ , and
logit(π∗) = Wζ , where β = (β0, . . . ,βp1−1)T, γ = (γ0, . . . , γp2−1), and
ζ = (ζ0, . . . , ζp3−1)T are the unknown parameters (Sellers and Young,
2019). The special case where m = 1 simplifies to the ZICMP model. The
ZISCMP model has the resulting log-likelihood

ln L(λ, ν, π∗ | X, G, W, m)) =
n∑

i=1

⎧
⎪⎨

⎪⎩
ui ln (πi∗Zm(λi, νi) + (1 − πi∗))

+ (1 + ui)

⎡

⎢
⎣ ln (1 − πi∗) + yi ln (λi) − νi ln (yi!)

+ ln

⎛

⎜
⎝

yi∑

c1,...,cm=0
c1+···+cm=yi

(
yi

c1 · · · cm

)ν
⎞

⎟
⎠

⎤

⎥
⎦ − m ln (Z(λi, νi))

⎫
⎪⎬

⎪⎭
, (5.34)

where ui is the indicator value noting when Yi = 0 (i.e., ui = 1) or not
(ui = 0).

5.3.2 Parameter Estimation

Frequentist Approach

The method of maximum likelihood is a natural approach for parameter es-
timation, determining those parameter estimates β̂, γ̂ , ζ̂ that maximize the
log-likelihood of interest (i.e. Equations (5.27), (5.29), (5.31), or (5.34) for
ZICMP or ZIMCMP1, ZIACMP, ZIMCMP2, or ZISCMP regression, re-
spectively). Analysts interested in only considering a constant dispersion
can constrain γ = γ 0. Assuming m to be discrete in the ZISCMP regres-
sion allows for a “profile likelihood” approach toward estimating the other
parameters. This method simplifies the overall model structure’s complex
computational nature.

As described in Section 2.4.2, a closed-form solution does not exist for
the MLEs; thus, statistical computing (e.g. via R) is required in order to con-
duct a Newton-type optimization procedure that identifies the estimates that
maximize the log-likelihood; see Section 5.5 for details. Natural starting
values for any such Newton-type algorithm are the MLEs attained assum-
ing a ZIP model. Under this construct, the initial dispersion parameter value
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is ν(0) = 1 (i.e. γ (0) = 0). Standard errors associated with the parameter
estimates are obtained by deriving the Fisher information matrix, attain-
able from some optimization functions via the approximate corresponding
Hessian matrix that can retained as output. The Fisher information matrix
for the ZISCMP model is a nonorthogonal, block symmetric matrix whose
components can likewise be determined. In all cases, the corresponding
standard errors can be obtained by isolating the diagonal components of
the inverted resulting Fisher information matrix.

Bayesian Formulation

Alternatively, one can consider a full Bayesian approach for parame-
ter estimation and inference where L(θ ; D) denotes the likelihood asso-
ciated with a ZI COM–Poisson-inspired model (whose log-likelihoods
are supplied within Equations (5.27)–(5.31) for the various ZI COM–
Poisson parametrizations and Equation (5.34) for ZISCMP) that is a
function of θ = (β ′, γ ′, ζ ′)′ given n independent observations D =
((y1, u1, x1, g1, w1), . . . , (yn, un, xn, gn, wn)), and ui = 1(0) if yi = 0 (oth-
erwise) for i = 1, . . . , n. Barriga and Louzada (2014), for example, further
assume the parameters β, γ , and ζ to be independent a priori (i.e. π(θ ) =∏p1−1

i=0 π(βi)
∏p2−1

i=0 π(γi)
∏p3−1

i=0 π(ζi)) with respective normal prior distribu-
tions βj ∼ N(0, σ 2

βj
), j = 0, . . . , p1 − 1; γk ∼ N(0, σ 2

γk
), k = 0, . . . , p2 − 1;

and ζl ∼ N(0, σ 2
ζl

), l = 0, . . . , p3 − 1, where the hyperparameters have
noninformative priors. While these assumptions are proposed only in the
consideration of the ZIACMP model, they are reasonable for any of the ZI
COM–Poisson-inspired models described in Section 5.3.1.

The joint posterior distribution for θ determined by π(θ |D) ∝
L(θ ; D)π(θ ) is difficult to analyze directly; however, Gibbs sampling
with the Metropolis–Hastings algorithm offers some understanding of the
joint posterior form. The expectation–maximization (EM) algorithm is an-
other popular technique for parameter estimation in a zero-inflated model;
however, no published works to date utilize this approach for the ZI
COM–Poisson regressions under any parametrization.

5.3.3 Hypothesis Testing

Analogous to the discussion in Section 5.2.3, one can conduct a hypothesis
test to assess whether a statistically significant amount of data dispersion
exists such that a ZI COM–Poisson model (under any parametrization) is
considered more appropriate than a ZIP model. For example, Sellers and
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Raim (2016) consider the constant dispersion ZICMP model and hypothe-
ses, H0 : ν = 1 versus H1 : ν �= 1, because the concern does not center
around the type of potential data dispersion but rather the existence of any
such form (whether under- or over-dispersion). The likelihood ratio test
statistic is

Cν = −2 ln�ν = 2 ln L(β̂, ν̂, ζ̂ ) − 2 ln L(β̂0, ν̂0 = 1, ζ̂ 0), (5.35)

where ln L(β̂, ν̂, ζ̂ ) and ln L(β̂0, ν̂0 = 1, ζ̂ 0) denote the respective log-
likelihood values associated with the ZICMP and ZIP MLEs, respectively.
Computing Cν is straightforward because the respective log-likelihood val-
ues are easily extracted as outputs from computational tools in R. Under
the null hypothesis, Cν has an approximate χ2 distribution with one de-
gree of freedom. Generalizing to the variable model is straightforward and
conducted in a manner analogous to that described in Section 5.2.3.

One can also conduct a test for zero-inflation, e.g. H0 : π∗ = 0 versus
H1 : π∗ > 0 for the case where π∗ does not depend on covariates. The test
is measured through the likelihood ratio test statistic,

Cπ∗= − 2 ln�π∗ = 2 ln L(β̂, ν̂, ζ̂ ) − 2 ln L(β̂0, ν̂0, ζ̂ 0 = 0)
d→ 0.5p0 + 0.5χ2

1 ,
(5.36)

where p0 denotes the probability at zero. Numerical issues can arise, how-
ever, when applying this test in practice; thus, an alternative approach is to
conduct a null bootstrapping procedure to obtain p-values associated with
zero-inflation (Choo-Wosoba and Datta, 2018). While these tests are de-
scribed for the ZICMP regression, they can likewise be pursued assuming
any of the other parametrizations described in Section 5.3.1.

5.3.4 A Word of Caution

While zero-inflated models such as the ZIP, ZINB, or any of the
parametrized ZI COM–Poisson models are useful for describing data con-
taining excess zeroes, analysts should be mindful of the underlying process
that generated the data and not use such models where the data do not ex-
hibit two distinct generating processes (Kadane et al., 2006b; Lord et al.,
2008). At the same time, while the COM–Poisson can predict more ze-
roes than the NB model for the same mean value, neither should be used
as a direct substitute to zero-inflated models when such formulations are
appropriate (Kadane et al., 2006b).
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5.3.5 Alternative Approach: Hurdle Model

Hurdle models serve as an alternative approach to account for excess ze-
roes, where the random variable of interest has zero and nonzero probability
components (e.g. Choo-Wosoba et al. (2018)). Let Y = (Y1, . . . , Yn)′ be a
response vector such that

Yi ∼
{

0 with probability πi∗
zero-truncated CMP(λi, νi) with probability 1 − πi∗,

(5.37)

where a zero-truncated CMP (ZTCMP) distribution has the probability
mass function

P(Yi = y | Yi > 0) = λ
y
i

(y!)νi [Z(λi, νi) − 1]
, y = 1, 2, . . . . (5.38)

A common approach in hurdle modeling is to account for the excess zeroes
via a probit model, in which case, Yi has the distribution

P(Yi = y) =
{

1 − (Wiζ ) y = 0

 (Wiζ ) · λ
y
i

(y!)νi [Z(λi,νi)−1] y = 1, 2, . . .,
(5.39)

where λ and ν can both be modeled via loglinear links, i.e. ln (λ) = Xβ and
ln (ν) = Gγ , respectively. While the above represents a hurdle CMP regres-
sion, analogous hurdle COM–Poisson models can be formulated based on
the alternate COM–Poisson parametrizations described in Section 2.6. As
is the case with its zero-inflated analog, hurdle COM–Poisson regression
models outperform their corresponding hurdle Poisson regression models
when significant dispersion is present and performs comparably otherwise.

5.4 Clustered Data Analysis

Clustered data often result from situations that introduce some measures of
within-cluster correlation. Common examples include repeated measures,
hierarchical constructs, and longitudinal studies. Count data containing
such interdependence naturally violate the usual random sample assump-
tion. This violation usually leads to observed over-dispersion if the data are
assumed to be independent and identically distributed. Longitudinal count
data (i.e. discrete data collected from repeated measurements on a subject)
serve as an example of clustered data in that they contain a within-subject
correlation. Ways to address the dependence in this scenario range from
directly accounting for the correlation within clusters (e.g. Choo-Wosoba
et al., 2016), to considering a mixed-effects Poisson model that relaxes the
equi-dispersion assumption by parametrizing subject-level variability. The
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Poisson longitudinal model, however, assumes that the underlying count
mechanism (minus the longitudinal structure) exhibits equi-dispersion. Al-
ternatively, a longitudinal COM–Poisson regression model allows analysts
to model additional variability due to the correlation of repeated measures
as well as the over- or under-dispersion of the underlying count process.
Various works have considered the analysis of clustered count data via a
(zero-inflated) COM–Poisson model. All of the constructs considered in
this section assume a constant dispersion for their (ZI)CMP model. This
assumption is arguably sufficient for most applications; a varying disper-
sion can lead to an identifiability issue or other issues regarding modeling,
computation, and/or convergence (Choo-Wosoba and Datta, 2018).

Choo-Wosoba et al. (2016) consider a general ZICMP regression for
clustered data that incorporates correlation and propose two methods for
analysis: (1) a modified expectation–solution (MES) approach that contains
a cluster bootstrap-based variance estimator and (2) a maximum pseudo-
likelihood (MPL) approach that includes an adjusted variance estimator to
address the interdependence in clusters. This construct builds on the Sellers
and Raim (2016) ZICMP parametrization (Equation (5.25)) where clus-
tered responses {Yij} are assumed for the jth observation (1 ≤ j ≤ mi) in
the ith cluster (1 ≤ i ≤ M) with a constant dispersion ν for all subjects,
while the shape parameters λij and zero-inflation parameters pij vary with
each subject. As defined, correlation is assumed within the cluster but not
across clusters. The EM algorithm is not appropriate for clustered data and
the expectation–solution (ES) algorithm of Rosen et al. (2000) only applies
to exponential dispersion families (of which the CMP is not; see Section
2.3); thus, Choo-Wosoba et al. (2016) instead create an MES to estimate
the coefficients associated with λ (i.e. β via ln (λ) = Xβ with correlation
coefficient ρ) and p (i.e. ζ via the model, logit(p) = Wζ with correlation
coefficient η).

This MES algorithm assumes a complete pseudo-log-likelihood

ln Lc(β, ζ , ν; yij, wij) =
M∑

i=1

mi∑

j=1

ln Lij(β, ζ , ν; yij, uij)

=
M∑

i=1

mi∑

j=1

wij ln (pij) +
M∑

i=1

mi∑

j=1

(1 − wij) ln (1 − pij)

+
M∑

i=1

mi∑

j=1

(1−wij)(yij ln (λij)−ν ln (yij!)−ln (Z(λij, ν))),

(5.40)
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where wij = 1(0) if yij = 0 ( �= 0) is a latent indicator function
accounting for zeroes. The authors refer to Equation (5.40) as a “pseudo-
likelihood” because the individual terms are assumed independent of each
other. The MES algorithm takes this equation and alternates between
an expectation step and a solution step until convergence is reached.
The expectation step calculates the expectation E( ln Lc(β, ζ , ν; y, w)) =∑M

i=1

∑mi

j=1 ln L(β, ζ , ν; yij, E(wij)) as defined in Equation (5.40), where w(k)

denotes the result from

E(wij) = pij

pij + (1 − pij)/Z(λij, ν)

for all i, j in the kth iteration. The solution step applies this value to es-
timate β and ζ via generalized estimating equations (GEE) to update
from β (k), ζ (k) to β (k+1), ζ (k+1), while ν is estimated and thus updated via
a pseudo-likelihood equation to obtain ν(k+1). The pscl (Jackman et al.,
2017) ZIP estimates provide starting values for the MES algorithm. The
MPL estimation method is an alternative approach to estimate β, ζ , and ν
where the observed log-transformed pseudo-likelihood

ln Lo(β, ζ , ν; yij) =
M∑

i=1

mi∑

j=1

I{yij≥1}[ ln (1 − pij) + yij ln (λij) − ν ln (yij!)

− ln (Z(λij, ν))]

+
M∑

i=1

mi∑

j=1

I{yij=0} ln [pij + (1 − pij)/Z(λij, ν)] (5.41)

is considered with a sandwich variance to address the interdependency
within clusters. The standard errors for the coefficient estimates obtained
via MPL are derived via an adjusted sandwich variance method, while the
standard errors corresponding to the MES-attained estimators are obtained
via a cluster bootstrapping scheme. The cluster bootstrap method is actu-
ally a reasonable approach for obtaining variance estimates associated with
the estimated coefficients from either approach. Some R packages that can
compute the sandwich variances, however, will not produce estimates com-
parably to those attained using a bootstrap estimate (Choo-Wosoba et al.,
2016).

The MES method produces slightly more efficient estimators than those
attained via the MPL method; Choo-Wosoba et al. (2016) attribute the
added efficiency to using a working variance–covariance matrix (e.g. GEE);
however, this occurs at a computational cost. The MPL approach, mean-
while, produces a closed-form variance estimator. This approach (like all) is
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not immune to convergence issues; for datasets where such issues arise, an-
alysts can try changing the initial values, consider a different optimization
method, etc.

Instead of a generally defined (ZI)CMP regression that allows for cluster-
ing, one can construct a mixed-effects model that assumes normal random
intercepts to handle within-cluster interdependence (Choo-Wosoba and
Datta, 2018; Morris and Sellers, 2022). Let Yij (conditioned on the ran-
dom effect ui associated with Cluster i) have a (ZI)CMP distribution with
parameters λij and ν, where

ln (λij) = β0 + β1xij1 + · · · + βpxijp + ui
.= Xijβ + ui, (5.42)

with ui normally distributed with mean 0 and variance σ 2. This model
produces the conditional log-likelihood ln L(λij, ν | yij) that has a form
analogous to Equation (2.9), where λij is defined in Equation (5.42), thus
producing a marginal log-likelihood

ln L(β, ν, σ 2 | y) =
M∑

i=1

mi∑

j=1

yij ln (λij) − ν
M∑

i=1

mi∑

j=1

ln (yij!) −
M∑

i=1

ln (σ
√

2π )

+
M∑

i=1

ln

⎛

⎝
∫

ui

eui
∑mi

j=1 yij−u2
i /2σ

2

⎛

⎝
mi∏

j=1

Z(λije
ui , ν)

⎞

⎠

−1

dui

⎞

⎠.

(5.43)

Incorporating excess zeroes is further possible via a logistic model
logit(p) = Wζ such that the likelihood function for the ith cluster is

Li(β, ν, σ 2 | y) =
∫ ∞

−∞

⎡

⎣
mi∏

j=1

{

I[Yij=0]

(

pij + 1 − pij

Z(λij, ν)

)

+ I[Yij≥1]

(

(1 − pij) · λ
yij

ij

(yij!)νZ(λij, ν)

)}]

p(ui)dui.

(5.44)

Neither Equation (5.43) nor (5.44) has a closed form for easy integra-
tion. One can, however, obtain MLEs for β, ν, and σ 2 in R by numerically
integrating the equation to obtain an approximated marginal log-likelihood
for Cluster i (i.e. ln (L̃i)), say via the integrate function or approximating
the integral via Gaussian–Hermite quadrature (the fastGHQuad (Blocker,
2018) package in R) to obtain the approximated log-likelihood across clus-
ters, ln (L̃) = ∑M

i=1 ln (L̃i). Analysts, however, should be mindful when
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utilizing the Gaussian–Hermite quadrature method because it relies heav-
ily on choosing a good number of quadrature points. Nonetheless, ln (L̃)
can then be maximized to obtain the MLEs β̂, ν̂, and σ̂ 2, either via nlminb
in order to take into account the constrained space for ν, or one can first
transform the parametrization from ν to ln (ν) to allow for unconstrained
optimization and utilize the alternative optimization functions such as nlm
or optim. Morris et al. (2017) meanwhile describe how to conduct this
analysis via SAS; see Section 5.7.2. The ZICMP mixed-effects model can
further consider incorporating a random intercept into the logistic model
for p and conduct parameter estimation as described. Variation can be es-
timated via the usual inverse of the approximate Fisher information matrix
(achieved by obtaining the approximate Hessian matrix associated with the
MLEs from optim) or, for added robustness in the case of model mis-
specification, an estimated sandwich variance–covariance matrix via the
Gaussian–Hermite quadrature.

This mixed-effects approach cannot incorporate a large number of
random effects because the approximate log-likelihood is obtained via
computationally expensive numerical procedures. The Gaussian–Hermite
quadrature procedure particularly faces difficulties estimating more elab-
orate correlation structures beyond equi-correlation (Choo-Wosoba et al.,
2018) and can produce biased results in the approximate log-likelihood
function. A Bayesian ZICMP regression for clustered data is a viable alter-
native that can allow for broader correlation structures and dependencies.
Choo-Wosoba et al. (2018) combine the Bayesian ZICMP analytic ap-
proach with the hurdle CMP model (both described in Section 5.3) while
incorporating random effects. The zero model assumes a probit regres-
sion with mixed effects to determine the probability of a nonzero outcome
P(Yij > 0) =  

(
Wijζ + Uijδ

(1)
i

)
while ln (λij) = Xijβ + Uijδ

(2)
i , and ν

remains constant. Accordingly, Yij now has the distribution

P(Yij = y) =
{

1 − (Wijζ + Uijδ
(1)
i ) y = 0

 (Wijζ + Uijδ
(1)
i ) · λ

y
ij

(y!)ν [Z(λij,ν)−1] y = 1, 2, . . .,
(5.45)

where the random effects associated with the ith cluster have an MVN
distribution with a zero mean and variance–covariance matrix, ! (i.e.
(δ(1)

i , δ(2)
i )′ ∼ MVN(0,!)), and β and ζ are likewise MVN distributed with

zero means and variance–covariance matrices, �β and �ζ , respectively.
Meanwhile, ! assumes an inverse Wishart prior, and ν has a lognormal
prior with median at 1 and 95% probability between 0.38 and 2.66. The
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hyperparameters can be determined either by subject-matter experts or as-
sumed as proper, weakly-informative priors. An iterative MCMC sampling
scheme can aid with inference since the zero-inflated/hurdle CMP does not
have a closed form; see Choo-Wosoba et al. (2018) for an example algo-
rithm. Analogous to Section 5.3.5, hurdle CMP mixed-effects models are
shown to perform at least comparably to hurdle Poisson mixed-effects mod-
els and outperform such models when significant data-dispersion exists.
One should note however that, where a frequentist approach can face dif-
ficulties approximating the likelihood, the Bayesian scheme circumvents
such issues producing a more flexible random effects design matrix. This
requires a considerable computation time, however, to perform the updates.

5.5 R Computing for Excess Zeroes and/or Clustered Data

Of the four regression functions described in Section 5.2.4, only the
COMPoissonReg:glm.cmp and glmmTMB functions can conduct ZI COM–
Poisson regression. The glm.cmp function conducts ZICMP regression,
estimating the regression parameters via the method of maximum like-
lihood. The function defaults to consider the constant dispersion zero-
inflated model (i.e. formula.nu = 1) but allows for variable dispersion,
while the analyst provides the model description for the loglinear model
ln (λ) = Xβ and logistic model logit(π∗) = Wζ in the formula.lambda
and formula.p, respectively.

The glm.cmp utilizes the optim procedure in R to estimate the (ZI)CMP
parameters; however, the MLEs for any of the respective zero-inflated
models can be determined numerically via other computational tools (e.g.
nlminb, nlm). These procedures require specifying an objective function
to be minimized and a starting point from which to apply one of the afore-
mentioned Newton-type algorithms. These R optimization functions are
set to minimize the objective function; hence, the objective function must
be defined to be the negated log-likelihood function (Equation (5.27) for
ZICMP or its analog for ZIMCMP1, Equation (5.29) for ZIACMP, or Equa-
tion (5.31) for ZIMCMP2); accordingly, the resulting values that minimize
the objective function maximize the likelihood function (i.e. the resulting
values are the MLEs). The ZIP estimates obtained from the zeroinfl
function in the pscl package (Jackman et al., 2017) serve as natural start-
ing values for the respective algorithms. Accordingly, analysts can set
beta.init equal to the ZIP estimates and gamma.init = 0, although
other starting values can be supplied as well. While any of the Newton-
type algorithms can optimize the log-likelihood of interest, Sellers and
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Young (2019) found nlminb to be most efficient for ZISCMP parameter
estimation and that the computing time significantly increases with m.

The glmmTMB function (contained in the glmmTMB package) conducts
generalized linear mixed modeling that allows for data containing excess
zeroes (Magnusson et al., 2020). It can perform ZIMCMP1 regressions of
the form

ln (λ(μ, ν)) = Xβ + Zα (5.46)

ln (ν) = Gγ (5.47)

logit(π∗) = Wζ , (5.48)

accounting for excess zeroes by specifying a zero-inflated (family =
compois) or hurdle (family = truncated_compois) MCMP1 con-
struct; the default ziformula = 0 assumes no excess zeroes. The
glmmTMB function assumes a generalized linear mixed model for λ (Equa-
tion (5.46)) and allows for a loglinear fixed-effects model for the dispersion
(Equation (5.47)); however, the dispersion function is assumed constant
(i.e. dispformula = ∼ 1). Analysts should note that the reported dis-
persion parameter in the output equals 1/ν̂. The glmmTMB interface is
comparable to lme4 (Bates et al., 2015); yet, it is faster with its compu-
tation of the Laplace approximation to integrate over the random effects
(Brooks et al., 2017). Analysts are encouraged against using the same
covariates in both the conditional and dispersion models for threats of
algorithm nonconvergence. Likewise, when little information exists regard-
ing the levels of the random effects, analysts are warned of a potentially
poor Laplacian approximation (Brooks et al., 2017). Additional glmmTMB
function inputs allow for weights, contrasts, an offset, and the ability to
specify how to handle missing data. Given the glmmTMB function’s ability
to handle more broad generalized linear mixed models along with excess
zeroes, it can likewise consider generalized linear models that only contain
fixed effects and excess zeroes, either via zero-inflation or hurdle mod-
els. Accordingly, this function can perform ZIMCMP1 or hurdle MCMP1
(HMCMP1) regression involving fixed and/or random effects.

5.5.1 Examples

The following examples illustrate the COMPoissonReg:glm.cmp and
glmmTMB functions and their respective capabilities. Both of these func-
tions can conduct generalized linear modeling that allows for zero-inflation;
however, the glmmTMB function can further perform analogous generalized
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linear mixed modeling. Accordingly, it is utilized for both considered ex-
amples: the first example illustrates functionality in R to handle excess
zeroes in a generalized linear model setting, and the second example il-
lustrates computational abilities to conduct mixed-effects regressions that
may or may not account for excess zeroes. The combayes package is also
reported to have the ability to perform generalized linear mixed modeling
for clustered data. The current package, however, does not provide help
pages to aid with associated discussion and illustration.

Example: Unwanted Pursuit Behavior Perpetrations

Loeys et al. (2012) presented a nice illustration of a dataset containing ex-
cess zeroes; this dataset has since been well considered for analysis under
various count data models. The study investigates the association between
the number of unwanted pursuit behavior perpetrations in the context of
couple separation trajectories and one’s education level (an indicator where
1 (0) denotes having at least a bachelor’s degree (otherwise)) and anxiety
level (a continuous measure) regarding attachment in the relationship. Of
the 387 subjects considered in the sample, 246 of them have zero unwanted
pursuit behavior perpetrations. Previous works have considered Poisson,
ZIP, NB, ZINB, CMP, and ZICMP regressions to analyze these data (Loeys
et al., 2012; Sellers and Raim, 2016). Here, we focus our attention on
ZICMP and ZIMCMP1 regressions as we revisit these data and broaden
the analysis.

Table 5.6 reports the coefficient estimates and standard errors (in paren-
theses) associated with the model

ln (θ) = β0 + β1Education + β2Anxiety (5.49)

logit(π∗) = ζ0 + ζ1Education + ζ2Anxiety, (5.50)

where θ = λ for the ZIP and ZICMP models, θ = μ for the ZINB and ZIG
models, and θ = λ(μ, ν) for the ZIMCMP1 model. All models assume a
constant dispersion where necessary; γ̂ denotes the ZINB-estimated dis-
persion as described in Section 1.2, while ν̂ estimates the COM–Poisson
dispersion. Along with the coefficient estimates and standard errors, the
table reports the negated log-likelihood and AIC associated with the re-
spective models. The respective AIC measures show that the ZIP model
is least appropriate for modeling these data as it produces the largest
AIC (1616.9) among the considered zero-inflation models. This makes
sense because a preliminary exploratory analysis of the data finds the vari-
able regarding the number of unwanted pursuit behavior perpetrations to



Table 5.6 Estimated coefficients and standard errors (in parentheses), negated log-likelihood, and Akaike information criterion (AIC)
for various zero-inflated regressions associating the number of unwanted pursuit behavior perpetrations in the context of couple
separation trajectories with the levels of education (an indicator function where 1 (0) denotes having at least bachelor’s degree
(otherwise)) and anxious attachment (a continuous measure) among 387 participants. Considered models are zero-inflated Poisson
(ZIP), negative binomial (ZINB), CMP (ZICMP), Huang (2017) mean-parametrized COM–Poisson (ZIMCMP1), and geometric (ZIG),
as well as a hurdle MCMP1 (HMCMP1) model. NR = not reported.

ZIP ZINB ZICMP ZIMCMP1 HMCMP1 ZIG

Count comp.
Intercept 1.921 (0.044) 1.723 (0.150) −0.160 (0.077) 1.770 (0.122) 1.769 (0.122) 1.770 (0.122)
Education −0.350 (0.071) −0.490 (0.206) −0.068 (0.034) −0.476 (0.191) −0.474 (0.191) −0.476 (0.191)
Anxiety 0.133 (0.034) 0.205 (0.108) 0.023 (0.015) 0.199 (0.100) 0.201 (0.099) 0.199 (0.100)
Zero comp.
Intercept 0.673 (0.142) 0.340 (0.210) 0.418 (0.167) 0.422 (0.159) 0.675 (0.142) 0.422 (0.159)
Education −0.232 (0.222) −0.459 (0.297) −0.388 (0.268) −0.416 (0.271) −0.220 (0.221) −0.416 (0.271)
Anxiety −0.483 (0.111) −0.520 (0.147) −0.524 (0.133) −0.503 (0.135) −0.486 (0.111) −0.503 (0.135)
γ̂ – 0.821 (0.226) – – – –
ν̂ – – 0.000 (0.031) 0.000 (NR) 0.000 (NR) –
− ln L 802.45 626.14 627.17 626.42 626.52 626.42
AIC 1616.9 1266.3 1268.3 1266.8 1267.0 1264.8
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be over-dispersed (mean and variance approximately equaling 2.284 and
23.302, respectively).

The COMPoissonReg or glmmTMB packages conduct a COM–
Poisson regression that accounts for excess zeroes on these data;
COMPoissonReg::glm.cmp conducts ZICMP regression, while the
glmmTMB function can perform either ZIMCMP1 or hurdle MCMP1 (HM-
CMP1) regression. The respective codes to run these models are provided
for the data frame couple which contains the variables UPB (containing
the number of unwanted pursuit behavior perpetrations), EDUCATION, and
ANXIETY.

# Using COMPoissonReg for ZICMP regression
couples.zicmp <- glm.cmp(UPB ~ EDUCATION + ANXIETY,
formula.p = ~EDUCATION + ANXIETY, data=couple)
summary(couples.zicmp)
couples.zicmp

#Using glmmTMB for ZIMCMP1 regression
couples.zicmpglmm <- glmmTMB(UPB ~ EDUCATION + ANXIETY,
ziformula = ~EDUCATION + ANXIETY, data=couple,
family=compois)
summary(couples.zicmpglmm)

#Using glmmTMB for HMCMP1 regression
couples.hcmp <- glmmTMB(UPB ~ EDUCATION + ANXIETY,
ziformula = ~EDUCATION + ANXIETY, data=couple,
family=truncated_compois)
summary(couples.hcmp)

Among the three COM–Poisson models for excess zeroes, the ZIMCMP1
regression produces the smallest AIC (1266.8); however, substantial sup-
port holds for the HMCMP1 and ZICMP models, as discussed in Table 1.2
(�HMCMP1 = 0.2 and �ZICMP = 1.5, respectively). While the respective
coefficient and standard error estimates are not directly comparable across
the three models, there exist pairwise comparisons that deserve recognition.
The ZICMP and ZIMCMP1 models produce similar coefficient estimates
and standard errors for their respective zero-component models; this makes
sense because both approaches address excess zeroes in similar fashion,
while the respective count model components have different structural rep-
resentations. The count model coefficient estimates and standard errors are
meanwhile essentially identical for the ZIMCMP1 and HMCMP1 models,
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while their respective zero-component estimates are within one standard
error of each other. This too makes sense because the MCMP1 parametriza-
tion serves as the underlying structure for both frameworks; what differs
here is how the excess zeroes are modeled.

Most interesting is that all three COM–Poisson regressions addressing
excess zeroes produce a dispersion estimate ν̂ = 0.000, indicating consid-
eration to analyze the dataset via a geometric distribution that can account
for excess zeroes. Sellers and Raim (2016) report the resulting coefficient
estimates, standard errors, log-likelihood and AIC values stemming from a
zero-inflated geometric (ZIG) model; those results are likewise provided in
Table 5.6. The resulting coefficient estimates, standard errors, and negated
log-likelihood are identical to those reported for the ZIMCMP1 model, val-
idating that the ZIG regression is a special case of the ZIMCMP1 where
ν = 0. Considering the reduced model of the ZIG thus decreases the AIC
by a value of 2 because the dispersion parameter is no longer considered in
the analysis. Meanwhile, the ZIG model not only captures the ZIMCMP1
representation but likewise contains similar output to either the count or
zero components from the ZICMP and HMCMP1 models.

Table 5.6 overall thus reports that the ZIG attains the minimal AIC
(1264.8), while the ZINB (1266.3) and ZIMCMP1 (1266.8) show substan-
tial support. The strong comparison between the ZIG and ZINB models
likewise yields a natural result, recognizing that the ZIG is also a special
case of a ZINB model where γ = 1. In fact, while the ZINB model pro-
duces the smallest negated log-likelihood, it does so at the expense of an
additional (dispersion) parameter where the resulting difference between
the two estimated log-likelihoods equals 0.28. Further, the reported ZINB
dispersion estimate γ̂ = 0.821 has a corresponding standard error (0.226)
such that one can see that it is not unreasonable to believe γ = 1 as a plau-
sible true dispersion parameter under the ZINB model, again implying the
consideration of the ZIG model.

Example: Epilepsy and Progabide

To illustrate the functionality of the glmmTMB function for the MCMP1
mixed model regression, consider the longitudinal data analysis of an
epilepsy dataset that examines the number of seizures experienced by
59 patients in an eight-week baseline period, followed by four consecu-
tive two-week periods where the patients are treated with progabide. This
dataset has been well studied and analyzed via various count data models
(Booth et al., 2003; Breslow, 1984; Diggle and Milne, 1983; Molenberghs
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et al., 2007; Morris and Sellers, 2022; Thall and Vail, 1990); here, we
compare the Poisson and MCMP1 regressions as baseline, zero-inflated,
and hurdle mixed models for analysis. In all cases, let the Poisson (λij)
or MCMP1 ((λ(μ, ν))ij) mean associate with explanatory variables via the
loglinear model whose right-hand side of the equation equals

β0 + β1xij1 + β2xij2 + β3xij1xij2 + ln (Tij) + αi, (5.51)

where, for Subject i, Tij denotes the length (in weeks) of the time period
j, xij1 is an indicator function of a period after the baseline (i.e. weeks 8
through 16), xij2 is an indicator function noting whether or not the pro-
gabide medication is administered, and αi denotes the random intercept.
This model is consistent with that considered in Diggle and Milne (1983);
accordingly, ln (Tij) serves as an offset in this model.

Table 5.7 reports the resulting coefficient estimates and standard errors
(in parentheses) stemming from various generalized linear mixed mod-
els assuming baseline Poisson or MCMP1 regressions, as well as their
zero-inflated and hurdle-regression counterparts. Along with these esti-
mates, the table further reports the associated negative log-likelihood,
AIC, and deviance values, respectively. These results show that, irrespec-
tive of the type of regression (i.e. baseline, zero-inflation, or hurdle), the
MCMP1 model outperforms the corresponding Poisson regression, re-
porting a smaller negated log-likelihood, AIC, and deviance. Overall, the
MCMP1 baseline mixed model is optimal with a negated log-likelihood
(905.3), AIC (1822.5), and deviance (1810.5). In fact, the zero-inflated
and baseline MCMP1 regressions report identical coefficient estimates
and standard errors, with a considerably large coefficient standard error
(3408.77) associated with ζ̂0 = −20.24, demonstrating that statistically
significant zero-inflation does not exist in this dataset when accounting
for the random effect and dispersion. The zero-inflated and hurdle Pois-
son models, however, detect statistical significance when accounting for
excess zeroes, apparently accounting for the additional variation through
the zero-component model because it is constrained from compensating
for the variation beyond that accounted for via the random intercept.

The hurdle Poisson and MCMP1 regressions report coefficients and cor-
responding standard errors that reflect similar contributions, associating
the respective components to the average number of seizures among these
epileptic patients. What is more interesting is that they further produce
identical coefficients and standard errors for ζ0; the coefficient is further
statistically significant (p-value < 0.001). This makes sense in that both



Table 5.7 Estimated coefficients and standard errors (in parentheses), log-likelihood, Akaike information criterion (AIC), and deviance for
various epilepsy longitudinal data analyses associating the number of seizures experienced by 59 patients in an eight-week baseline period,
followed by four consecutive two-week periods where the patients are treated with progabide. Baseline Poisson and mean-parametrized
COM–Poisson (MCMP1) regressions (along with their zero-inflated and hurdle analog models) are considered for constructing generalized
linear mixed models, where, for Subject i, Tij denotes the length (in weeks) of the time period j, xij1 is an indicator function of a period after the
baseline (i.e. weeks 8 through 16), xij2 is an indicator function noting whether or not the progabide medication is administered, and σ 2 is the
variance associated with the random intercept. Zero-inflation and hurdle regressions are performed assuming a constant model (i.e. Equation
(5.48) reduces to logit(π∗) = ζ0). The parameter ν denotes the associated MCMP1 dispersion component under each respective model.

Baseline model Zero-inflation model Hurdle model
Poisson MCMP Poisson MCMP Poisson MCMP

Intercept 1.0326 (0.1526) 1.0530 (0.1632) 1.0433 (0.1493) 1.0530 (0.1632) 1.0411 (0.1479) 1.0352 (0.1640)
xij1 0.1108 (0.0469) 0.0996 (0.0890) 0.1575 (0.0473) 0.0996 (0.0890) 0.1567 (0.0473) 0.1165 (0.0892)
xij2 −0.0239 (0.2106) −0.0285 (0.2248) −0.0126 (0.2060) −0.0285 (0.2248) 0.0033 (0.2040) −0.0004 (0.2257)
xij1xij2 −0.1037 (0.0651) −0.1388 (0.1235) −0.1178 (0.0658) −0.1388 (0.1235) −0.0994 (0.0657) −0.1227 (0.1239)
σ 2 0.6083 0.5944 0.5800 0.5944 0.5684 0.6026
ν – 0.2433 – 0.2433 – 0.2577
ZI-intercept – – −2.9388 (0.3255) −20.2400 (3408.77) −2.4703 (0.2172) −2.4703 (0.2172)
-logLik 1010.7 905.3 988.5 905.3 992.1 915.8
AIC 2031.4 1822.5 1988.9 1824.5 1996.2 1845.7
deviance 2021.4 1810.5 1976.9 1810.5 1984.2 1831.7
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models account for the zeroes in the dataset in identical fashion, thus ob-
taining the same coefficient results to account for excess zeroes. The larger
variance and added accountability via the MCMP1 dispersion parameter
estimate, however, presumably contribute toward the better model perfor-
mance for the hurdle MCMP1 versus the hurdle Poisson mixed-effects
model (respective AICs are 1996.2 for the Poisson versus 1845.7 for the
MCMP1). This reduced dispersion estimate, however, may contribute to-
ward the less than optimal model performance for the hurdle MCMP1
mixed-effects model, in comparison to its baseline MCMP1 counterpart,
since the hurdle MCMP1 model is based on a truncated MCMP1 distribu-
tion. The hurdle MCMP1 requires more parameters and produces a smaller
log-likelihood than the baseline MCMP1 mixed-effects model.

All of the presented MCMP1 mixed-effects models produce dispersion
estimates ν̂ < 1, thus recognizing that, while accounting for additional dis-
persion via the random effect, the epilepsy dataset is over-dispersed. This
motivates one to consider a negative binomial mixed-effects model. Run-
ning this model via glmer.nb (lme4 package in R) produces the output
presented in Code 5.1; running the model via glmmTMB produces a simi-
lar output. Note that this model achieves a smaller AIC (1789.5) than the
baseline MCMP1-generalized linear mixed model (1822.5). While the NB
model achieves a better AIC, utilizing the MCMP1 regression proves help-
ful nonetheless in aiding us toward the NB GLMM by informing the analyst
of the type of dispersion inherent in the epilepsy data, when accounting
for additional dispersion caused by the random intercept and/or excess
zeroes.

Code 5.1 Negative binomial GLMM regression output for the epilepsy and
progabide data example. Output produced via the glmer.nb function, contained
in the lme4 package in R.

> prog. glmernb <- glmer .nb( NumSeizures ~ visitne0 +
TX + pbide .int + (1| ID), offset =log(Weeks ), data= pbide )
> summary (prog. glmernb )
Generalized linear mixed model fit by maximum
likelihood ( Laplace Approximation )
[’glmerMod ’]

Family : Negative Binomial (6.7803) ( log )
Formula : NumSeizures ~ visitne0 + TX + pbide .int +

(1 | ID)
Data: pbide

Offset : log(Weeks )

AIC BIC logLik deviance df.resid
1789.5 1811.6 -888.7 1777.5 289
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Scaled residuals :
Min 1Q Median 3Q Max

-1.8269 -0.5474 -0.0971 0.4245 3.9026

Random effects :
Groups Name Variance Std.Dev.
ID ( Intercept ) 0.661 0.813

Number of obs: 295, groups : ID , 59

Fixed effects :
Estimate Std. Error z value Pr(>|z|)

( Intercept ) 1.08031 0.17542 6.159 7.34e -10 ***
visitne0 0.02349 0.10029 0.234 0.8149
TX 0.07256 0.24205 0.300 0.7644
pbide .int -0.31042 0.14052 -2.209 0.0272 *
---

Correlation of Fixed Effects :
(Intr) vistn0 TX

visitne0 -0.402
TX -0.725 0.291
pbide .int 0.287 -0.712 -0.399

5.6 Generalized Additive Model

COM–Poisson generalized additive model (GAM) regression can likewise
be established (via any of the considered parametrizations) to associate dis-
persed count data with nonlinear relationships to covariates of interest. As
an illustration, the CMP-GAM considers a CMP distribution as defined in
Equation (2.8) with a model of the form

ln (λi) = x∗
i β

∗ +
p1∑

j=1

f1j(xij), (5.52)

ln (νi) = g∗
i γ

∗ +
p2∑

j=1

f2j(gij), (5.53)

for i = 1, . . . , n, where the first components of the respective equations
account for the parametric part of ln (λi) and ln (νi), respectively, via the
ith row of the respective model matrices (X∗ and G∗) and the associated
parameter vectors β∗ and γ ∗; and f�j (� = 1, 2) are smooth functions of co-
variates xj and gj, respectively, that are subject to identifiability constraints
(e.g.

∑n
i=1 f�j(xij) = 0 for all j, �) (Chatla and Shmueli, 2018).
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A penalized splines approach is a popular estimation method for esti-
mating f�j. Here, the model is estimated via a penalized maximum likeli-
hood, where the maximization can be conducted via a penalized iterative
reweighted least squares that minimizes the objective functions

‖
√

W(k)
1 (T(k)

1 − Xβ)‖2 + β ′A1β +
∑

j

φ1jβ
′S1jβ w.r.t. β, (5.54)

‖
√

W(k)
2 (T(k)

2 − Gγ )‖2 + γ ′A2γ +
∑

j

φ2jγ
′S2jγ w.r.t. γ , (5.55)

where for � = 1, 2, W(k)
� are the kth iteration weight matrices, φ�j are

the smooth parameters for the models, respectively, regressing ln (λi) and
ln (νi), A� are the fixed positive semidefinite penalty matrices, and T(k)

� are
as described in Algorithm 4. A penalized least-squares method is used to
solve Equations (5.54) and (5.55) for given smoothing parameters φ�j that
are themselves first estimated via generalized cross validation. Statistical
inference for the CMP-GAM model spline regression coefficients is con-
ducted via a Bayesian perspective such that the posterior distribution of the
coefficients is

β|φ1, Y ∼ N(β̂, 	β), where 	β =
⎛

⎝X′W1X +
p1∑

j=1

φ1jS1j

⎞

⎠

−1

η1, and

(5.56)

γ |φ2, Y ∼ N(γ̂ , 	γ ), where 	γ =
⎛

⎝G′W2G +
p2∑

j=1

φ2jS2j

⎞

⎠

−1

η2, (5.57)

where, for � = 1, 2, η� are the estimated scale parameters and W� are the
weight matrices incorporated to achieve the convergence of the penalized
iterative reweighted least-squares algorithm (Chatla and Shmueli, 2018).

A hypothesis test can be considered that asks whether a considered
smooth function is a significant contributor to the model or not. For such
a test, the null hypothesis is H0 : f�j = 0 for any j where, for � = 1, 2, it
addresses the smoothing function associated with ln (λ) or ln (ν), respec-
tively. The Wood (2012) Wald test statistic is an appropriate measure to
conduct inference as it is based on the marginal likelihood to ensure that the
pseudo-inverse remains optimal and the covariance matrix remains positive
definite. See Chatla and Shmueli (2018) for detailed discussion.
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5.7 Computing via Alternative Softwares

While this reference focuses on statistical computing via R, one would be
remiss to not acknowledge the popularity of the COM–Poisson distribu-
tion (particularly with regard to regression analysis) and its influence on
statistical computation developments via other softwares. Functionality is
available to conduct COM–Poisson regression via MATLAB (Section 5.7.1)
and SAS (Section 5.7.2).

5.7.1 MATLAB Computing

MATLAB software for the MCMP1 regression is provided in the online sup-
plement associated with the Huang (2017) manuscript. This routine reports
the coefficient estimates β̂, their corresponding standard errors, and the re-
sulting log-likelihood if those outputs are requested by the analyst. The
reported standard errors are obtained via a plug-in estimator,

V(β̂) =
⎡

⎢
⎣

n∑

i=1

(
∂μ(Xiβ̂)
∂(Xiβ̂)

)2
X′

iXi

V(μ(Xiβ̂), ν̂)

⎤

⎥
⎦

−1

.

The codes apply Newton–Raphson algorithms to the MCMP1 regression
score equations (Equations (5.5) and (5.6)) in a computationally efficient
manner such that the routine is up to one order of magnitude faster than
the glm.cmp function in COMPoissonReg (Huang, 2017). While these
codes are available, advancements to the mpcmp R package supersede
these contributions; analysts are encouraged to utilize the mpcmp package
accordingly.

5.7.2 SAS Computing

The SAS/ETS procedure COUNTREG (SAS Institute, 2014) uses the ACMP
parametrization as the default (when not accounting for excess zeroes) but
allows for the CMP parametrization by specifying the option, PARAMETER
= LAMBDA. Meanwhile, specifying DISP=CMPOISSON in the MODEL state-
ment while omitting the DISPMODEL statement will perform ACMP re-
gression where ν is a constant. Loglinear links are assumed for both the
COM–Poisson location and dispersion parameters, i.e. ln (λi) = xiβ and
ln (νi) = −giγ . The negated loglinear relationship for the dispersion allows
analysts to more naturally interpret the coefficients in relation to the di-
rection of dispersion; γj > (<)0 associated with a quantitative covariate
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gij, j = 1, . . . , p, indicates a multiplicative impact e−γj in data over-
(under-)dispersion (holding the other terms constant). ZI COM–Poisson re-
gression in SAS meanwhile assumes an underlying CMP parametrization.
ZICMP regression in COUNTREG is performed by including a ZEROMODEL
statement, where LINK = LOGISTIC tells SAS to supply a logistic link
function to account for zero-inflation; alternatively, LINK = NORMAL con-
siders a probit link function to address the excess zeroes. The COUNTREG
procedure conducts parameter estimation via the method of maximum like-
lihood where the Newton–Raphson method serves as the default approach
for maximizing the log-likelihood. Other optimization schemes, however,
can be considered by inserting/updating the METHOD option in the MODEL
statement. Further, COUNTREG can likewise consider a Bayesian approach
for analysis by inputting a BAYES statement in the model call. The result-
ing output “Model Fit Summary” provides detailed information regarding
the model of interest, including the maximum log-likelihood, the number
of iterations required to reach convergence, the performed optimization
method, the AIC, and Schwarz’s BIC. The usual coefficient table follows
the Model-Fit Summary and provides the respective coefficient estimates,
standard errors, t values, and corresponding p-values used to assess the
statistical significance of the coefficients in question.

SAS Institute (2014) reports that the “Lord et al. (2008) specification
makes the model comparable to the negative binomial model because
it has only one parameter.” The reader, however, is advised to use the
reparametrized regression with caution. Recall from Chapter 2 that μ∗ =
λ1/ν is a further approximation of the approximated COM–Poisson mean
λ1/ν − 1−ν

2ν , where this approximation is reasonable when ν ≤ 1 (i.e. the
data are equi- or over-dispersed) or λ > 10ν (i.e. μ∗ > 10). First, be
advised that the Guikema and Coffelt (2008) and Lord et al. (2008) refer-
ences denote this reparametrization as “μ,” which already can lead readers
to a false sense of confidence such that analysts can presumably interpret
the reparametrized form to easily identify the mean. It remains unknown,
however, under what circumstances such further approximation is reason-
able. Assuming the constraint ν ≤ 1 to hold (implying that the response
variable is equi- or over-dispersed), an NB regression is naturally consid-
ered to model such data; hence, the comparison to an NB model is direct
in that both models assume a constant dispersion parameter that is con-
strained such that only equi- or over-dispersion is feasible. However, for
under-dispersed response data, even λ > 20ν shows some loss in precision
(Chanialidis et al., 2017); thus, the COUNTREG procedure should be used
with caution when conducting ACMP regression since it relies on all λ, ν,



5.7 Computing via Alternative Softwares 215

satisfying the appropriate constraints; such a restriction is not guaranteed if
the data are under-dispersed.

Generalized linear mixed modeling can likewise be performed in SAS via
the NLMIXED procedure. In particular, COM–Poisson mixed-effects model-
ing can be considered under any parametrization because NLMIXED allows
the option of specifying a user-defined likelihood function. The generalized
linear mixed model assuming a random intercept with a CMP parametriza-
tion, for example, has been considered via the NLMIXED procedure (Morris
et al., 2017). For a given dataset, the user supplies starting values for the
model coefficients parms and provides the log-likelihood in the model
statement and underlying distributional form of the random component
random. Given the model formulation described in Equation (5.42), users
can directly supply code to compute the normalizing function Z(λit, ν) and
the log-likelihood

ln L(λit, ν | yit) = yit ln (λit) − ν ln (yit!) − ln (Z(λit, ν));

see Morris et al. (2017) for a detailed illustration. While Morris et al. (2017)
focus on the CMP parametrization, the other parametrizations (i.e. ACMP,
MCMP1, and MCMP2) can likewise be considered for analogous mixed-
effects modeling.

Revisiting Example: Airfreight Breakage

Revisiting the airfreight breakage example described in Section 5.2.5, we
can instead consider conducting COM–Poisson regression analysis via SAS.
Assuming that the dataset provided in Table 5.3 has been read into SAS and
given the data object name freight, the commands

proc countreg data=freight;
model broken=transfers / dist=compoisson;

run;

perform an ACMP regression while updating the model command to in-
clude parameter=lambda conducts CMP regression. Resulting coefficient
tables are supplied in Tables 5.8 and 5.9 for the CMP and ACMP re-
gressions, respectively. The only estimate that is comparable between the
two approaches is that for the dispersion because its representation re-
mains the same under either of the parametrizations. Here, both models
produce ln (ν̂) ≈ −1.7568 < 0 where, given the modified representation
that estimates the dispersion parameter, the negative coefficient implies data
under-dispersion in this example. More broadly, however, as discussed in
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Table 5.8 COUNTREG output from the airfreight breakage example with CMP
regression.

Parameter DF Estimate Std. error t value Approx Pr >| t |
Intercept 1 13.8542 6.2941 2.20 0.0277
transfers 1 1.4868 0.6947 2.14 0.0323
_lnNu 1 −1.7568 0.4523 −3.88 0.0001

Table 5.9 COUNTREG output from the airfreight breakage example with
approximate COM–Poisson (ACMP) regression.

Parameter DF Estimate Std. error t value Approx Pr >| t |
Intercept 1 2.3911 0.0539 44.38 <.0001
transfers 1 0.2566 0.0325 7.90 <.0001
_lnNu 1 −1.7568 0.4491 −3.91 <.0001

Section 5.2.5, the other coefficient results are not immediately comparable
to each other, except for the fact that both approaches produce statisti-
cally significant results. Instead, one can better compare the CMP output
achieved via SAS to its counterpart obtained in R. Another potential com-
parison can consider how the ACMP results obtained via SAS compare with
(say, for example) the MCMP1 parametrization obtained via R; this allows
analysts to better assess how well the ACMP regression effectively cap-
tures a traditional generalized linear model structure between the mean and
covariates for a given dataset.

Comparing the outputs supplied in Tables 5.4 and 5.8, we obtain com-
parable estimates for the coefficients and associated standard errors; thus,
while not displayed, one can recognize that the coefficient table produced
via R would likewise contain similar t statistics and p-values. Meanwhile,
the respective ln (ν) estimates differ primarily in sign (positive in R and
negative in SAS), while their respective absolute values match to two deci-
mal places; recall that the difference in sign stems from the altered model
formulation ln (ν) = −Gγ in SAS, while the R form maintains ln (ν) = Gγ .
Tables 5.4 and 5.9 meanwhile likewise display relatively comparable re-
sults for the MCMP1 regressions obtained via the mpcmp and DGLMExtPois
packages in R and the ACMP regression attained via the COUNTREG pro-
cedure in SAS. The difference in estimated coefficients is greater here
than the difference between CMP estimates because the latter comparison
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stems from models utilizing the same parametrization. This example, how-
ever, is one for which the ACMP reparametrization appears to reasonably
approximate the mean.

5.8 Summary

Regression analysis via the COM–Poisson distribution has been the most
studied aspect of related statistical methodology considered, outside of the
research conducted regarding the distribution itself. Whether considering
the generalized linear model, or analog models that allow for excess zeroes,
clustered data analysis, or a GAM, all of these constructs can be represented
for a COM–Poisson model assuming any of the parametrizations discussed
in this reference (i.e. CMP, ACMP, MCMP1, and MCMP2).

Along with the substantive theoretical work done in this area, there
has likewise been a great deal of computational development achieved re-
garding COM–Poisson regression models. Many of the aforementioned
regression models have R packages and functions associated with them
for applied data analysis, and statistical computing for some regressions
are likewise attainable via MATLAB and SAS. The fact that COM–Poisson
regression analysis is readily available via multiple computational tools
demonstrates the importance of this distribution and its abilities for flexible
discrete data analysis when dispersion is present.
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COM–Poisson Control Charts

While the Poisson model motivated much of the classical control chart the-
ory for count data (e.g. the Shewhart c- and u-charts), several works (e.g.
Albers, 2011; Chen et al., 2008; Mohammed and Laney, 2006; Spiegel-
halter, 2005) note the constraining equi-dispersion assumption. Dispersion
must be addressed because over-dispersed data can produce false out-
of-control detections when using Poisson limits, while under-dispersed
data will produce Poisson limits that are too broad, resulting in poten-
tial false negatives. In the latter case, out-of-control states would require
a longer study period for detection. An alternative statistical control chart
based on a shifted generalized Poisson distribution of Consul and Jain
(1973) can address data over- or under-dispersion; however, it gets trun-
cated under certain conditions regarding the dispersion parameter, and
thus its underlying distributional form is not a true probability model
(Famoye, 2007).

Sellers (2012b) established a seminal work, introducing a flexible COM–
Poisson-based Shewhart control chart for count data expressing data dis-
persion. Section 6.1 describes this work in greater detail, demonstrating
its flexibility in assessing in- or out-of-control status, along with advance-
ments made to this control chart. These initial works have further led
to a wellspring of flexible control chart development motivated by the
COM–Poisson distribution. Section 6.2 describes a generalized exponen-
tially weighted moving average (EWMA) control chart, and Section 6.3
describes the cumulative sum (CUSUM) charts for monitoring COM–
Poisson processes. Meanwhile, Section 6.4 introduces generally weighted
moving average (GWMA) charts based on the COM–Poisson, and Sec-
tion 6.5 presents the Conway–Maxwell–Poisson chart via the progressive
mean statistic. Finally, Section 6.6 concludes the chapter with summary
and discussion. All of the works described in this chapter stem from the
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CMP parametrization of the COM–Poisson distribution as described in
Section 2.2; however, analogous results can be determined based on the
reparametrizations presented in Section 2.6.

6.1 CMP-Shewhart Charts

Sellers (2012b) developed CMP-Shewhart charts (i.e. cmpc- and cmpu-
charts) to generalize and bridge the classical Shewhart charts for count data,
namely the c- and u-charts developed via the Poisson model, the np- and
p-charts motivated by the Bernoulli distribution, and the g- and h-charts
described in Kaminsky et al. (1992) stemming from the geometric distri-
bution. Its underlying flexibility implies that the CMP-Shewhart charts are
more effective than the Poisson c- and u-charts in detecting large shifts. As-
sume a process that generates a random sample of n events X1, X2, . . . , Xn

according to a shifted CMP(λ, ν) distribution with probability

P(X = x | λ, ν) = λx−a

[(x − a)!]νZ(λ, ν)
, x = a, a + 1, a + 2, . . . , (6.1)

where λ > 0, ν ≥ 0, a ∈ N = {0, 1, 2, . . .}, and T = ∑n
i=1 Xi and

X̄ = T
n , respectively, denote the total and average number of events. Their

respective means and standard deviations can be used to construct the She-
whart μ± kσ control bounds for the cmpc- and cmpu-charts, respectively;
Table 6.1 provides the resulting centerline and Shewhart kσ upper/lower
control limits.

One can alternatively determine upper and lower control limits given a
predetermined Type I error α so that the probability of being beyond those
limits equals α. This approach is particularly favorable for small counts,
given the skewness of the CMP distribution; see Section 6.1.1 for further

Table 6.1 Centerline and Shewhart kσ upper/lower control limits for cmpc- and
cmpu-charts (Sellers, 2012b).

cmpc-chart cmpu-chart

Centerline n

(

λ
∂ ln (Z(λ, ν))

∂λ
+ a

)

λ
∂ ln (Z(λ, ν))

∂λ
+ a

Upper/lower bounds n

(

λ
∂ ln (Z(λ, ν))

∂λ
+ a

)

λ
∂ ln (Z(λ, ν))

∂λ
+ a

± k

√

n

(
∂E(X)

∂ ln (λ)

)

± k

√
1

n

(
∂E(X)

∂ ln (λ)

)
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discussion. Accordingly, the upper and lower control limits (UCL and LCL,
respectively) for the total number of events T are determined such that

P(T ≤ LCLα/2) =
LCLα/2∑

t=0

P(T = t) ≤ α

2
and (6.2)

P(T ≥ UCLα/2) =
∞∑

UCLα/2

P(T = t) ≤ α

2
, (6.3)

where P(T = t) is the probability mass function from a sum-of-COM-
Poissons (sCMP) distribution with parameters λ, ν, and n; see Section 3.2
for details regarding the sCMP distribution. Similarly, we can determine
the probability limits associated with the average number of events X̄. The
cmpc- and cmpu-charts are flexible control charts that contain three estab-
lished control charts as special cases. The cmpc- and cmpu-charts include
the c-chart and u-chart derived from the Poisson distribution (for ν = 1),
the Kaminsky et al. (1992) g-chart and h-chart derived from the geometric
distribution (when ν = 0 and λ < 1), and the np- and p-charts obtained
from the Bernoulli distribution (as ν → ∞ with success probability λ

λ+1 ).

6.1.1 CMP Control Chart Probability Limits

Using the traditional Shewhart limits or the more precise probability limits
can be debated based on several factors, e.g. the size of the parameters
and sample size, and their impact on resulting computations. The below
discussion holds for either the T or the X̄ chart.

The Shewhart chart assumes that the underlying distribution is symmet-
ric; however, the COM–Poisson distribution contains skewness; this can
be problematic under certain circumstances. The empirical rule, for exam-
ple, infers that the Shewhart 3σ bounds will contain 99.7% of the data;
yet, simulation studies illustrate that the CMP-Shewhart construct requires
k > 3 in order to achieve the desired statistical significance level. Further,
the difference between the Shewhart and probability-based LCL bounds
is considerable, resulting in a smaller power associated with detecting a
parameter shift (Saghir et al., 2013). These issues arise for all of the tra-
ditional count-based Shewhart charts, however, so they are not particular
to the CMP-Shewhart chart. Holding any two parameters among {λ, ν, n}
fixed, however, results in the desired value for k decreasing toward 3 as the
third parameter increases, making k = 3 reasonable for sufficiently large
λ, ν, or n (Saghir et al., 2013).
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Saghir et al. (2013) further report that the Shewhart limit scheme pro-
duces a biased power function when the sample size is small given either
type of data dispersion, but particularly so when the data are under-
dispersed; this bias, however, decreases as n increases. Nonetheless, to
detect a downward shift, the probability limit bounds produce a bet-
ter power function than using Shewhart limits. Both approaches perform
comparably for detecting an upward shift in a parameter, and the power
increases with the sample size under either control chart construct. When
the data are under-dispersed, the Shewhart chart produces a larger power
for upward parameter shifts in λ than the probability limits approach for
small n; however, the disparity between the two methods diminishes as n
increases. Probability limits likewise circumvent any need for Winsoriza-
tion, thus providing another benefit over Shewhart limits. The Shewhart
LCL may require Winsorization to zero if the resulting computation is
negative. The probability LCL, however, avoids any need to Winsorize be-
cause the CMP support space only contains nonnegative integers; hence,
the probability-based LCL cannot be negative.

6.1.2 R Computing

The R package CMPControl (Sellers and Costa, 2014) provides the user
with the ability to produce the Shewhart control charts based on the tradi-
tional Poisson or CMP distribution; further, the produced plot provides both
the 3σ bounds and those bounds based on the probability limits. The func-
tion ControlCharts only requires the desired dataset for analysis (data),
while the other inputs aid in designing the desired control chart figure.
xlabel and ylabel allow the analyst to input the labels for the respec-
tive axes. CMP, P, and CMPProb are each logical inputs that allow the user to
choose which control limits they desire to have appear in the figure, where
CMP identifies the 3σ CMP-Shewhart control bounds, P the 3σ Poisson-
Shewhart control bounds, and CMPProb the CMP probability limits. In all
cases, the respective logical option is TRUE such that all of the respective up-
per and lower bounds are defaulted to appear in any produced control chart
image. This provides the analyst with a more well-rounded understanding
of unit performance.

This package uses the compoisson and MASS packages to perform the
various Poisson and CMP calculations, including parameter estimation,
computing the mean and standard deviation, and probabilities of the result-
ing estimated distributions. In particular, the estimates for λ, ν, and a are
attained via maximum likelihood estimation with the likelihood function
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L(λ, ν, a | x) =
n∏

i=1

λxi−a

[(xi − a)!]νZ(λ, ν)
Ia(x), (6.4)

where Ia(x) = 1(0) when xi ≥ a for all i (otherwise). Accordingly, â = X(1),
the minimum order statistic, while λ̂ and ν̂ are determined by optimizing
Equation (6.4) via nlminb in R (Sellers, 2012b; Sellers and Costa, 2014).
All of these calculations aid in determining the respective CMP 3σ and
probability control limits. Along with the resulting figure displaying the
control bounds of interest, the function further outputs the CMP parameter
estimates λ̂ and ν̂ for the provided data, along with the resulting estimates
for the mean and standard deviation, and the Poisson mean and standard
deviation.

Code 6.1 R code and corresponding output stemming from the nonconformities
dataset. The Poisson- and CMP-Shewhart upper and lower control limits are
computed as “μ± 3σ”; accordingly, negative bounds are Winsorized at zero.
“Upper Out of Control Observations” and “Lower Out of Control Observations”
list the observation/point/sample number(s) that are out of control because they
are greater than the upper bound or less than the lower bound, respectively.

> ControlCharts ( nonconformities ,‘‘ Sample Number ’’,
‘‘Number of nonconformities ’’)

$‘CMP Lambda Hat and Nu Hat ‘
[1] 1.9370111 0.2554058

$‘CMP Mean and Standard Deviation ‘
[1] 19.838957 7.193244

$‘CMP Shewhart Upper and Lower Bounds ‘
[1] 41.418689 -1.740774

$‘Poisson Mean and Standard Deviation ‘
[1] 19.846154 4.454902

$‘Poisson Shewhart Upper and Lower Bounds ‘
[1] 33.210861 6.481447

$‘Upper Out of Control Observations ‘
[1] 20

$‘Lower Out of Control Observations ‘
[1] 6

$‘CMP Probability Limits ‘
[1] 39 0
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6.1.3 Example: Nonconformities in Circuit Boards

Montgomery (2001) tracks the number of nonconformities in 26 samples of
circuit boards; the resulting data are supplied in the CMPControl package
(named nonconformities). The ControlCharts function (also con-
tained in the CMPControl package) can be used to determine the existence
and number of any out-of-control samples. The command and resulting out-
put are shown in Code 6.1, while the resulting control chart is displayed in
Figure 6.1.

Montgomery (2001) assumes a c-chart; ControlCharts output reports
that the Poisson mean and standard deviation are 19.846154 and 4.454902,
respectively. As a result, the centerline value for the c-chart is 19.846154,
and the ±3σ control limits are approximately 33.2109 and 6.4814. Code
6.1 and Figure 6.1 further show that two points (namely Samples 6 and
20) fall beyond the control limits. Applying the cmpc-chart model to the
nonconformities data, however, ControlCharts reports the CMP param-
eter estimates λ̂ = 1.9370111 and ν̂ = 0.2554058, thus recognizing the
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Figure 6.1 Control chart associated with nonconformities data analysis via
CMPControl package: corresponding R code and output supplied in Code 6.1.
Lower CMP-Shewhart bound is Winsorized to 0, while the lower CMP probability
bound equals 0.
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dataset to be over-dispersed. Assuming these samples to be in control, the
CMP distribution better models the data distribution of the samples. The
ControlCharts function outputs that the CMP mean and standard devia-
tion are 19.838957 and 7.193244, respectively; thus, the CMP-Shewhart
centerline is 19.838957, and the upper bound is 41.418689; the com-
puted CMP-Shewhart lower bound (−1.740774) reported in Code 6.1
is Winsorized to zero; see Figure 6.1. Meanwhile, ControlCharts de-
termines the upper and lower CMP probability limits to be 39 and 0,
respectively.

The centerlines based on the Poisson and CMP models are approx-
imately equal; however, their upper and lower Shewhart bounds differ
because of their respective underlying data dispersion assumption. The
amount of variation in the data determines the size of the Shewhart bounds
via the “μ±3σ” computation. Meanwhile, the CMP-Shewhart versus prob-
ability bounds utilize an approximate shape based on assumed relative
symmetry versus a more precise representation of the CMP distributional
form. The core concern with all of these models and, more broadly, the
flexible model approach in general is that the proper determination of
the control chart structure depends on either a user-supplied a priori es-
timate of ν or in-control data to estimate λ and ν. In this illustration,
for example, assuming a Poisson model allows an analyst to detect the
two out-of-control samples because this assumption equates to an expert
supplied assumption that ν̂ = 1; as a result, the CMP-Shewhart bounds
would equate to the Poisson-Shewhart bounds, and the CMP probability
bounds would likewise be determined based on the Poisson tails. Mean-
while, assuming the samples to be in control implies that the inherent data
dispersion present among the samples allows for broader CMP control
bounds that reflect the assumed in-control state of all samples, including
Samples 6 and 20.

6.1.4 Multivariate CMP-Shewhart Chart

Saghir and Lin (2014a) develop a multivariate Shewhart-type control chart
based on the CMP distribution to handle data over- and under-dispersion.
Assume a collection Xi, i = 1, 2, . . . , n, of quality attributes that jointly have
a multivariate CMP (MultiCMP) where each Xi is marginally CMP(λi, νi)
distributed with correlation coefficient rij. While not specified, based on the
research to date, the required distributional assumptions imply consider-
ing a MultiCMP distribution derived either via the Sarmanov family or via
copulas. See Chapter 4 for discussion.
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Consider the statistic T = ∑n
i=1 Xi that studies the sum of the n attributes.

A MultiCMP Shewhart chart has bounds μT ±kσT and centerline μT , where

μT =
n∑

i=1

λi
∂ ln (Z(λi, νi))

∂λi
≈

n∑

i=1

[

λ
1/νi
i − νi − 1

2νi

]

(6.5)

σ 2
T =

n∑

i=1

∂E(Xi)

∂ ln (λi)
+ 2

∑

i<j

rij

√
∂E(Xi)

∂ ln (λi)
· ∂E(Xj)

∂ ln (λj)
(6.6)

≈
n∑

i=1

1

νi
λ

1/νi
i + 2

∑

i<j

rij

√
1

νiνj
λ

1/νi
i λ

1/νj

j (6.7)

denote the mean and variance of T , and the respective approximations hold
when νi ≤ 1 or λi > 101/νi . If T goes beyond the control limits thus mark-
ing an out-of-control signal, analysts should determine the minimum and
maximum score statistics, S(1) and S(n), respectively, where Si = Xi − E(Xi),
i = 1, 2, . . . , n. For T > UCL, S(n) identifies which attribute most con-
tributes toward the upward shift, while for T < LCL, S(1) identifies which
attribute most contributes toward the downward shift.

The MultiCMP Shewhart chart simplifies to the multivariate Poisson
chart when the n-length vector, ν = 1. For the special case when ν → ∞,
the transformed statistic T∗ = ∑k

i=1 Xi/
√

pi produces control bounds
that represent the multivariate np chart where n = 1 with “equal non-
conformance severity of all p quality characteristics” (Saghir and Lin,
2014a). Through simulated and real-data examples, the MultiCMP She-
whart chart demonstrates itself as a flexible multivariate extension of the
Sellers (2012b) CMP-Shewhart chart. Saghir and Lin (2014a) evaluate
chart performance via average run length (ARL) to study location shifts in
the control process. Letting X have a MultiCMP(λ, ν, ρ) distribution with
a shift in the location parameter implies that the distribution is updated to
MultiCMP(λs, ν, ρ). Data simulations studying the in-control ARL show
that k varies, often not equaling approximately 3. This is because of the
skewed nature of the CMP distribution; thus, a normal approximation is
not appropriate for small means. To study the out-of-control ARL, data
simulations on a bivariate Shewhart-CMP chart find that the ARL1 values
have a concave parabolic relationship as the correlation between the two
attributes increases. Meanwhile, as the dispersion level deviates from 1, the
ARL1 values increase; i.e., ARL1 has a convex parabolic relationship as ν
increases.
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6.2 CMP-inspired EWMA Control Charts

While discrete Shewhart charts are a useful tool for quality control, they
are critiqued for only being able to detect large process shifts, ignoring
historical data and only focusing on the most recent sample information.
EWMA charts are an attractive alternative to Shewhart charts because
EWMA charts take both historical and current sample information into
account. These “memory-type control charts” use the larger collective of
past and current sample data to gain more information, thus making them
more capable than their Shewhart counterparts to detect small or moderate
control shifts (Alevizakos and Koukouvinos, 2022). Gan (1990) introduced
three modified EWMA charts that monitor Poisson observations through
the mean and round the EWMA statistic to an integer value. The three
charts are based on the relation

Qt = (1 − ω)Qt−1 + ωRt, t = 1, 2, . . . , (6.8)

i.e. a weighted average of Qt−1 (the EWMA value at time t − 1) and Rt

(the tth observation from a Poisson(λ) distribution); 0 < ω ≤ 1 is the
associated weighting constant, and Q0 is the initial EWMA value. The
Shewhart control chart is a special case of EWMA where ω = 1. A lower-
sided (upper-sided) EWMA control chart detects shifts in the process when
Qt < LCL (Qt > UCL) for some lower (upper) control limit, and a two-
sided EWMA chart takes both limits into account. The modifications to
Equation (6.8) force Qt to be integer-valued, either through the ceiling
(�·�), round, or floor (�·�) operators and hence are referred to as the ceiling,
round, and floor-EWMA control charts, respectively. The center-EWMA
and floor-EWMA charts are respectively designed to detect movement to-
ward the upper and lower limits, while the round-EWMA approximates the
unmodified EWMA chart defined in Equation (6.8). The averages, prob-
ability functions, and percentiles of the run lengths associated with these
modified EWMAs are computable via a Markov-chain approach; see Gan
(1990) for details. These discrete EWMA charts do not necessarily allow
for exact design equal to a stated in-control ARL; however, these charts
can get close to a desired in-control ARL. Meanwhile, they become more
effective as ω decreases.

Borror et al. (1998) introduced a Poisson EWMA (PEWMA) chart to
monitor count data, where the procedure is likewise evaluated via the
Markov-chain approximation. This method, however, does not lose infor-
mation because the precise EWMA statistic (as defined in Equation (6.8))
is retained. Their model is likewise defined by Equation (6.8) where, when
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the process is in control, E(Qt) = λ0 with exact variance V(Qt) = ω

2−ω [1 −
(1 − ω)2t]λ0 and asymptotic variance V(Qt) ≈ ωλ0

2−ω . This PEWMA chart
thus detects an out-of-control signal when Qt < LCL = λ0 − BL

√
V(Qt) or

Qt > UCL = λ0 + BU
√

V(Qt), where V(Qt) is either the exact or asymp-
totic variance under the in-control process assumption, and BL and BU can
be assumed equal (i.e. B) or not, depending on the desired performance of
the EWMA chart.

The PEWMA chart is a natural choice of EWMA design for monitor-
ing the number of nonconformities or defects; however, the underlying
equi-dispersion assumption associated with the motivating Poisson dis-
tribution can produce unreliable inferences. Several alternative EWMA
charts are presented below, each motivated by the CMP distribution. Sec-
tion 6.2.1 introduces the basic CMP-EWMA chart, while Sections 6.2.2
and 6.2.3 introduce CMP-EWMA charts based on multiple dependent
state sampling and repetitive sampling, respectively. Section 6.2.4 presents
a modified CMP-EWMA chart, while Section 6.2.5 discusses a double
EWMA chart that assumes CMP attribute data, and Section 6.2.6 con-
cludes this section introducing a hybrid EWMA. All of these works assume
the CMP parametrization as described in Section 2.2, while some works
(e.g. Aslam et al. 2016a; 2016b) further assume that its mean and variance
approximations (Equations (2.23) and (2.24)) hold.

6.2.1 COM–Poisson EWMA (CMP-EWMA) Chart

Saghir and Lin (2014c)1 developed a flexible EWMA chart for discrete
attribute data, motivated by the COM–Poisson distribution. Their CMP-
motivated exponentially weighted moving average (CMP-EWMA) control
chart (referred in their original work as a generalized EWMA (GEWMA)
chart) demonstrates robustness when working with dispersed data and con-
tains three EWMA charts as special cases for count data measuring the
number of nonconformities. Let Xt be an independent and identically CMP-
distributed sequence of quality measurements from a production process.
Assuming the process to be in control implies that the process mean is
λ0
∂ ln (Z(λ0,ν))

∂λ0
(see Equation (2.14)). Suppose one wishes to monitor changes

in λ for a fixed dispersion level ν (say ν0). The CMP-EWMA control chart
statistic is defined as

1 While Saghir and Lin (2014c) refer to λ as the average number of nonconformities, this
description holds only for ν = 1, i.e. the PEWMA chart.
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Ct = (1 − ω)Ct−1 + ωXt, (6.9)

i.e. a weighted average of the statistic at time t − 1 and the tth observa-
tion. While the weighting constant is 0 < ω < 1 by definition, Saghir
and Lin (2014c) maintain the Montgomery (2001) recommendation for
0.05 ≤ ω ≤ 0.25.

Given the recursion defined in Equation (6.9), the CMP-EWMA statistic
can be represented as Ct = ω

[∑t−1
i=0 (1 − ω)tXt−i

]
+ (1 − ω)tC0, where

C0 = λ0
∂ ln (Z(λ0,ν))

∂λ0
. The mean and variance of Ct are thus

E(Ct) = λ0
∂ ln (Z(λ0, ν))

∂λ0
and (6.10)

V(Ct) = ω

2 − ω
[
1 − (1 − ω)2t

] ∂E(Xt)

∂ ln (λ0)
. (6.11)

Accordingly, the upper and lower control limits are

UCL = λ0
∂ ln Z(λ0, ν)

∂λ0
+ BU

√
ω

2 − ω
(
∂E(X)

∂ ln (λ0)
[1 − (1 − ω)2t]

)

→ λ0
∂ ln Z(λ0, ν)

∂λ0
+ BU

√
ω

2 − ω
(
∂E(X)

∂ ln (λ0)

)

(6.12)

CL = λ0
∂ ln Z(λ0, ν)

∂λ0
(6.13)

LCL = λ0
∂ ln Z(λ0, ν)

∂λ0
− BL

√
ω

2 − ω
(
∂E(X)

∂ ln (λ0)
[1 − (1 − ω)2t]

)

→ λ0
∂ ln Z(λ0, ν)

∂λ0
− BL

√
ω

2 − ω
(
∂E(X)

∂ ln (λ0)

)

, (6.14)

where BL and BU can be set equal to each other (say, some value B), and
the asymptotic bounds for UCL and LCL occur as t → ∞. As usual, the
LCL is Winsorized to zero whenever computations lead to a negative value.
By design, the CMP-EWMA generalizes the Poisson, Bernoulli, and geo-
metric EWMA charts. The CMP-EWMA chart equals the Poisson EWMA
(PEWMA) when ν = 1, the geometric EWMA when ν = 0 and λ0 < 1,
and the Bernoulli EWMA when ν → ∞ with p = λ0

1+λ0
. The CMP-

EWMA likewise reduces to the Sellers (2012b) Shewhart chart for ω = 1
(Alevizakos and Koukouvinos, 2019).

The CMP-EWMA chart is more effective than the CMP-Shewhart chart
for detecting small and large positive shifts. The CMP-EWMA chart
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becomes more effective at detecting small positive shifts as ω decreases;
however, the CMP-Shewhart chart is better than the CMP-EWMA chart at
detecting small negative shifts. This result is common – control charts with
symmetric control limits are less effective at detecting small shifts toward
smaller values when they are more effective at detecting small shifts toward
larger values (Gan, 1990). Meanwhile, for equi- or over-dispersed data, the
CMP-EWMA chart gives unbiased results for upward and downward shifts
when the weighting constant ω is small. The results are biased, however,
for over-dispersed data when ω is moderate to large for upward or down-
ward shifts, and for downward shifts in equi-dispersed data. Finally, when
the data are under-dispersed, the CMP-EWMA chart performs well only
for detecting upward shifts (Saghir and Lin, 2014c).

6.2.2 CMP-EWMA Chart with Multiple Dependent State Sampling

Aslam et al. (2016a) broaden the CMP-EWMA chart definition to develop
a CMP-EWMA chart with multiple dependent state sampling (i.e. CMP-
MDSEWMA chart). Assume a CMP parametrization where its mean and
variance approximations (i.e. Equations (2.23) and (2.24)) hold such that
the CMP-MDSEWMA statistic Ct is approximately normally distributed

for large t with mean λ1/ν
0 − ν−1

2ν and variance ω

2−ω
(
λ

1/ν
0

ν

)
when the process

is in control. Accordingly, the control limits are defined as

LCLi =
(

λ
1/ν
0 − ν − 1

2ν

)

− Bi

√
√
√
√ ω

2 − ω

(
λ

1/ν
0

ν
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and (6.15)

UCLi =
(
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0 − ν − 1

2ν
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+ Bi
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√
√ ω

2 − ω

(
λ

1/ν
0
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)

(6.16)

for i = 1, 2, where i = 1 (2) produces the outer (inner) limits, re-
spectively; Algorithm 7 provides the steps to produce the chart. The
CMP-MDSEWMA chart reduces to the CMP-EWMA chart when g = 0
and B1 = B2 = B.

For ν fixed and a process shift multiple d such that λ = dλ0 reflecting a
substantive shift, the CMP-MDSEWMA chart has an in-control ARL,

ARL0 = [1 − [( (B2) − (−B2)) + {( (−B2) − (−B1)

+ ( (B1) − (B2))}{ (B2) − (−B2)}g]]−1,
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1. Randomly select an observation at time t and determine the number
of nonconformities Xt associated with this observation.

2. Calculate the EWMA statistic at time t, Ct = (1 − ω)Ct−1 + ωXt,
for a weighting constant ω.

3. The process is considered out of (in) control if Ct ≥ UCL1 or
Ct ≤ LCL1 (LCL2 ≤ Ct ≤ UCL2). If Ct falls outside of these ranges,
go to Step 4.

4. Check if g-preceding subgroups are in control. If yes, then declare
the process as in control; otherwise, declare the process as out of
control.

Algorithm 7 Steps to establish the CMP-MDSEWMA chart.

and out-of-control ARL, ARL1 = [
1 − A1

1 + (A1
2 + A1

3)(A1
1)g

]−1
, where
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A1
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,

where  ( · ) denotes the usual cumulative distribution function of the
standardized normal distribution. Simulation studies show that the CMP-
MDSEWMA chart not only outperforms the CMP-EWMA chart producing
smaller ARL1 values for all shifts but also increases in efficiency as g
increases.

6.2.3 CMP-EWMA Chart with Repetitive Sampling

Aslam et al. (2016b) advance the CMP-EWMA chart to allow for repet-
itive sampling, thus developing what is hereafter referred to as a CMP-
RSEWMA chart. Again assuming a CMP parametrization where the mean
and variance approximations hold, the CMP-RSEWMA chart maintains the
same outer and inner control limits as described for the CMP-MDSEWMA
chart (see Equations (6.15) and (6.16)) while the associated decision
process is modified; see Algorithm 8.

Maintaining the process shift design as described in Section 6.2.2 (i.e.
process shift λ = dλ0 with stationary ν), the control bounds are deter-
mined based on the in-control ARL, ARL0 = 1−2( (B1)− (B2))

2(1− (B1)) , where  ( · )

1. Randomly select an observation at time t and determine the number
of non conformities Xt associated with this observation.

2. Calculate the EWMA statistic at time t, Ct = (1 − ω)Ct−1 +ωXt, for
a weighting constant ω.

3. The process is considered out of (in) control if Ct ≥ UCL1 or
Ct ≤ LCL1 (LCL2 ≤ Ct ≤ UCL2). If Ct falls outside of these ranges,
repeat the process selecting a new observation.

Algorithm 8 Steps to establish the CMP-RSEWMA chart.
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denotes the standardized normal cumulative distribution function;
meanwhile, ARL1 = 1−P1

rep
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, where
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denotes the probability of declaring the process out of control for the shifted
process λ = dλ0 based on one sample, and

P1
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is the probability of resampling when the shifted process relation holds.
Aslam et al. (2016b) suggest minimizing the in-control process average

sample size

ASS0 = 1

1 − 2( (B1) − (B2))
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with respect to B1 and B2 so that ARL0 is no less than a predefined target
ARL0 value. The determined values for B1, B2, and d are then used to deter-
mine ARL1. Illustrative simulations show that the CMP-RSEWMA ARL1

decreases as |d − 1| increases. A decrease in ARL1 occurs more slowly as
ν increases; however, this result is derived for ν ≤ 1 (i.e. cases where data
are equi- to over-dispersed); thus, it remains unknown what happens in the
case of data under-dispersion. At the same time, however, maintaining this
restriction is reasonable, given the reliance of the CMP-RSEWMA chart on
the CMP mean and variance approximations. Finally, ARL1 for the CMP-
RSEWMA chart increases with ω (holding the other terms fixed). Thus, the
CMP-RSEWMA chart is found to be more efficient than the CMP-EWMA
chart in notifying analysts that a process is going out of control because
the CMP-RSEWMA construct produces smaller ARLs associated with a
shifted process than does CMP-EWMA (Aslam et al., 2016b).

6.2.4 Modified CMP-EWMA Chart

Aslam et al. (2017) develop a modified EWMA chart based on the CMP
distribution (i.e. a CMP-MEWMA chart), which likewise claims a more
efficient ability to detect changes in λ. Given a sample of size n at time t and
the associated measure of quality number Xt that is CMP(λ, ν) distributed,
the CMP-MEWMA statistic Mt has the form

Mt = (1 − ω)Mt−1 + ωXt + k(Xt − Xt−1), (6.17)

where 0 < ω < 1 remains the weighting constant and k is another constant
such that the process is deemed out of control if Mt > UCL or Mt <

LCL. The CMP-MEWMA reduces to the CMP-EWMA statistic for k = 0;
Aslam et al. (2017) define k = −ω/2 as optimal and recommend 0.05 ≤
ω ≤ 0.25. The cascading form of Mt implies that its mean and variance are
E(Mt) = λ1/ν − ν−1

2ν and V(Mt) = ω+2ωk+2k2

2−ω
(
λ1/ν

ν

)
; thus, the control limits

are now

LCL = λ1/ν
0 − ν − 1

2ν
− B

√
ω + 2ωk + 2k2

n(2 − ω)
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λ1/ν

ν
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, (6.18)

UCL = λ1/ν
0 − ν − 1

2ν
+ B

√
ω + 2ωk + 2k2

n(2 − ω)

(
λ1/ν

ν

)

, (6.19)
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where k = 0 represents the special case of the CMP-EWMA chart. Simu-
lation studies show that, as ω increases, B increases, while the first quartile
of the run-length distribution decreases; further, the CMP-MEWMA chart
is more efficient than the CMP-EWMA chart. As is the case with the
CMP-MDSEWMA and CMP-RSEWMA charts, the CMP-MEWMA chart
likewise assumes the CMP mean and variance approximations to hold; thus,
analysts should use these charts with caution or at least after first confirming
that their data are equi- to over-dispersed.

6.2.5 Double EWMA Chart for CMP Attributes

Assuming that Rt are independent and identically Poisson(λ)-distributed
random variables denoting the number of nonconformities at time t, a
Poisson-double EWMA (PDEWMA) chart can monitor Poisson data via
the PDEWMA statistic St, defined as

⎧
⎨

⎩

Qt = (1 − ω)Qt−1 + ωRt

St = (1 − ω)St−1 + ωQt

S0 = Q0 = λ0,
(6.20)

where 0<ω< 1 denotes the usual weighting constant, and Qt is the
PEWMA statistic in Equation (6.8) (Zhang et al., 2003). This chart
produces the control limits λ0 ± B

√
V(St), where

V(St) =
λ0
ω4[1 + (1 −ω)2 − (t + 1)2(1 − ω)2t + (2t2 + 2t − 1)(1 − ω)2t+2 − t2(1 − ω)2t+4]

[1 − (1 − ω)]3
.

(6.21)

Alevizakos and Koukouvinos (2019) generalize the PDEWMA chart, de-
veloping a double EWMA control chart to monitor CMP(λ, ν)-distributed
attribute data; accordingly, this flexible chart can detect shifts in the re-
spective parameters individually or simultaneous shifts in both parameters.
Here, the number of nonconformities is now denoted Xt at time t and is
CMP(λ, ν) distributed, t = 1, 2, . . ., such that this CMP-double EWMA
(CMP-DEWMA) process is analogously represented as

⎧
⎪⎪⎨

⎪⎪⎩

Ct = (1 − ω)Ct−1 + ωXt

Dt = (1 − ω)Dt−1 + ωCt

D0 = C0 = λ0
∂ ln (Z(λ0, ν0))

∂λ0
;

(6.22)
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the process is in control when λ = λ0 and ν = ν0. The control limits and
centerline for the CMP-DEWMA chart are

UCLt = λ0
∂ ln (Z(λ0, ν0))

∂λ0
+ B

√
V0(Dt) (6.23)

CL = λ0
∂ ln (Z(λ0, ν0))

∂λ0
(6.24)

LCLt = λ0
∂ ln (Z(λ0, ν0))

∂λ0
− B

√
V0(Dt), (6.25)

where

V0(Dt) = V(St)

λ0
· ∂E(X)

∂ ln (λ0)

denotes the variance of Dt assuming that the process is in control, and V(St)
is defined in Equation (6.21). These bounds converge to

UCL = λ0
∂ ln (Z(λ0, ν0))

∂λ0
+ B

√
ω(2 − 2ω + ω2)

(2 − ω)3

∂E(X)

∂ ln (λ0)
(6.26)

CL = λ0
∂ ln (Z(λ0, ν0))

∂λ0
(6.27)

LCL = λ0
∂ ln (Z(λ0, ν0))

∂λ0
− B

√
ω(2 − 2ω + ω2)

(2 − ω)3

∂E(X)

∂ ln (λ0)
(6.28)

as t gets large. The CMP-DEWMA simplifies to the PDEWMA chart for
the special case where ν0 = 1; given the underlying CMP distributional
qualities, the CMP-DEWMA likewise contains DEWMA charts based on
geometric and Bernoulli distributional random variables.

Simulation studies show that, for a fixed ν, (1) B increases with ω
in order to obtain similar ARL0 values, (2) the standard deviation run
length (SDRL) likewise increases with ω while always respecting the
SDRL ≤ ARL constraint, and (3) the in-control run-length distribution
is right-skewed, and its median run length (MRL) decreases slightly as ω
increases. Meanwhile, for fixed ω, B likewise increases with ν, however
at a slower rate. Studying location shift (say, λ = dλλ0) for a fixed dis-
persion ν ≤ 1 (ν > 1), the CMP-DEWMA chart is unbiased for small
ω but grows in potential bias for small downward (upward) shifts as ω
increases. Under these circumstances, the CMP-DEWMA chart detects
upward (downward) shifts faster than downward (upward) shifts; in par-
ticular, a larger ω is required to detect a larger downward (upward) shift.
It is unclear what causes the association between dispersion type and shift
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detection. Regarding the dispersion shift (ν = dνν0) for a fixed location
value λ, the mean and variance of the CMP distribution increase (decrease)
as ν decreases (increases), implying that a downward (upward) shift in ν
causes the CMP-DEWMA chart to detect an upward (downward) shift in
the process mean. The CMP-DEWMA chart is unbiased when the data are
over-dispersed in an in-control state (i.e. ν0 < 1), and larger ω is required
to detect larger shifts in ν. Meanwhile, when ν0 = 1, the CMP-DEWMA
chart is unbiased for small ω but shows bias for small to moderate shifts
and more strongly so as ω increases. For under-dispersed ν0, the CMP-
DEWMA chart is biased for upward shifts in ν, and the amount of bias
only strengthens as ω increases. In all cases, the CMP-DEWMA chart de-
tects downward shifts in ν more quickly than upward shifts. Studying either
type of shift where the other parameter is held fixed, ARL1 increases with ν,
implying that the CMP-DEWMA chart has a more difficult time with shift
detection as the variance associated with a dataset decreases in size (i.e.
becomes more under-dispersed). Likewise, the MRL values move closer to
their corresponding ARL values as either parameter shift increases; thus,
the skewness in the run-length distribution decreases.

The CMP-DEWMA performs at least equally efficiently as (if not bet-
ter than) the CMP-EWMA chart and is more effective than the latter at
detecting downward parameter shifts that associate with negative process
mean shifts. Simulation studies demonstrate the greater sensitivity of the
CMP-DEWMA chart to detect small to moderate shifts in the location and
dispersion parameters, respectively (downward for the location parame-
ter and upward for the dispersion parameter) with small ω values, when
data are equi- or over-dispersed. Meanwhile, when the data are under-
dispersed, the CMP-DEWMA demonstrates greater sensitivity than the
CMP-EWMA with at least upward shifts and perhaps shifts in both di-
rections for the location parameter, depending on ω. With regard to the
dispersion parameter, the CMP-DEWMA demonstrates greater sensitiv-
ity to identifying upward shifts with regard to the dispersion parameter
than the CMP-EWMA chart. Given the joint influence between λ and ν
on the CMP mean, the CMP-DEWMA’s ability to outperform the CMP-
EWMA chart with regard to detecting upward shifts in ν is equivalent to the
CMP-DEWMA’s greater ability to detect downward shifts in the process
mean. The broader scope regarding sensitivity comparisons between the
CMP-DEWMA and CMP-EWMA charts has some dependence likewise
on ω, although the CMP-DEWMA is generally more efficient than CMP-
EWMA; see Alevizakos and Koukouvinos (2019a) for details. Nonetheless,
the CMP-DEWMA can outperform the CMP-EWMA chart because the
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CMP-DEWMA more efficiently detects (1) downward shifts in λ for a fixed
ν, (2) upward shifts in ν for fixed λ, and (3) simultaneous upward or down-
ward shifts in λ and ν that (in either scenario) produce a downward shift in
the process mean.

6.2.6 Hybrid EWMA Chart

Aslam et al. (2018) design a hybrid EWMA control chart to study attribute
data having an underlying CMP(λ, ν) distribution; we refer to this as a
CMP-HEWMA chart. Let Xt denote the number of nonconformities at time
t and have a CMP(λ, ν) distribution. This random variable along with two
weighting constants ω1 and ω2 ∈ [0, 1] designs the HEWMA statistic

Ht = (1 − ω1)Ht−1 + ω1Et, where (6.29)

Et = (1 − ω2)Et−1 + ω2Xt. (6.30)

The resulting CMP-hybrid EWMA (CMP-HEWMA) chart reduces to the
CMP-DEWMA chart when ω1 = ω2, the CMP-EWMA chart when ω1 = 1,
and the CMP-Shewhart chart when ω1 = ω2 = 1. Sufficient conditions are
assumed to hold such that Et and Ht, respectively, have approximate normal
distributions with mean μE = μH = λ1/ν − ν−1

2ν and respective variances

σ 2
E = ω2

2−ω2
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)
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σ 2
H = ω2

1ω2
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(
λ1/ν

ν

)

[
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(6.31)
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ν

)

(6.32)

when t is sufficiently large. Accordingly, the CMP-HEWMA control limit
bounds are

LCL =
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(6.33)

UCL =
(
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+ B

√
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(2 − ω1)(2 − ω2)

(
λ1/ν

ν

)

(6.34)

for the in-control location parameter λ0 and control bound B determined to
satisfy the desired ARL0. Note that Aslam et al. (2018) do not assume an
in-control dispersion parameter (say ν0); in fact, they assume that a shifted
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process is only detected through a shift in λ; hence, they appear to assume
a constant dispersion ν.

Monte Carlo simulations are used assuming an over-dispersed (i.e. ν < 1)
structure to show that, for detecting λ = dλ0 for some shift parameter d, the
ARL1 values decrease as d moves away from 1 with this decrease occurring
more rapidly for d > 1 than d < 1. This implies that the CMP-HEWMA
chart is more efficient with detecting upward rather than downward shifts
in the location parameter. Meanwhile, the ARL1 values decrease with ω2.
A comparative study likewise demonstrates that the CMP-HEWMA out-
performs the CMP-EWMA and CMP-Shewhart charts for over-dispersed
data. Aslam et al. (2018) infer that these results likewise hold when data
under-dispersion exists; however, the limits depend on the CMP mean and
variance approximations being satisfactory (i.e. with the associated con-
straint space for the respective parameters being satisfied, namely ν ≤ 1
(i.e. the data are equi- or over-dispersed) or λ > 10ν ; see Chapter 2).

6.3 COM–Poisson Cumulative Sum (CUSUM) Charts

CUSUM charts are additional “memory-type control charts” serving as an
attractive alternative to Shewhart charts because CUSUM charts are more
sensitive to smaller process shifts; the development of CUSUM charts
likewise takes historical sample data into account along with current ob-
servations. Accordingly, CUSUM charts have a faster detection rate on
average than other charts containing the same in-control performance. Such
charts also have a minimax optimality property.

The Poisson CUSUM (PCUSUM) chart is utilized to detect significant
changes (whether an increase or decrease) in a count measure (e.g. the num-
ber of nonconformities). The PCUSUM statistic St = max (0, Yt −K +St−1)
(alternatively, St = max (0, K − Yt + St−1)) at time t is used to detect an in-
crease (decrease) in counts, where Yt denotes an observed value, and K is a
reference value; S0 = 0 is used for standard CUSUMs, while S0 ≈ L/2 > 0
is recommended (for some decision interval value L) for fast initial re-
sponse CUSUMs (Brook and Evans, 1972; Lucas, 1985). An out-of-control
status is detected when St ≥ L inferring that a statistically significant
change in the count rate has occurred. Brook and Evans (1972) study a
PCUSUM chart via a Markov-chain approach whose transition probability
matrix is used to determine various chart properties, including the ARL, and
moments and exact probabilities from the run-length distribution. Lucas
(1985) meanwhile notes that the ARL of a standard (or fast initial response)
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CUSUM is nearly geometric, however, it either has a lower (or larger) prob-
ability of short run lengths. The optimal reference value is determined to be
K = λd−λa

ln (λd)−ln (λa) , where λa and λd, respectively, denote the acceptable and
detectable mean number of counts per sampling interval. Given the value of
K, a decision interval value r can then be determined such that the ARL is
sufficiently large when the counts are at an acceptable level and sufficiently
small when the process is considered out-of-control; see Lucas (1985) for
details. A two-sided CUSUM control scheme is encouraged because its
properties can easily be obtained by combining the results of the respective
one-sided schemes used to detect significant increase or decrease, while
this approach allows for flexibility in detecting change.

The PCUSUM control chart is a natural (and hence the most popular)
CUSUM chart for tracking the average number of nonconformities in or-
der to detect small to moderate performance shifts. Such charts, however,
rely on an underlying assumption of equi-dispersion, which is constraining
because real count data usually contain some measure of dispersion. Thus,
a flexible alternative to the PCUSUM chart is a COM–Poisson CUSUM
(CMP-CUSUM) chart that allows for data over- or under-dispersion; see
Section 6.3.1 for details.

6.3.1 CMP-CUSUM charts

Saghir and Lin (2014b) assume a CMP(λ, ν) parametrization where the
approximations for the mean and variance (Equations (2.23) and (2.24))
hold; this implies that they further assume that the associated parameter
constraints (i.e. ν ≤ 1 or λ > 10ν) likewise hold. Note that λ is not the
distribution mean except for the special case where ν = 1. With these
assumptions in place, three versions of CMP-CUSUM control charts are
developed (namely the λ-CUSUM, ν-CUSUM, and s-CUSUM charts) to
detect shifts in the intensity and/or dispersion parameters; the s-CUSUM
chart detects shifts in both parameters. The λ-CUSUM chart (used to detect
shifts in the intensity parameter) contains three CUSUM charts as special
cases: PCUSUM (when ν = 1), geometric CUSUM (ν = 0), and Bernoulli
(ν → ∞) CUSUM charts. In all cases, the aforementioned charts are
designed to monitor for any change (either increase or decrease) in the non-
conformities rate. In order to develop these CMP-CUSUM control charts, it
is assumed that all items are inspected from which the data are attained and
that the sequence of random variables Xt, t = 1, 2, 3, . . ., is independent and
identically CMP(λ, ν) distributed with probability P(Xt = xt) as defined in
Equation (2.8).
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The λ-CUSUM chart

Assume that the CMP in-control parameter values are known to be λ0

and ν0. Saghir and Lin (2014b) consider a hypothesis test H0 : λ = λ0

versus H1 : λ = λ1, where λ1 > λ0 (λ1 < λ0) infers a rate increase
(decrease) in the number of nonconformities. Using a likelihood ratio
test approach, the respective one-sided λ-CUSUM statistics have the form
C+

t = max (0, K1t + C+
t−1) that gets sufficiently large if H1 : λ = λ1 > λ0,

and C−
t = min (0, K1t + C−

t−1) becoming sufficiently small if H1 : λ = λ1 <

λ0 for i = 1, 2, . . ., where

K1t = xt[ ln (λ1) − ln (λ0)] + ln (Z(λ0, ν0)) − ln (Z(λ1, ν0)); (6.35)

the starting value C0 can be zero or nonzero as proposed in Lucas and
Crosier (1982). The λ-CUSUM chart rejects H0 when C+

t >B+
C or C−

t <B−
C ,

where B+
C and B−

C , respectively, are the upper and lower control limits, deter-
mined via analyst-required in-control performance. Alternatively, one can
develop a λ-CUSUM construct based on the sequential probability ratio
test. Here,

Ct =
∏t

i=1 f (X = xi;λ0, ν0)
∏t

i=1 f (X = xi;λ1, ν0)
or (6.36)

ln (Ct) = ln (Ct−1) + Xt − K2t, (6.37)

for t = 1, 2, 3, . . ., where K2t = ln [Z(λ1,ν0)/Z(λ0,ν0)]
ln (λ1/λ0) . Under the sequential

probability ratio test analysis, the λ-CUSUM statistics are now C+
t =

max (0, C+
t−1 +Xt −K2t) and C−

t = min (0, K2t −Xt +C−
t−1), where C+

t > B+
C

and C−
t < B−

C infer rejecting H0. Under either construct, the critical values
for the respective one-sided tests are determined based on analyst pre-
specified in-control performance requirements. A two-sided CUSUM chart
can be considered by simultaneously performing the respective one-sided
CUSUM charts.

The λ-CUSUM chart simplifies to the PCUSUM and the geometric and
Bernoulli CUSUM charts under the special cases for ν0. For ν0 = 1, K2t =

λ1−λ0

ln (λ1)−ln (λ0) is precisely the reference value of a Poisson(λ0) CUSUM chart
of Lucas (1985). Meanwhile, for ν0 = 0 and λ < 1, K2t = ln (1−λ0)−ln (1−λ1)

ln (λ1/λ0)
is the reciprocal of the reference value of a Bourke (2001) geometric(1 −
λ0) CUSUM chart, and for ν0 → ∞, K2t = ln (1−p0)−ln (1−p1)

ln (p1(1−p0))−ln (p0(1−p1)) is the

reference value of a Bernoulli
(

p0 = λ0

1+λ0

)
CUSUM chart (Lee et al., 2013;

Reynolds, 2013).
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The ν-CUSUM Chart

For a fixed intensity value λ, the CMP distribution mean and variance de-
crease as the dispersion value ν increases; meanwhile, for a fixed dispersion
level ν, its mean and variance increase as the intensity value λ increases (see
Section 2.3). Saghir and Lin (2014b) use these relationships to develop a
ν-CUSUM chart in order to detect a significant shift in the dispersion pa-
rameter from ν0 to ν1 �= ν0. Accordingly, for H0 : ν = ν0 versus respective
alternate hypotheses H1 : ν = ν1 > ν0 and H1 : ν = ν1 < ν0, their associ-
ated upper and lower ν-CUSUM control statistics are D+

t = max (0, Gt +
D+

t−1) and D−
t = min (0, Gt + D−

t−1), respectively, for t = 1, 2, . . ., where
D0 = 0 and Gt is the log-likelihood ratio for a shift satisfying

Gt = ln (xt!)(ν0 − ν1) + ln

(
Z(λ0, ν0)

Z(λ0, ν1)

)

. (6.38)

Thus, for upper and lower control bounds, B+
D and B−

D , respectively,
D+

t > B+
D serves to detect statistically significant positive change in ν,

while D−
t > B−

D detects significant negative change.

The s-CUSUM Chart

While the previous charts allow analysts to consider isolated charts for only
λ or ν Saghir and Lin (2014b) propose the s-CUSUM chart to simultane-
ously detect significant change (increase or decrease) in both λ and ν via
a single chart. Denoting in- and out-of-control values of λ as λ0 and λ1,
respectively (and similarly ν0 and ν1 for ν), the likelihood ratio method
calls for the s-CUSUM control statistics to be S+

t = max (0, Qt + S+
t−1) and

S−
t = max (0, Qt + S−

t−1) for t = 1, 2, 3, . . ., where S0 = 0 and

Qt = xt ln (λ1/λ0) + ln (xt!)[ν0 − ν1] + ln [Z(λ0, ν0)/Z(λ1, ν1)]. (6.39)

Accordingly, for upper and lower control thresholds B+
S and B−

S , the
s-CUSUM chart detects an out-of-control state when S+

t > B+
S or S−

t >

B−
S . Note that the sequential probability ratio test analysis is not a vi-

able approach here because it does not produce unique expressions for the
CUSUM control statistics.

CUSUM Chart Design, and Comparisons

Instead of using ARL, Saghir and Lin (2014b) assess chart performance for
the λ-, ν-, and s-CUSUM charts via two average number of observations
to signal (ANOS) values, namely the respective expected number of prod-
ucts until a signal is given when λ and ν or both are in and out of control,
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i.e. ANOS0 and ANOS1. As is the case with ARLs, analysts desire large
ANOS0 when the process is in control and a small ANOS1 when the
process is out of control. Recognizing that the ANOS measures can be
determined under the assumption of a zero-state or steady-state frame-
work, the authors explain that ANOS values attained under a zero-state
scenario assume that the parameter(s) shifted at time zero, thus implying
that the shift occurred under the initial setup of the monitoring pro-
cess or given the initial framework of the associated chart. Meanwhile,
ANOS values attained under steady-state conditions imply that the pro-
cess operated in control for a steady period of time before shifting out
of control.

Saghir and Lin (2014b) use a Markov-chain approach to approximate
ANOS where the in-control region [0, r] for the CUSUM statistic is di-
vided into N subintervals [�j, uj] = [ (j−1)r

N , jr
N

]
with respective midpoints

mj = (2j−1)r
2N for j = 1, 2, . . . , N. Under this construct, the (N + 1)st state

is an absorbing state because the CUSUM statistic then falls beyond the
[0, r] interval and the process is out of control. ANOS can be thought of
as the number of moves made from an initial state to an absorbing state;
thus, attention focuses on the (N + 1) × (N + 1) transition probability
matrix

P =
[

A (I − A)1
0 1

]

(6.40)

comprised of an N × N identity and partial matrices, I and A, respectively.
These components aid in determining the approximate ANOS = P′

0(I −
A)−11, where P′

0 is an N-length vector of initial probabilities.
Specifying the values for (λ0,ν0) and (λ1, ν1) determine the respective

reference values for the appropriate CUSUM chart – K1t or K2t via Equation
(6.35) for the λ-CUSUM chart, Gt in (6.38) for the ν-CUSUM chart, or Qt

in (6.39) for the s-CUSUM chart. Given the appropriate CUSUM chart, the
control limit can be determined for a given reference value and ANOS0,
albeit not necessarily uniquely; see Saghir and Lin (2014b) for details. This
is due to the discrete form of the CMP distribution.

The λ-CUSUM chart is more efficient than the ν- or s-CUSUM charts
when it comes to detecting a change in λ with ν fixed. By design, the
λ-CUSUM chart detects out-of-control states more quickly than the CMP-
Shewhart chart in the presence of small to moderate changes in λ, while
the CMP-Shewhart chart remains useful for detecting large shifts. The
s-CUSUM chart meanwhile demonstrates bias under such a scenario be-
cause, by design, it seeks to detect shifts in both parameters simultaneously.



6.3 COM–Poisson Cumulative Sum (CUSUM) Charts 243

For situations where the potential shift is only in the dispersion parameter
(i.e. maintaining an in-control rate parameter, λ), the ν-CUSUM out-
performs the other CMP-CUSUM charts (as expected, by design). The
s-CUSUM chart ranks second in performance because, by allowing for
the detection of shifts in both parameters, this chart allows for the possi-
ble detection of a significant shift in ν; this, of course, is not possible in
the λ-CUSUM chart, given its framework that assumes a fixed dispersion
level. Finally, when both parameters shift, the s-CUSUM offers mixed per-
formance results. The chart performs better when detecting shifts of both
parameters when the direction of change is the same for both parameters
(i.e. both parameters increase or decrease); however, the chart performs
poorly in cases where one parameter increases while the other decreases.
In particular, a dispersion shift that changes the dispersion type (e.g. over-
to under-dispersion) results in a large s-CUSUM chart ANOS.

6.3.2 Mixed EWMA-CUSUM for CMP Attribute Data

Rao et al. (2020) develop a CMP-based mixed EWMA-CUSUM (i.e.
CMP-EWMA-CUSUM) chart as a special case of the Abbas et al. (2013)
EWMA-CUSUM chart. This chart combines the respective strengths of a
CMP-EWMA chart and a λ-CUSUM chart to monitor attribute data. As-
sume that process attributes Xt, t = 1, 2, . . ., are independent and identically
CMP(λ, ν) distributed where the approximations for the mean and variance
(Equations (2.23) and (2.24)) hold. The CMP-EWMA-CUSUM approach
relies on the upper and lower CUSUM statistics M+

t = max [0, (Ct −μ0) −
Kt+M+

t−1] and M−
t = max [0, (μ0−Ct)−Kt+M−

t−1] that (in turn) rely on the
CMP-EWMA statistic Ct = ωXt + (1 − ω)Ct−1 defined in Equation (6.9);
ω ∈ [0, 1] remains the weighting constant, and let C0 = μ0 = λ1/ν − ν−1

2ν
(the approximated target mean) be the starting value for Ct. Meanwhile,
M+

t and M−
t , respectively, denote the upper and lower CUSUM statistics

(initially set at zero), where K∗ and Kt = K∗
√

ω

2−ω [1 − (1 − ω)2t] 1
ν
λ1/ν

are CUSUM chart reference values. The resulting CMP-EWMA-CUSUM
control chart further relies on the CUSUM chart control limits, L∗ and
Lt = L∗

√
ω

2−ω [1 − (1 − ω)2t] 1
ν
λ1/ν ; K∗ and L∗ are (e.g. classical CUSUM

reference value and limit) constants. Accordingly, M+
t and M−

t are com-
pared with Lt such that the process is in control if the CUSUM statistics
M+

t and M−
t are less than Lt; otherwise, the process is out of control (i.e.

the process has shifted either above or below the target value). The CMP-
EWMA-CUSUM approach reduces to the μ0-shifted λ-CUSUM scheme
for ω = 1.
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Rao et al. (2020) consider various Monte Carlo simulations where the
resulting data are assumed to be equi- or over-dispersed (i.e. ν ≤ 1, thus
allowing for the mean and variance approximations to hold) to study the
ARL. These studies show that ARL1 decreases with ω (thus supporting a
small value for ω), while, given ω, the ARL1 decreases with λ. The more
precise representations,

C0 = μ0 = ∂ ln Z(λ, ν)

∂ ln (λ)
= λ∂ ln Z(λ, ν)

∂λ

Kt = K∗

√
ω

2 − ω [1 − (1 − ω)2t]
∂E(X)

∂ ln (λ)

Lt = L∗

√
ω

2 − ω [1 − (1 − ω)2t]
∂E(X)

∂ ln (λ)
,

however would presumably allow for greater flexibility of use, thus not
restricting control chart performance based on dispersion type.

6.4 Generally Weighted Moving Average

The Poisson generally weighted moving average (PGWMA) chart was de-
signed to better incorporate historical data and advance the PEWMA chart
in an effort to more efficiently detect process shifts (Chiu and Sheu, 2008).
The PGWMA chart statistic is defined as

G∗
t =

t∑

j=1

(q(j−1)α − qjα )X∗
t−j+1 + qtαG∗

0 (6.41)

for a Poisson(λ) distributed number of detected nonconformities X∗
t at time

t (t = 1, 2, 3, . . .), where 0 ≤ q < 1 is a design parameter, α > 0 an adjust-
ment parameter, and G∗

0 = λ0 is the PGWMA initial value. The resulting
PGWMA chart control limits and centerline are

UCLt = λ0 + B

√
√
√
√λ0

t∑

j=1

(
q(j−1)α − qjα

)2

CL = λ0 (6.42)

LCLt = max

⎛

⎝0, λ0 − B

√
√
√
√λ0

t∑

j=1

(
q(j−1)α − qjα

)2

⎞

⎠ ,

where B is the PGWMA control bound that attains the desired ARL0. The
PEWMA chart is a special case of the PGWMA chart where α = 1 and
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q = 1 − ω, while the Shewhart c-chart is a special case of the PGWMA
where α = 1 and ω = 1 (Sheu and Chiu, 2007).

Chen (2020) generalizes the PGWMA chart in order to analyze CMP
attribute data (hereafter referred to as the CMP-GWMA chart). Letting Xt,
t = 1, 2, 3, . . ., denote the number of nonconformities with an underlying
CMP(λ, ν) distribution, assume that the CMP mean and variance approx-
imations (Equations (2.23) and (2.24)) are permissible and an in-control
status exists, i.e. λ = λ0 and ν = ν0. The CMP-GWMA chart statistic is
defined as

Gt =
t∑

j=1

(q(j−1)α

1 − qjα

1 )Xt−j+1 + qtα

1 G0, (6.43)

for the design parameter 0 ≤ q1 < 1, the adjustment parameter α > 0,
and G0

.= λ
1/ν0

0 − ν0−1
2ν0

. The resulting control limits and centerline for the
CMP-GWMA chart are

UCLt = λ1/ν0

0 − ν0 − 1

2ν0
+ B1

√
√
√
√λ

1/ν0

0

ν0

t∑

j=1

(
q(j−1)α

1 − qjα

1

)2

CL = λ1/ν0

0 − ν0 − 1

2ν0
(6.44)

LCLt = max

⎛

⎝0, λ1/ν0

0 − ν0 − 1

2ν0
− B1

√
√
√
√λ

1/ν0

0

ν0

t∑

j=1

(
q(j−1)α

1 − qjα

1

)2

⎞

⎠ ,

given the CMP-GWMA bound B1 that attains the desired ARL0. These
limits are determined based on the approximations to the CMP mean and
variance; hence, analysts should be mindful to ensure that the associated
constraints hold for the in-control process (ν0 ≤ 1 or λ0 > 10ν0 ). The CMP-
GWMA simplifies to the CMP-EWMA chart when α = 1 and q1 = 1 − ω,
while the CMP-GWMA reduces to the CMP Shewhart chart when α = 1
and ω = 1.

Similarly, Chiu and Lu (2015) design the Poisson-double GWMA (PDG-
WMA) chart to study Poisson-distributed attribute data. The PDGWMA
statistic has the form

D∗
t =

t∑

j=1

VjX
∗
t−j+1 +

⎛

⎝1 −
t∑

j=1

Vj

⎞

⎠G∗
0, t = 1, 2, 3, . . . ,

where X∗ remains Poisson(λ) distributed, Vj = ∑j
i=1 (q(i−1)α − qiα )(q(j−i)α −

q(j−i+1)α ) for the design parameter 0 ≤ q < 1 and the adjustment parameter
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0 < α ≤ 1, and G∗
0 = λ0 denotes the initial PGWMA statistic. The resulting

PDGWMA chart has the limits

UCLt = λ0 + B∗

√
√
√
√λ0

t∑

j=1

V2
j (6.45)

CL = λ0 (6.46)

LCLt = max

⎛

⎝0, λ0 − B∗

√
√
√
√λ0

t∑

j=1

V2
j

⎞

⎠ . (6.47)

This chart contains the PDEWMA as a special case when α = 1; thus (as
expected), the PDGWMA outperforms the PDEWMA for detecting process
shifts because of its added flexibility.

Chen (2020) likewise generalizes the PDGWMA to create a CMP-based
double GWMA (i.e. CMP-DGWMA) chart, designing a double GWMA
chart for CMP data in order to supersede the efficiency in shift detection
demonstrated by the CMP-DEWMA chart. The CMP-DGWMA statistic is

Dt =
t∑

j=1

WjXt−j+1 +
⎛

⎝1 −
t∑

j=1

Wj

⎞

⎠G0, t = 1, 2, 3, . . . , (6.48)

where Wj = ∑j
i=1

(
q(i−1)α

1 − qiα
1

) (
q(j−i)β

2 − q(j−i+1)β

2

)
, 0 ≤ q1, q2 < 1 are

the design parameters, and 0 < α,β ≤ 1 the adjustment parameters.
Accordingly, the CMP-DGWMA centerline and control limits are

UCLt = λ1/ν0

0 − ν0 − 1

2ν0
+ B2

√
√
√
√λ

1/ν0

0

ν0

t∑

j=1

W2
j

CL = λ1/ν0

0 − ν0 − 1

2ν0
(6.49)

LCLt = max

⎛

⎝0, λ1/ν0

0 − ν0 − 1

2ν0
− B2

√
√
√
√λ

1/ν0

0

ν0

t∑

j=1

W2
j

⎞

⎠ .

The CMP-DGWMA special case where ν0 = 1 is the PDGWMA chart.
Meanwhile, when q1 = q2 = q and α = β = 1, the CMP-DGWMA
simplifies to the CMP-DEWMA chart (and, hence, the PDEWMA when
ν0 = 1). More broadly, for q1 = q2 = q and 0 < α = β < 1, the CMP-
DGWMA chart can be viewed as a scheme where the chart statistic twice
applies the CMP-GWMA weighting sequence.
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Chen et al. (2008) conducted a series of simulation studies to demon-
strate the flexibility and performance of the CMP-GWMA and CMP-
DGWMA charts. First, designing Monte Carlo simulations where q1 =
q2 = q and α = β for ease, in-state simulations show that B1 > B2 when
ν0 ≤ 1, given q and α, i.e. when the in-control state recognizes the data to
be equi- or over-dispersed, the CMP-GWMA bound is consistently greater
than the corresponding CMP-DGWMA bound in order to attain the same
ARL0 value. This implies that the CMP-DGWMA chart will more quickly
detect significant shifting with respect to λ than the CMP-GWMA chart.
Further, when the data are equi- or over-dispersed, Bi decreases as q in-
creases, given a fixed value α, i = 1, 2. When the data are under-dispersed,
however, there does not exist a consistent comparison between B1 and B2

except that both bounds increase as q increases for α ≤ 0.2.
Simulation studies further showed that the CMP-GWMA and CMP-

DGWMA charts are more sensitive in their abilities to detect upward shifts
than downward shifts in the location parameter λ, for a fixed level of data
equi- or over-dispersion. Under such circumstances, analysts are encour-
aged to consider a large q and α near 0.5 in order to properly monitor
for small location shifts via the CMP-(D)GWMA charts. Meanwhile, the
CMP-(D)GWMA charts are more efficient at detecting upward location
shifts than downward ones when the in-control data are under-dispersed.
Accordingly, analysts are encouraged to use a CMP-DGWMA chart with
q and α near 0.9 to detect small upward location shifts, while a large q
and α near 0.5 is recommended for small downward shifts. Given a fixed
dispersion level and fixed parameters q and α, the ARL1 decreases as
the location shift size (whether upward or downward) increases, imply-
ing that these charts can more quickly detect location shifts, particularly
as the size of the said shift increases. The needed time to detection,
however, increases with the size of ν0; this implies that less underlying
dispersion associates with a longer needed time to detect location shifts.
Nonetheless, the CMP-DGWMA chart outperforms the CMP-GWMA and
CMP-(D)EWMA charts at detecting location shifts of any kind. In study-
ing dispersion parameter shifts given a fixed location λ0, simulation studies
showed that the CMP-DGWMA chart is unbiased for dispersion param-
eter shifts in either direction when q ≥ 0.7 and α ≥ 0.5 when starting
from an over-dispersed in-control state. The CMP-(D)GWMA charts can
more efficiently detect downward shifts than upward shifts in ν for any ν0.
Accordingly, a large q and α around 0.5 is recommended to detect small
downward shifts in dispersion via the CMP-DGWMA chart, while a larger
α is suggested to detect small upward shifts in ν via the CMP-GWMA
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chart when ν0 ≤ 1 (i.e. data are equi- to over-dispersed). For ν0 > 1
(i.e. under-dispersion exists), the CMP-(D)GWMA charts are meanwhile
unbiased when detecting downward shifts in the dispersion parameter, ν.
Finally, when studying shifts in both parameters simultaneously, the CMP-
(D)GWMA charts are again more efficient than the CMP-(D)EWMA charts
with regard to the simultaneous shift detection.

6.5 COM–Poisson Chart Via Progressive Mean Statistic

Alevizakos and Koukouvinos (2022) propose a CMP-motivated “memory-
type” control chart based on the progressive mean statistic that combines
ideas from both the CUSUM and EWMA charts. Letting Xj be CMP(λ, ν)

distributed for all j, the CMP progressive mean (CMP-PM) is M∗
t =

∑t
j=1 Xj

t ,
and the resulting centerline and control limits associated with the CMP
chart via the progressive mean statistic are

UCLt = λ0
∂ ln (Z(λ0, ν))

∂λ0
+ B

f (t)

√
1

t

∂E(X)

∂ ln (λ0)
,

CL = λ0
∂ ln (Z(λ0, ν))

∂λ0
, (6.50)

LCLt = max

(

0, λ0
∂ ln (Z(λ0, ν))

∂λ0
− B

f (t)

√
1

t

∂E(X)

∂ ln (λ0)

)

,

where B denotes the control bound width, f (t) is an arbitrary function with
respect to t that serves as a penalty term, and X denotes the CMP(λ, ν)
random variable. The process is out of control if M∗

t > UCLt or M∗
t <

LCLt; otherwise, the process is in control and thus does not demonstrate
any significant shift in the process mean. For ν = 1, these bounds simplify
to those of the Poisson progressive mean chart by Abbasi (2017).

Data simulations show that the CMP-PM chart can detect any type of
in-control process mean shift and that the chart is unbiased with respect
to ARL (i.e. the ARL1 results are smaller than their ARL0 counterparts).
The run-length distribution is positively skewed where that skewness de-
creases as the shift with respect to λ increases, and its attributes (its
average, standard deviation, and percentile points) decrease as the shifts in-
crease. Accordingly, letting f (t) = t0.2 is suggested because this optimizes
run-length distribution properties (Alevizakos and Koukouvinos, 2022).
Simulations further show that the CMP-PM chart can better detect upward
(downward) shifts when the data are over-dispersed (under-dispersed).
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The CMP-PM chart slows in its ability to detect shifts as t increases, how-
ever, if the data have been in control for an extended period, because M∗

t

is the average of all t previous observations. Further, given t and prespeci-
fied shift in λ, the percentage of difference between the zero-state and state
ARLs decreases as ν increases.

Monte Carlo-simulated illustrations show that the CMP-PM chart con-
sistently outperforms the CMP Shewhart chart, while the CMP-PM chart
often outperforms the CMP-EWMA chart. In particular, when the data are
over-dispersed, the CMP-PM chart can better detect small and moderate
shifts than the CMP-EWMA, while the CMP-EWMA can better detect
large shifts. When the data are equi-dispersed, the CMP-PM chart better
detects shifts than the CMP-GWMA chart except when the shift is very
large. Finally, when the data are under-dispersed, the CMP-PM chart con-
sistently outperforms the CMP-EWMA chart. Meanwhile, the CMP-PM
chart generally outperforms the λ-CUSUM chart as well. When the data are
over-dispersed, the CMP-PM consistently outperforms λ-CUSUM while,
when the data are equi-dispersed, the CMP-PM can better detect shifts
except when the shift is very small. When the data are under-dispersed,
the CMP-PM chart better detects larger shifts than the λ-CUSUM chart
(Alevizakos and Koukouvinos, 2022).

6.6 Summary

The CMP distribution offers added flexibility in the vast array of control
charts that exist for discrete attribute data. Whether Shewhart, EWMA,
CUSUM charts, their broader representations or even others, each of the
aforementioned CMP-inspired charts demonstrates growing efficiency in
its ability to detect significant shifts in the CMP parameters (particularly
with attention on λ). Most of the presented works assume that the ap-
proximations for the CMP mean and variance hold; thus, analysts should
use the presented bounds with caution. If the in-control data are equi- or
over-dispersed, then analysts can proceed as presented; however, for under-
dispersed data, analysts are instead encouraged to work with the true forms
of the CMP expectation and variance as presented in Equations (2.14)–
(2.15) in order to gain more precise representations of the resulting control
limits. Meanwhile, in all cases, analysts are reminded to Winsorize their
lower bound to 0 to address any results that produce a negative value since
the bound still reflects the larger context regarding the parameter constraints
and attribute representation.
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All of the work regarding control charts assume a CMP parametrization
of the COM–Poisson distribution. Several of the discussed control charts
then rely on the CMP mean and variance approximations for control chart
theory development. All of the charts introduced in this chapter, however,
can likewise be derived with the other COM–Poisson parametrizations;
the various COM–Poisson parametrizations are provided and discussed in
Section 2.6. In particular, control chart developments motivated by (say)
the MCMP1 distribution should circumvent the issues that currently arise
regarding control chart developments that rely on the approximations;
the MCMP1 parametrization directly transforms the distribution such that
emphasis focuses on the distribution mean. Further, analysts should no
longer be constrained as they are with the above approaches that rely on
constrained parameter spaces to ensure chart accuracy.

Only the CMPControl package appears available for use by analysts;
thus, only the CMP-Shewhart chart analysis is readily available. The nec-
essary information is provided, however, for analysts to construct their own
R codes for the control chart(s) of interest.
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COM–Poisson Models for Serially Dependent
Count Data

In previous chapters, discussion largely assumes a random sample or
at least some measures of independence; however, what if dependence
exists between variables? This chapter considers various models that focus
largely on serially dependent variables and the respective methodologies
developed with a COM–Poisson underpinning (in any of its parametriza-
tions). Section 7.1 introduces the reader to the various stochastic processes
that have been established, including a homogeneous CMP process, a
copula-based CMP Markov model, and a CMP-hidden Markov model
(CMP-HMM). Meanwhile, there are two approaches for conducting time
series analysis on time-dependent count data. One approach assumes
that the time-dependence occurs with respect to the intensity vector; see
Section 7.2. Under this framework, the usual time series models that as-
sume a continuous variable can be applied. Alternatively, the time series
model can be applied directly to the outcomes themselves. Maintaining
the discrete nature of the observations, however, requires a different ap-
proach referred to as a thinning-based method. Different thinning-based
operators can be considered for such models; see Section 7.3 for details.
Section 7.4 broadens the discussion of dependence to consider COM–
Poisson-based spatio-temporal models, thus allowing for both serial and
spatial dependence among variables. Finally, Section 7.5 concludes the
chapter with discussion.

7.1 CMP-motivated Stochastic Processes

7.1.1 The Homogeneous CMP Process

Various homogenous discrete-observation processes exist in the literature
to model the number of events. Assume that a count outcome of interest Nt

over a time period t follows a discrete distribution and has independent

251
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increments. The most well-known models for describing such a series
of discrete events are the Bernoulli and Poisson processes. A Bernoulli
process is a discrete-time discrete-observation process where the success
probability p defines the number of successes that occur over t trials
with a Binomial(t, p)-distributed random variable Nt = X1 + · · · + Xt,
where X1, . . . , Xt are independent and identically Bernoulli(p) distributed
random variables. In this context, the independent increments imply that
Ns+t − Ns also follows a Binomial(t, p) distribution (independent of s) for
any s, t ∈ N. The waiting time variable Tk denotes the number of trials
it takes to get the kth success. For a Bernoulli process, the time between
successes Tk+1 − Tk for any k ∈ N follows a geometric distribution,
i.e. P (Tk+1 − Tk = r) = p(1 − p)r−1, r = 1, 2, . . .. Further, for any k
and m, the interval Tk+m − Tk is independent of k (Çinlar, 1975). The
homogeneous Poisson process is meanwhile a continuous-time discrete-
observation process over a time period (s, s + t], where Nt represents the
number of events over a time period t and has a Poisson(λt) distribution
such that Ns+t −Ns is likewise Poisson(λt), independent of s. This definition
implies that

P(Ns+t − Ns = 1) = λt + o(t)

P(Ns+t − Ns ≥ 2) = o(t),

where a function f (t) of order o(t) implies that limt→0
f (t)

t = 0 (Kannan,
1979). The associated waiting time between events Tk for a Poisson process
is an exponential(λ) distribution with probability density function fTk (t) =
λe−λt, t ≥ 0.

To generalize these discrete-observation processes, Zhu et al. (2017b)
introduced a homogeneous CMP process to describe the number of events
with independent increments. Let Nt denote the number of events that occur
in a time interval (s, s + t] where this random variable has a sCMP(λ, ν, t)
distribution, i.e. a sum-of-COM–Poissons (sCMP) distribution as described
in Section 3.2. This CMP process likewise has independent and sta-
tionary increments – for ordered time points t0, t1, . . . , tn, the variables
Nt1 − Nt0 , . . . , Ntn − Ntn−1 are independent. Special cases of this process
include a homogeneous Poisson(λ) process (when ν = 1), a Bernoulli pro-
cess with success probability λ

1+λ (ν → ∞), and what can be termed a
“geometric process” with success probability 1 −λ when ν = 0 and λ < 1.
This process likewise follows a CMP(λ, ν) distribution over a one-unit
interval (t, t + 1].
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The CMP process has a generalized waiting time distribution whose
cumulative probability is

P(Tt ≤ τ ) = 1 − 1

[Z(λ, ν)]τ
; (7.1)

however, the form is unique because this CMP process can accommodate
an underlying discrete or continuous waiting time model. Let T∗

t = �Tt�
be a discrete waiting time variable; Equation (7.1) then implies that T∗

t is a

geometric
(

p = 1 − 1
Z(λ,ν)

)
distribution with probability

P(T∗
t = τ ) =

(
1

Z(λ, ν)

)τ−1 (

1 − 1

Z(λ, ν)

)

, τ = 1, 2, 3, . . . . (7.2)

For a continuous-time process with waiting time Tt, Equation (7.1) implies
that Tt has the probability density function

f (τ ) = [Z(λ, ν)]−τ ln (Z(λ, ν)) = ln (Z(λ, ν))e−τ ln Z(λ,ν), τ ≥ 0, (7.3)

namely an exponential(ln (Z(λ, ν))) distribution. Zhu et al. (2017b) refer to
Equations (7.2) and (7.3) as COM-geometric and COM-exponential dis-
tributions, respectively, reflecting the fact that both distributions depend
on the CMP(λ, ν) normalizing constant. The relationship between these
two distributions is a natural analog to the usual relationship between the
geometric and exponential distributions.

Parameter Estimation

Three approaches can be considered for conducting parameter estimation
and quantifying variability for a CMP process; each is derived under a dif-
ferent scenario, namely (1) for count data regarding a number of events in
a single time unit, (2) when information is supplied regarding a single time
unit solely based on the wait-time data, and (3) when given a sample of
events over an s-unit interval. For a CMP process over a single time unit,
the number of events is modeled via a CMP(λ, ν) distribution. Thus, for an
ordered sequence of count data x1, . . . , xn, the method of maximum like-
lihood can be used to estimate λ and ν as discussed in Section 2.4.2. If
instead only waiting time information t1, . . . , tn is supplied, this approach
produces the undetermined equation

1

Z(λ, ν)
= 1 − 1

t
. (7.4)

Thus, more information is required in order to obtain unique estimates.
Assuming additional knowledge (say) of the observed dispersion index
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can aid in extrapolating λ̂ and ν̂. Finally, for a random sample from an
sCMP(λ, ν, s) distribution with s ≥ 1, the method of maximum likeli-
hood can be achieved as described in Section 3.2 to determine λ̂ and ν̂
for a given s. Under any of these scenarios, the resulting estimates are then
used to ascertain the waiting time either as a geometric distribution with
success probability p̂ = 1 − 1

Z(λ̂,ν̂)
or as an exponential (ln (Z(λ̂, ν̂))) dis-

tribution. While variation quantification can be determined via the Fisher
information matrix, analysts are encouraged to instead utilize nonparamet-
ric bootstrapping using the boot package (Canty and Ripley, 2020) because
the parameters have skewed distributions (Sellers and Shmueli, 2013; Zhu
et al., 2017b).

R Computing

The cmpprocess (Zhu et al., 2017a) package performs the statistical com-
putations for homogeneous CMP process analysis; Table 7.1 provides the
function names that respectively perform parameter estimation based on
information provided by the analyst. The cmpproc function determines
maximum likelihood estimates (MLEs) based on the provided count data
(counts) over a time interval (s, defaulted to equal 1 to assume a one-unit
interval) corresponding to the levels associated with the count data vector.
This function further contains the h.out input that is a logical indicator that
determines whether or not R should include the associated Fisher informa-
tion matrix and thus standard errors among the provided outputs; h.out
has the default setting equal to FALSE. Resulting output from this func-
tion reports the respective MLEs λ̂ (lambda) and ν̂ (nu), along with their
standard errors (lambda se and nu se) if the analyst updates the input
to h.out=TRUE. Otherwise, maintaining the default setting h.out=FALSE
results in the outputs, lambda se: NA and nu se: NA. Additional out-
puts that are reported through cmpproc include the log-likelihood, Akaike
information criterion (AIC), and dispersion index values, along with

Table 7.1 R functions provided in the cmpprocess package for CMP
process analysis. These functions determine (approximate) MLEs based
on the information provided by the analyst.

Function Provided information

cmpproc Count data
cmpprocwt Wait-time data and observed dispersion index value
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an estimated waiting time distributional form assuming discrete time
intervals.

The cmpprocwt function meanwhile determines approximate MLEs
based on the waiting time data (t) and an assumed dispersion index
measure (dispersion). This function likewise reports the estimated pa-
rameters for λ (lambda) and ν (nu), along with convergence information
(convergence) in order to assess whether the underlying optimization
scheme converged. The cmpprocess package supplies the real-world data
examples discussed in Zhu et al. (2017b), both as count (fetalcount
and floodcount) and waiting time data (fetalwait and floodwait),
to provide analysts with the ability to reproduce the analyses.

The cmpprocess package remains accessible through the Comprehen-
sive R Archive Network (CRAN) and is searchable online. This package
was archived because it relies on compoisson that has also since been
archived. Nonetheless, the archive supplies the tar.gz file associated with
the package that can be installed directly into R/RStudio for use. The
cmpprocess package likewise requires the numDeriv package.

To illustrate the functionality of the cmpprocess package, consider a
series of count data regarding the number of alpha particles emitted from a
disk coated with polonium in successive 7.5-second intervals via the scin-
tillation method (Rutherford et al., 1910); see Table 7.2. They are part
of a larger experiment to compare the average number of α particles de-
duced from an extensive number of scintillations (namely 31.0 per minute)
with the average number based on much smaller intervals. The associated
discussion regarding this experiment suggests that these data stem from
a homogeneous Poisson process (Guttorp, 1995; Rutherford et al., 1910).
This exercise serves to analyze the data to see if (in fact) that assumption is
reasonable and to see if the hypothesis of 31 alpha particles per minute on
average is likewise reasonable.

Table 7.2 Data (presented in sequential order, left to right) regarding the number
of alpha particles emitted in successive 7.5-second intervals from a disk coated
with polonium via the scintillation method (Rutherford et al., 1910).

3 7 4 4 2 3 2 0 5 2
5 4 3 5 4 2 5 4 1 3
3 1 5 2 8 2 2 2 3 4
2 6 7 4 2 6 4 5 10 4
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The cmpproc function calls the object alphaparticle that is a single
column that lists the respective consecutive recorded number of alphaparti-
cles reported in Table 7.2, and the logical indicator h.out = TRUE in order
to obtain associated standard errors for λ̂ and ν̂; see Code 7.1. The result-
ing MLEs are approximately λ̂ = 3.553 and ν̂ = 0.963 with respective
approximate standard errors, 1.332 and 0.250. Accordingly, we can infer
that ν = 1 is a reasonable assumption, implying that the homogeneous
Poisson process is (in fact) represented through these data.

To address the latter question of how the data compare with the hypoth-
esized average number of alpha particles emitted per minute equaling 31,
recall that the reported output above is based on an interval equaling 7.5
seconds, where multiple approaches exist for estimating the average num-
ber of alpha particles emitted in that time frame. The first approach for
estimating the average number of alpha particles per minute is to simply as-
sume that the mean number of particles in a 7.5-second interval is precisely
λ̂ ≈ 3.553, which thus implies that the average number of particles per
minute is approximately 28.4224. Another approach is to take advantage of
the mean approximation as discussed in Section 2.3. Since ν̂ ≈ 0.963 < 1,
we can approximate the mean via Equation (2.23), thus obtaining the esti-
mated mean equaling approximately 3.747 alpha particles over 7.5 seconds.
Thus, with this estimate, the estimated average number of alpha particles
per minute equals approximately 29.9776. Compare these results with the
average over the five-minute period (30) and we see that these estimates
again seem reasonable.

Additional supplied outputs include the maximized log-likelihood
(approximately −82.6532) and AIC (169.3065); see Code 7.1. These
results are meaningless on their own but can prove valuable if conducting
any appropriate model comparisons. Other outputs stemming from

Code 7.1 Code and output analyzing the alpha-particles dataset (Table 7.2) via the
cmpproc function, contained in the cmpprocess package.

> alpha .out <- cmpproc ( alphaparticle , h.out = TRUE)
log likelihood : -82.65323
lambda : 3.552797
nu: 0.9631337
lambda se: 1.331656
nu se: 0.249702
real dispersion : 1.104274
waiting time distribution is geometric with parameter :
0.9744633
AIC: 169.3065
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the cmpproc function include the observed dispersion level (real
dispersion ≈ 1.1043) which is greater than 1 (indicating possible over-
dispersion) or which can be viewed as approximately 1 (thus affirming
the homogeneous Poisson process assumption). One can use this infor-
mation to aid in conducting a hypothesis test regarding the dispersion
parameter to infer whether any statistically significant data dispersion ex-
ists. The last output reports that the waiting time distribution is
geometric with parameter approximately 0.9745. This makes sense if
we view the data as a discrete-time discrete-observation process; the re-
sult confirms that the next outcome occurs during the next unit (in this
case, the next 7.5-second interval). Viewing this as a homogeneous Poisson
process, however, implies that we should estimate the waiting time distri-
bution as an exponential(ln (Z(λ̂, ν̂))) ≈ exponential(3.553) distribution, if
we assume ν = 1.

7.1.2 Copula-based CMP Markov Models

Alqawba and Diawara (2021) developed a Markov model based on a
copula-based multivariate ZICMP distribution to model data containing ex-
cess zeroes, noting that there is no simple stochastic representation for a
discrete p-order Markov model of the form Xt = g(εt; Xt−1, . . . , Xt−p) with
copula-based transition probabilities, i.e. where Xt depends on its p previ-
ous observations, g(·) is an increasing function, and εt is an independent and
identically distributed (iid) stochastic continuous latent process. Let {Xt} be
a time series that assumes a ZICMP distribution as defined in Section 5.3
(Equation (5.26)) with a first-order Markov chain such that

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1)
n∏

t=2

P(Xt = xt | Xt−1 = xt−1) (7.5)

= P(X1 = x1)
n∏

t=2

P(Xt = xt, Xt−1 = xt−1)

P(Xt−1 = xt−1)
, (7.6)

where

P(Xt = xt, Xt−1 = xt−1) = C(Ft(xt), Ft−1(xt−1)) − C(Ft(xt − 1), Ft−1(xt−1))

− C(Ft(xt), Ft−1(xt−1 − 1)) + C(Ft(xt − 1), Ft−1(xt−1 − 1)) (7.7)
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for a copula C as defined in Section 4.4. Analogously, a second-order
Markov model has the joint probability

P(X1 = x1, . . . , Xn = xn)

= P (X1 = x1, X2 = x2)

n∏

t=3

P (Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2) ,

where

P(Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2)

= P(Xt = xt, Xt−1 = xt−1, Xt−2 = xt−2)

P(Xt−1 = xt−1, Xt−2 = xt−2)
(7.8)

such that P(X1 = x1, X2 = x2) and P(Xt−1 = xt−1, Xt−2 = xt−2) are
determined via Equation (7.7), while

P(Xt = xt, Xt−1 = xt−1, Xt−2 = xt−2)

=
1∑

j1=0

1∑

j2=0

1∑

j3=0

C(Ft(xt − j1), Ft−1(xt−1 − j2), Ft−2(xt−2 − j3)). (7.9)

Equations (7.7) and (7.9) incorporate the copula approach for the transi-
tion probabilities. Numerous copulas exist for consideration; see Section
4.4 and Table 4.1 for discussion. Alqawba and Diawara (2021) consider
bivariate Gaussian, Frank, and Gumbel copulas for the first-order Markov
process, while they propose that either a Gaussian or max-id copula be
used to determine the necessary joint probabilities in higher order Markov
models, because these copulas can fit Markov models whose order is at
least 2. Analysts are encouraged to use the max-id copula “when there is
stronger dependence for measurements at nearer time points” (Alqawba
and Diawara, 2021).

Statistical Inference

Parameter estimation can be conducted via the method of maximum like-
lihood, where the resulting log-likelihood associated with a first-order
Markov model has a closed form if the selected copula likewise has one.
For the second-order Markov models, the log-likelihood associated with
the Gaussian copula produces a form that is not closed; however, the log-
likelihood established via a trivariate max-id copula can have a closed
form. Per usual, the MLEs are obtained at that multi-dimensional point of
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estimated parameter values that maximizes the log-likelihood function for
a given dataset of observed values. These estimators are typically achieved
computationally in R via an optimization procedure, while the correspond-
ing Hessian matrix aids in determining the associated standard errors.
Assuming that regularity conditions hold, the asymptotic properties associ-
ated with the usual random sample case extend to data assuming a Markov
process; hence, the MLEs obtained from the adjusted first-order Markov
process log-likelihood

ln L∗((θ ′, δ′)′; x) =
n∑

t=2

ln P(Xt = xt | Xt−1 = xt−1; (θ ′, δ′)′) (7.10)

are likewise consistent for (θ ′, δ′)′ and the random vector is asymptotically
normally distributed. Further, the associated approximate Fisher informa-
tion matrix attained here can be used to estimate the covariance matrix
associated with the MLEs attained from the random sample case. These
ideas further apply for Markov processes of a known higher order (Alqawba
and Diawara, 2021; Joe, 1997). Simulation studies validate the theory find-
ing that this method produces sound estimates that appear to converge to
the true values as the sample size increases.

7.1.3 CMP-Hidden Markov Models

“Hidden Markov models (HMMs) are models in which the distribution that
generates an observation depends on the state of an underlying and unob-
served Markov process. They provide flexible general-purpose models for
univariate and multivariate time series, especially for discrete-valued series,
including categorical series and series of counts” (Zucchini et al., 2016,
p. 3). This hierarchical structure has the observations Xt = (X1, X2, . . . , Xt)
generated from latent variables Mt = (M1, M2, . . . , Mt) defining an irre-
ducible Markov chain where

P(Mt | Mt−1) = P(Mt | Mt−1), t = 2, 3, 4, . . . ; and (7.11)

P(Xt | Xt−1, Mt) = P(Xt | Mt), t ∈ N; (7.12)

for ease, we further assume the Markov chain to be stationary. For exam-
ple, given an underlying m-state Markov chain, Xt may assume a Poisson
distribution, i.e. P(Xt = x | Mt = i) = e−λiλx

i

x! , where i = 1, 2, . . . , m and
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x = 0, 1, 2, . . .; this defines a Poisson-hidden Markov model (P-HMM).1 A
general HMM satisfies the equation

V(Xt) =
m∑

i=1

δiσ
2
i +

∑

i<j

δiδj(μi − μj)
2, (7.13)

where μi and σ 2
i , respectively, denote the conditional mean and variance of

Xt given Mt = i, and δ′ = (δ1, . . . , δm) is the initial distribution across the m
states with elements δi = P(M1 = i); hence, for a P-HMM, Equation (7.13)
becomes

V(Xt) =
m∑

i=1

δiμi

︸ ︷︷ ︸
E(Xt)

+
∑

i < j

δiδj(μi − μj)
2.

Thus, one can see that the P-HMM allows for equi- or over-dispersion be-
cause

∑
i<j δiδj(μi −μj)2 ≥ 0. This construct, however, is unable to address

data under-dispersion. MacDonald and Bhamani (2020) instead develop a
stationary HMM where the state-dependent distribution is CMP(λi, νi) (i.e.
CMP-HMM). Accordingly, the conditional probability is

P(Xt = x | Mt = i) = λx
i

(λi)νi Z(λi, νi)
(7.14)

and, given T observations x = (x1, . . . , xT), the likelihood function becomes

L(�, λ, ν; x) = δ′P(x1)�P(x2)�P(x3) · · · �P(xT)1,

where P(x) is the m × m diagonal matrix of elements pi(x) = P(Xt = x |
Mt = i) as defined in Equation (7.14), � is an m × m transition matrix with
elements γij = P(Mt = j | Mt−1 = i), and 1 is an m-length column vector
of ones.

Parameter estimation can be performed in R via the method of maxi-
mum likelihood to estimate the m(m+1) parameters of interest, namely the
m(m − 1) elements of � (because row sums of � are constrained to equal
1) along with the 2m elements of λ = (λ1, . . . , λm) and ν = (ν1, . . . , νm). In
order to circumvent the usual computational issues that arise when con-
ducting such statistical computing, analysts are encouraged to take the
log-transform of the likelihood function to reduce the computational scale
and range and transform any bounded natural parameters to an uncon-
strained working space. Under this framework, analysts can use the nlm

1 The state-dependent distributions do not all need to be from the same family (MacDonald
and Bhamani, 2020).
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or optim functions in R to obtain the MLEs, where the likelihood function
can be constructed. MacDonald and Bhamani (2020) uses the dcmp func-
tion (COMPoissonReg) with its default settings to evaluate the CMP(λi, νi)
probability, including the normalizing constant’s infinite sum default ap-
proximation that sums the first 101 terms. While the number of terms can
be modified by the user, the default setting produces generally sufficient
performance; however, complexities can arise when λ is large and ν is
small. The nlm and optim functions can further provide the approximate-
associated Hessian matrix that is useful in determining parameter estimate
standard errors. Analysts are encouraged to consider various starting val-
ues for these optimization functions in order to instill confidence regarding
their search for the MLEs.

Two-state CMP-HMMs reasonably estimate the sample mean and vari-
ance and thus oftentimes adequately model the data; however, the estimated
autocorrelation function does not approximate the sample analog. Three or
more state CMP-HMMs can likewise be considered and model comparison
conducted via the AIC or Bayesian information criterion (BIC). Analysts
are cautioned that introducing more states heightens the risks associated
with more parameters, e.g. due to multiple local maxima (MacDonald and
Bhamani, 2020).

R Computing

While a formal R package to conduct statistical computing for CMP-HMMs
does not exist, MacDonald and Bhamani (2020) directly supply the codes
and data referenced in their work in order for analysts to reproduce their
results.2 Table 7.3 contains a summary of relevant R codes supplied for
statistical computing for CMP-HMMs, including transforming the param-
eters between their natural and working space, computing the negated
log-likelihood associated with parameters under the working or natural
space, respectively, and MLE determination for the CMP-HMM. Given the
number of states m along with the parameters λ, ν, and � (and potentially δ,
although this is defaulted as NULL), the CMP.HMM.pn2pw function trans-
forms parameters from their natural to working state. The function performs
log transformations on λ, ν, and the off-diagonal elements of �/diag(�) to
redefine the parameters from a bounded to an unconstrained space in or-
der to circumvent any potentially associated computational issues that can

2 R codes and data supplied in the MacDonald and Bhamani (2020) supplemen-
tary materials tab online at www.tandfonline.com/doi/suppl/10.1080/00031305.2018
.1505656?scroll=top.

www.tandfonline.com/doi/suppl/10.1080/00031305.2018.1505656?scroll=top
www.tandfonline.com/doi/suppl/10.1080/00031305.2018.1505656?scroll=top
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Table 7.3 R functions to conduct statistical computing associated with
CMP-hidden Markov modeling. Codes available online as supplementary
material associated with MacDonald and Bhamani (2020).

Function Purpose

CMP.HMM.pn2pw Transform parameters from natural to working space
CMP.HMM.pw2pn Transform parameters from working to natural space
CMP.HMM.mllk Computes the negated working parameter

log-likelihood
CMP.HMM.mllk_np Computes the negated natural parameter

log-likelihood
CMP.HMM.mle Determines working parameter MLEs
CMP.HMM.mle_np Determines natural parameter MLEs

arise from working within the natural space. The CMP.HMM.pw2pn function
meanwhile reverses these transformations, returning the parameters from
their working, unconstrained space to their natural space and thus their true
respective values.

The functions CMP.HMM.mllk and CMP.HMM.mllk_np compute the
negated log-likelihood from the working and natural parameters, respec-
tively. For both functions, the required inputs are the parameter vector of
interest on the appropriate scale parvect, along with the data x and number
of states m. CMP.HMM.mle and CMP.HMM.mle_np conduct parameter esti-
mation via maximum likelihood to obtain the MLEs for the CMP-HMM
of interest, where the initialized parameters are either working or natu-
ral parameters. Given the data x, number of states m, and starting values
lambda0, nu0, and gamma0, these functions use the nlm function to op-
timize the associated likelihood function provided in CMP.HMM.mllk or
CMP.HMM.mllk_np. Along with the MLEs λ̂, ν̂, �̂, and δ̂, the output fur-
ther reports the corresponding Hessian matrix and the log-likelihood, AIC
and BIC values. The Hessian matrix is used to determine the associated
parameter estimate standard errors.

A well-studied dataset originally attributed to Fürth (1918) serves as
a nice, illustrative example of this functionality; the data comprise 505
observations that count the number of pedestrians on a city block dur-
ing five-second increments (Jung and Tremayne, 2006; Mills and Seneta,
1989). The observations range from 0 to 7 with a sample mean and
variance equaling 1.59 and 1.51, respectively. This illustration assumes
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that a two-state CMM-HMM is a reasonable selection to represent the
time series. The fitted two-state CMM-HMM has λ̂ = (0.886, 9.165),
ν̂ = (28.527, 2.400), and

�̂ =
(

0.809 0.191
0.107 0.893

)

,

thus producing the stationary distribution, δ̂ = (0.359, 0.641). The sup-
plied code verifies that the sample mean and variance are 1.59 and 1.51,
while the model mean and variance are approximately 1.5852 and 1.4630,
respectively; both result pairs imply that the model addresses data under-
dispersion. Finally, the model autocorrelation function is ρ(k) ≈ 0.4754 ×
0.7017k. As an aside, it is worth noting that the underlying nlm func-
tion used to determine the MLEs associated with this model reported
code = 1; thus, the relative gradient associated with the underlying log-
likelihood is close to zero, and analysts can feel confident that the resulting
output determines the MLEs.

7.2 Intensity Parameter Time Series Modeling

To date, two model approaches have been proposed for the flexible model-
ing of time series data where an underlying COM–Poisson distribution is
assumed such that the serial dependence exists and is modeled via the inten-
sity vector. Both approaches respectively operate assuming reparametrized
versions of the CMP distribution (see Section 2.6 for distributional discus-
sions) and propose different model structures for analysis.

7.2.1 ACMP-INGARCH

Zhu (2012) uses the ACMP parametrization described in Section 2.6
to develop an integer-valued generalized autoregressive conditional het-
eroscedastic (INGARCH) model for time series count data. The ACMP-
INGARCH(p, q) model assumes that Xt, t = 1, . . . , T , has an ACMP(μ∗t, ν)
distribution with

μ∗t = α0 +
p∑

i=1

αiXt−i +
q∑

j=1

βjμ∗,t−j,

where α0 > 0, αi ≥ 0 for i = 1, . . . , p, and βj ≥ 0 for
j = 1, . . . , q. The model is approximately stationary when

∑p
i=1 αi +∑q

j=1 βj < 1. Special cases of the ACMP-INGARCH(p, q) model include
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the ACMP-INARCH(p) when q = 0 and the Poisson INGARCH(p, q)
when ν = 1.

Assuming that the mean and variance of Xt conditioned on previ-
ous outcomes can be approximated as Equations (2.49) and (2.50), the
unconditional mean and variance for Xt are approximately

E(Xt) ≈
α0 −

(
1 − ∑q

j=1 βj

)
ν−1
2ν

1 − ∑p
i=1 αi − ∑q

j=1 βj
(7.15)

V(Xt) ≈ E(μ∗t)

ν
+ V(μ∗t), (7.16)

while the auto-covariance function is

γX(h) = Cov(Xt, Xt−h) ≈
p∑

i=1

αiγX(|h − i|)

+
min (h−1,q)∑

j=1

βjγX(h − j) +
q∑

j=1

βjγμ∗(j − h), h ≥ 1,

which reduces to γX(h) ≈ ∑p
i=1 αiγX(|h − i|) for the ACMP-INARCH(p)

model. Meanwhile, the special case of the ACMP-INGARCH(1, 1) model
has the variance and autocorrelation,

V(Xt) ≈ [1 − (α1 + β1)2 + α2
1]
[
E(Xt) + ν−1

2ν

]

ν[1 − (α1 + β1)2]
(7.17)

ρX(h) ≈ α1(α1 + β1)h−1[1 − β1(α1 + β1)]

1 − (α1 + β1)2 + α2
1

, h ≥ 1. (7.18)

Simulation studies illustrate that ν > 1 alone does not guarantee data under-
dispersion in ACMP-INGARCH(1, 1) models; larger values of ν may be
required to ensure under-dispersion as α0,α1, and β1 increase. This may,
however, demonstrate a repercussion of utilizing the ACMP parametriza-
tion. As discussed in Section 2.6, the approximations for this parametriza-
tion’s mean and variance rely on the data either being over-dispersed (i.e.
ν < 1) or λ being sufficiently large in relation to ν such that μ∗ = λ1/ν ≥
10. Recall that, while μ∗ denotes a measure of center, it is not necessarily
the mean. Accordingly, this approach should be considered with caution,
e.g. when the mean and dispersion are both small (Chanialidis et al., 2017).
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Parameter estimation can be conducted via the method of maximum
likelihood where, given observations x1, . . . , xT , the log-likelihood is

ln L(α0,α1, . . . ,αp,β1, . . . ,βq, ν; x)

= ν
T∑

max (p,q)

xt ln (μ∗t) − ν
T∑

max (p,q)

ln (xt!) −
T∑

max (p,q)

Z1(μ∗t, ν)

and numerical methods are utilized to determine the MLEs α̂0,
α̂1, . . . , α̂p, β̂1, . . . , β̂q, ν̂. Zhu (2012) conducts maximum likelihood esti-
mation in MATLAB via the constrained nonlinear optimization function
fmincon where the negated log-likelihood function is supplied along with
the constraints that α0 > 0, ν > 0, and

∑p
i=1 αi +∑q

j=1 βj < 1. Further, the
ACMP normalizing constant Z1(μ∗, ν) is approximated by Winsorizing the
summation to the first 101 terms (i.e. from 0 to 100). These ideas, however,
are easily transferable to R. Performing maximum likelihood estimation via
constrained nonlinear optimization can be conducted, say, via the optim
or nlminb functions with the same provided constraints. Meanwhile, the
normalizing function can likewise be Winsorized as suggested. The optim
function with hessian = TRUE will include the Hessian matrix among the
provided output from which MLE standard errors can be determined. Al-
ternatively (as suggested in Zhu (2012)), analysts can obtain the associated
standard errors via the robust sandwich matrix; this too can be achieved in
R, say, via the sandwich package (Zeileis et al., 2021).

7.2.2 MCMP1-ARMA

Melo and Alencar (2020) develop an MCMP1(μt, ν)-parametrized COM–
Poisson autoregressive moving average (MCMP1-ARMA) structure that
assumes the mean μt has a temporal relationship involving autoregres-
sive and moving average components. The MCMP1-ARMA(p, q) model
is a special case of the Benjamin et al. (2003) generalized autoregressive
moving average (GARMA) construct and has the form

g(μt) = α + x′
tβ +

p∑

i=1

φi[g(yt−i) − x′
t−iβ]

+
q∑

i=1

θi[g(yt−i) − g(μt−i)] (7.19)
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for the observations yt and the link function g(·), where α and β =
(β1, . . . βr)′ are coefficients associating μt with the explanatory variables
xt = (xt1, . . . , xtr)′, and φ = (φ1, . . . ,φp)′ and θ = (θ1, . . . , θq)′ denote
the autoregressive and moving average components, respectively. By def-
inition, the MCMP1-ARMA model contains the GARMA models based
on the Poisson (ν = 1), geometric (ν = 0), and Bernoulli (ν → ∞)
distributions as special cases.

The serial dependence of the observed outcomes warrants using the
method of conditional maximum likelihood to estimate α, β ′, φ′, θ ′, and
ν. Given m ≥ max (p, q) observations, y = (y1, . . . , ym), the conditional
log-likelihood is

ln L(α, β ′, φ′, θ ′, ν)

=
n∑

t=m+1

yt ln (λ(μt, ν)) − ν
n∑

t=m+1

ln (yt!) −
n∑

t=m+1

ln Z(λ(μt, ν), ν),

(7.20)

from which the estimates α̂, β̂
′
, φ̂

′
, θ̂

′
, and ν̂ are obtained by solving the

resulting conditional score equations. When the sample size is large and
the appropriate regularity conditions hold, these conditional MLEs are
consistent and asymptotically multivariate normal,

(α̂, β̂
′
, φ̂

′
, θ̂

′
, ν̂)′ ∼ Np+q+r+2((α, β ′, φ′, θ ′, ν)′, I−1),

where I denotes the Fisher information matrix. This distributional result
aids in determining confidence intervals and performing appropriate hy-
pothesis tests associated with the estimators. Simulation studies show that,
as the sample size increases, the mean-squared error decreases, demon-
strating that the consistency of the conditional MLEs improves with an
increased sample size. The autoregressive (moving average) terms are
underestimated (overestimated), however; thus, analysts should only in-
clude either autoregressive or moving average terms in an initial model
(Melo and Alencar, 2020). Simulated and real-data examples further show
that, when the data are over-dispersed, the MCMP1-ARMA performs as
well as the NB-GARMA model (both showing optimal results), while the
MCMP1-ARMA remains an optimal model when data are under-dispersed.
Meanwhile, the hypothesis test used to detect statistically significant data
dispersion performs effectively, properly rejecting the null hypothesis when
significant over- or under-dispersion exists in the data.
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7.3 Thinning-Based Models

Thinning-based models are an alternative approach to represent serially de-
pendent count data. A benefit to this method is that it directly preserves
the discrete nature of the count data; see Weiss (2008) for a comprehen-
sive discussion regarding thinning-based models. This section discusses
integer-valued autoregressive (INAR) and moving average (INMA) time
series constructions that are derived from the CMP distribution and its
related forms, and are based on thinning operations; see Table 7.4 for a sec-
tion summary. Section 7.3.1 introduces univariate INAR models motivated
by CMP and sCMP models, as well as a bivariate CMP autoregression.
Section 7.3.2 meanwhile considers univariate INMA models developed as-
suming a CMP, MCMP2, or sCMP underpinning, along with a bivariate
CMP moving average construct. The univariate or bivariate COM–Poisson
models (under either CMP or MCMP2 parametrizations) assume afore-
mentioned innovation distributions with binomial thinning operators, while
the sCMP-motivated models assume sCMP-distributed innovations with
gCMB thinning operations; see Chapter 2 (Sections 2.2 and 2.6 regarding
the respective COM–Poisson parametrizations), and Chapter 3 (Sections
3.2 and 3.3, regarding the sCMP and gCMB distributions) for detailed dis-
cussion regarding these distributions. These models are special cases of the
infinitely divisible convolution-closed class of discrete AR and MA models
(Joe, 1996). While there does not currently exist a (univariate or multivari-
ate) CMP- or sCMP-inspired integer-valued autoregressive moving average
(INARMA) or integer-valued autoregressive integrated moving average

Table 7.4 Univariate and multivariate thinning-based time series constructions
involving COM–Poisson-motivated distributions. Khan and Jowaheer (2013) and
Jowaheer et al. (2018) use a modified CMP notation (namely CMP

(
μ
ν

, ν
)
) that

relies on the approximations for the mean μ = λ1/ν − ν−1
2ν and variance

σ 2 = 1
ν
λ1/ν . Considered estimation methods are either generalized

quasi-likelihood (GQL) or maximum likelihood (ML).

Innovations Thinning Estimation
distribution operator approach References

CMP Binomial GQL Khan and Jowaheer (2013), Jowaheer
et al. (2018), Sunecher et al. (2020)

MCMP2 Binomial GQL Sunecher et al. (2020)
sCMP gCMB ML Sellers et al. (2020, 2021a)



268 COM–Poisson Models for Serially Dependent Count Data

(INARIMA) model, the respective components discussed in Sections 7.3.1
and 7.3.2 can aid in developing such forms.

7.3.1 Autoregressive Models

INAR models are foundational in the discussion of time series analyses of
discrete data and are typically derived via an appropriate thinning operator
to maintain discrete observations and outcomes. Al-Osh and Alzaid (1987)
introduced a first-order Poisson autoregressive (PAR(1)) model,

Ut = γ ◦ Ut−1 + εt, (7.21)

where εt is Poisson(η) distributed, γ ∈ [0,1], U ∈ N is a random variable,
and ◦ is a binomial thinning operator such that γ ◦ U = ∑U

i=1Bi, where,
independent of U, Bi is a sequence of iid Bernoulli(γ ) random variables.
The PAR(1) model has the resulting transition probability

P(Ut = ut | Ut−1 = ut−1) =
min (ut ,ut−1)∑

s=0

(
ut−1

s

)

γ s(1 − γ )ut−1−s · e−ηηut−s

(ut − s)! ,

ut = 0, 1, 2, . . . (7.22)

(Freeland and McCabe, 2004). Letting φε(s) denote the probability gener-
ating function (pgf) of ε, Ut has the pgf

φUt (s) = φU0 (1 − γ t + γ ts)
t−1∏

k=0

φε(1 − γ k + γ ks), |s| ≤ 1, (7.23)

thus producing the measures

E(Ut) = γ tE(U0) + η
t−1∑

j=0

γ j, (7.24)

V(Ut) = γ 2tV(U0) + (1 − γ )
t∑

j=1

E(Ut−j) + η
t∑

j=1

γ 2(j−1), and

(7.25)

Cov(Ut, Ut−k) = γ kV(Ut), (7.26)

where E(U0) = η

1−γ and V(U0) = η(1+γ )
1−γ 2 . Jin-Guan and Yuan (1991)

generalize the PAR(1) model to a PAR(k) for general lag k.
Various models such as the first-order NB INAR (NB-INAR(1)) (Weiss,

2008) or those derived in Brännäs and Hellström (2001) that relax PAR(1)
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assumptions give rise to INAR models that can accommodate data over-
dispersion; however, they are unable to address discrete time series data
that contain data under-dispersion. The first-order generalized Poisson
(GPAR(1)) process overcomes this matter, allowing for over- or under-
dispersed count data. This model has the form

Wt = Qt(Wt−1) + εt, t = 1, 2, . . . , (7.27)

where {εt} is a series of iid generalized Poisson GP(q∗λ∗, θ∗) random vari-
ables, and {Qt( · ) : t = 1, 2, ...} is a sequence of independent quasi-binomial
QB(p∗, θ∗/λ∗, ·) operators independent of {εt}. This process is an ergodic
Markov chain with transition probability

P(Wt = wt|Wt−1 = wt−1)

=
min (wt−1,wt)∑

k=0

(
wt−1

k

)
p∗q∗k

λ∗ + wt−1θ∗

(
p∗λ∗ + kθ∗
λ∗ + wt−1θ∗

)k−1

×
(

q∗λ∗ + (wt−1 − k)θ∗
λ∗ + wt−1θ∗

)wt−1−k−1

× λ∗q∗[λ∗q∗ + θ∗(wt − k)]wt−k−1e−λ∗q∗−λ∗θ∗(wt−k)

(wt − k)!
and a unique GP(λ∗, θ∗) stationary distribution with mean and variance
E(W) = λ∗/(1 − θ∗) and V(W) = λ∗/(1 − θ∗)3, respectively, and auto-
correlation ρw(k) = Corr(Wt, Wt−k) = p|k|

∗ , k = 0, ±1, ±2, . . . (Alzaid and
Al-Osh, 1993). Its pgf is symmetric with the form

φWt+1,Wt (v, w) = exp
[
λ∗q∗(Aθ∗(v) + Aθ∗(w) − 2) + λ∗p∗(Aθ∗(vw) − 1)

]
,

where Aθ∗(s) is the inverse function of se−θ∗(s−1), implying that the GPAR(1)
process is time reversible. While the GPAR(1) model allows for over- or
under-dispersion, some GP distributions can be limited in their ability to
properly adhere to probability axioms, e.g. when data are severely under-
dispersed (Famoye, 1993).

These issues demonstrate the need for alternative, flexible models to
accommodate serially dependent count time series data that express an
autoregressive construct. This section introduces the current research for
univariate and multivariate CMP-motivated INAR models. While the pro-
posed multivariate INAR model is presented solely in the bivariate form,
the approach (in theory) could be generalized for d ≥ 2 dimensions.
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The CMPAR(1) Model

Khan and Jowaheer (2013) maintain the CMP parametrization provided
in Equation (2.8) yet denote it as CMP

(
μ

ν
, ν
)
, assuming that the approx-

imations for the CMP mean and variance (Equations (2.23) and (2.24))
hold and are exact. Given this representation, they maintain the INAR(1)
model structure described in Equation (7.21) but assume COM–Poisson
innovations represented as described above, thus deriving a first-order
CMP-autoregressive (CMPAR(1)) model. Given that Ut = γ ◦Ut−1+εt such
that Ut is CMP

(
μ

ν
, ν
)

distributed, the innovations εt are CMP
(
μt−ρμt−1

ν∗
, ν∗

)

distributed where

ν∗ = (2μt − 2ρμt−1+1) +
√

(2μt − 2ρμt−1 + 1)2 − 8[(1 − ρ2)
ν− 1
2ν2 + μt

ν
− ρ2μt−1

ν
ρ(1 − ρ)μt−1]

4[(1 − ρ2)
ν−1
2ν2 + μt

ν
− ρ2μt−1

ν
ρ(1 − ρ)μt−1]

> 0.

(7.28)

The nonstationary PAR(1) process is a special case of the CMPAR(1) when
ν = 1. The resulting serial correlation between two observations Ut and
Ut+h is

Corr(Ut, Ut+h) =
ρh
√
μt

ν
+ ν−1

2ν2

√
μt+h

ν
+ ν−1

2ν2

. (7.29)

Readers should proceed with caution in using this approach for data
modeling because the underlying assumptions rely on the CMP approxi-
mations for the mean and variance. These approximations generally hold
for ν ≤ 1 or λ > 10ν ; however, the precision of these approximations is
debated; see Section 2.8 for details.

The SCMPAR(1) Model

Sellers et al. (2020) developed the first-order sCMP-autoregressive (SCM-
PAR(1)) process as

Xt = Ct(Xt−1) + εt, t = 1, 2, . . . , (7.30)

where εt has an sCMP(λ, ν, n2) distribution, and {Ct(•): t = 1, 2, . . .} is a
sequence of independent generalized COM-Binomial gCMB

(
1
2 , ν, •, n1, n2

)

operators independent of {εt}; see Chapter 3 for a detailed discussion of the
sCMP and gCMB distributions. This model satisfies the ergodic Markov
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property with the transition probability

P(Xt = xt|Xt−1 = xt−1)

=
min (xt ,xt−1)∑

k=0

(xt−1

k

)ν
[
∑k

a1,...,an1 =0

a1+···+an1 =k

( k
a1,...,an1

)ν
][

∑xt−1−k
b1,...,bn2 =0

b1+···+bn2 =xt−1−k

( xt−1−k
b1,...,bn2

)ν
]

∑xt−1
c1,...,cn1+n2 =0

c1+···+cn1+n2 =xt−1

( xt−1

c1···cn1+n2

)ν

× λxt−k

[(xt − k)!]νZn2 (λ, ν)

xt−k∑

d1,...,dn2 =0

d1+···+dn2 =xt−1−k

(
xt − k

d1, . . . , dn2

)ν
, (7.31)

implying that the sCMP(λ, ν, n1 + n2) distribution is the unique stationary
distribution. Meanwhile, the SCMPAR(1) model is time reversible with the
symmetric joint pgf

φXt+1,Xt (u, l) = (Z(λu, ν)Z(λl, ν))n2 Zn1 (λul, ν)

Zn1+2n2 (λ, ν)
(7.32)

with the general autocorrelation function ρk = Corr(Xt, Xt−k) =
(

n1

n1+n2

)k

for k = 0, 1, 2, . . .. The SCMPAR(1) contains the Al-Osh and Alzaid (1987)
PAR(1) (ν = 1), the Al-Osh and Alzaid (1991) Binomial INAR(1) model
with a hypergeometric thinning operator (ν → ∞), and an INAR(1) model
with NB marginals and negative hypergeometric thinning operator (ν = 0
and λ < 1) as special cases.

The conditional maximum likelihood estimation method is used to fit the
SCMPAR(1) to integer count data. For proposed discrete values n1 and n2,
analysts can numerically maximize

∑N
i=1 ln P(Xi|Xi−1) (where P(Xt|Xt−1) is

given in Equation (7.31)) in R (R Core Team, 2014); the multicool pack-
age (Curran et al., 2015) is used to calculate combinatorial terms, while the
optim function in the stats package determines the MLEs and associated
standard errors. Discrete values for n1 and n2 are presumed to be sufficiently
effective under this approach; real values for n1 and n2 are not believed to
offer significant improvements (Sellers et al., 2020).

Bivariate COM–Poisson Autoregressive Model

Jowaheer et al. (2018) develop a nonstationary bivariate INAR(1)
time series model with COM–Poisson-distributed marginal distributions,
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i.e. a first-order bivariate CMP-autoregressive (BCMPAR(1)) model of
the form

U1t = γ1 ◦ U1,t−1 + ε1t (7.33)

U2t = γ2 ◦ U2,t−1 + ε2t, (7.34)

where γi ∈ (0, 1), i = 1, 2, and εt = (ε1t, ε2t) has a bivariate
CMP form with CMP

(
μit−γiμi,t−1

νi∗
, νi∗

)
-distributed marginal distributions,

and Corr(ε1t, ε2t′) = ρ12,t for t = t′; 0 < ρ12,t < 1; νi∗ denotes
the respective ν∗ calculations (Equation (7.28)) for each dimension i =
1, 2. Analogous to the CMPAR(1) model, additional assumptions include
independence for Ui,t−h and εit for h ≥ 1, and

Cov(Ui,t, εjt) =
{

V(εit) i = j
Cov(εit, εjt) i �= j

,

thus producing Ut = (U1t, U2t) with CMP
(
μit

νi
, νi

)
marginal distributions

for Uit, i = 1, 2, and the lag h correlation for the ith series is analogous to
that defined in Equation (7.29) for each dimension. The lag h correlation
within each of the two respective series i ∈ {1, 2} is

Corr(Uit, Ui,t+h) =
γ h

i

√
μit

νi
+ νi−1

2ν2
i

√
μi,t+h

νi
+ νi − 1

2ν2
i

, (7.35)

while the lag h covariance between observations across the two series is

Cov(Uit, Uj,t+h) = γ h
j Cov(U1t, U2t) for i �= j ∈ {1, 2}, (7.36)

where

Cov(U1t, U2t) = γ1γ2Cov(U1,t−1, U2,t−1) + ρ12,t

√
μ1t − γ1μ1,t−1

ν1∗
+ ν1∗ − 1

2ν2
1∗

×
√
μ2t − γ2μ2,t−1

ν2∗
+ ν2∗ − 1

2ν2
2∗

.

This flexible construct includes the Khan et al. (2016) nonstationary first-
order bivariate PAR model as a special case when ν1 = ν2 = 1.
Jowaheer et al. (2018) state that they use the bivariate CMP distribution
derived via the compounding method (BCMPcomp; see Section 4.2) for
their BCMPAR(1) model; however, this conflicts with the desired/claimed
marginal CMP representation for εit and Uit noted above. The BCMP-
comp distribution does not produce univariate CMP marginal distributions
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(Sellers et al., 2016). One can circumvent this matter, for example, however,
by instead developing a bivariate CMP distribution via the Sarmanov fam-
ily or copulas in order to achieve the desired CMP marginal distributions;
see Chapter 4 for discussion.

Parameter estimation is conducted via the generalized quasi-likelihood
(GQL) approach with the expression D′	−1(U − μ) = 0, where D is
a 2T × 2(p + 1) block diagonal matrix whose respective blocks contain
the partial derivatives of the approximated mean for each of the two se-
ries (i = 1, 2) at each time t = 1, . . . , T with respect to each of the
p + 1 coefficients, β1, . . . ,βp and νi; 	 is a 2T × 2T matrix comprised
of the covariance components (Equation (7.36)), and U = (U1, U2) and
μ = (μ1, μ2) are the vectors of length 2T that respectively represent the
variable and associated mean of the CMP

(
μit

νi
, νi

)
-distributed random vari-

ables, Ui = (Ui1, . . . , UiT), i = 1, 2. Parameter estimation is thus achieved
via an iterative procedure

θ̂ r+1 = θ̂ r + [D′	−1D]−1
r [D′	−1(U − μ)]r,

where θ̂ r is the rth iteration of θ̂ = (β̂1, β̂2, ν̂1, ν̂2) that estimates θ =
(β1, β2, ν1, ν2). More precisely, θ̂ −θ is asymptotically normally distributed
with mean 0 and variance–covariance matrix

[D′	−1D]−1[D′	−1(Y − μ)(Y − μ)′	−1D][D′	−1D]−1

(Jowaheer et al., 2018).

7.3.2 Moving Average Models

Integer-valued moving average (INMA) processes have been considered as
a discrete analog to the traditional Gaussian moving average (MA) model
for continuous data. Similar to the INAR time series, INMA processes rely
on thinning operators to maintain discreteness among subsequent obser-
vations. For example, Al-Osh and Alzaid (1988) introduced a first-order
Poisson moving average (PMA(1)) of the form

Ut = γ ◦ εt−1 + εt, (7.37)

where {εt} and γ are defined as in Equation (7.21) and ◦ remains the
binomial thinning operator defined in Section 7.3.1. The pgf of Ut is
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 Ut (u) = e−η(1+γ )(1−u), signifying that its mean and variance are both
(1 + γ )η. Meanwhile, the correlation is

ρU(r) = Corr(Ut−r, Ut) =
{ γ

1+γ r = 1
0 r > 1

and the joint pgf of {U1, . . . , Ur} is

 r(u1, . . . , ur) = exp (−η[r+γ−(1−γ )
r∑

i=1

ui−γ (u1+ur)−γ
r−1∑

i=1

uiui+1]),

implying that the PMA process is time reversible. Finally, letting TU,r =∑r
i=1 Ui denote the total PMA(1) counts occurring over lag period r, its

pgf is

 TU,r (u) = exp ( − η[(1 − γ )r + 2γ ](1 − u) − ηγ (r − 1)(1 − u2)).

This result is significant because, while the MA(1) analog maintains a
Gaussian distributional form for T , TU,r (u) does not maintain the pgf struc-
ture of a Poisson random variable; hence, the same is not true for the
INMA(1) model (Al-Osh and Alzaid, 1988).

The PMA (like the PAR) process assumes an underlying equi-dispersion
property; however, real data can contain some form of data dispersion rela-
tive to the Poisson model. Thus, it is important to consider a more flexible
time series model that can accommodate data dispersion. One such option
is the first-order generalized Poisson moving average (GPMA(1)) process
whose model form is

Wt = Q∗
t (ε∗

t−1) + ε∗
t , t = 0, 1, 2, . . . , (7.38)

where {ε∗
t } is a sequence of iid GP(μ∗, θ) random variables, and {Q∗

t (·)} is
a sequence of QB(p∗, θ/μ∗, ·) random operators independent of {ε∗

t }. The
GPMA(1) structure implies that Wt is GP((1 + p∗)μ∗, θ) distributed with
autocorrelation

ρW(r) = Corr(Wt, Wt+r) =
{ p∗

1+p∗ ∈ [0, 0.5] |r| = 1
0 |r| > 1.

The sequence (Wt, Wt−1, . . . , Wt−r+1) meanwhile has the joint pgf

 (u1, . . . , ur)

= exp

[

μq
r∑

i=1

(Aθ (ui) − 1) + μp
r∑

i=1

(Aθ (uiui+1) − 1)

]

(7.39)
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which implies that the GPMA(1) is time reversible. Finally, the total
GPMA(1) counts occurring during time lag r (i.e. TW,r = ∑r

i=1 Wt−r+i)
has the pgf

 Tw,r (u) = exp [μqr(Aθ (u) − 1) + μp(r − 1)(Aθ (u
2) − 1)].

While the GPMA allows for over- or under-dispersion, potential scenarios
can occur where the underlying GP structure is not viable (Famoye, 1993).
This section introduces alternative INMA models motivated by the CMP
distribution to address serially dependent count data.

INMA(1) Models with COM–Poisson Innovations

Sunecher et al. (2020) develop an INMA(1) model

Vt = γ ◦ ηt−1 + ηt, t = 1, . . . , T , (7.40)

where {ηt} is MCMP2(μt, ν = exp (φ)) distributed3 as defined in Section
2.6 with λt = exp (x′

tβ) for covariates xt = (xt1, . . . , xtp)′ and coefficients
β = (β1, . . . ,βp). The time-dependent covariates induce the nonstationary
correlation structure, while γ and ◦ induce the binomial thinning opera-
tion described in Section 7.3.1, such that γ ◦ ηt−1 | ηt−1 has a binomial
distribution with ηt−1 trials and success probability γ . Accordingly, this
first-order mean-parametrized (of the second type) CMP moving average
(MCMP2MA(1)) model has

E(Vt) ≈ γμt−1 + μt (7.41)

V(Vt) ≈ γ (1 − γ )μt−1 + γ 2μt−1 + μt

ν
+ (γ 2 + 1)

ν − 1

2ν2
(7.42)

Cov(Vt, Vt+h) ≈
{

γ [2νμt+ν−1]
2ν2 h = 1

0 h > 1
, (7.43)

where, under stationarity, Equations (7.41) and (7.42) simplify to

E(Vt) ≈ (1 + γ )μ•

V(Vt) ≈ μ•
ν

[1 + γ 2(1 − ν) + γ ν] + (1 + γ 2)(ν − 1)

2ν2
.

3 This distribution can be viewed as MCMP2(μ,φ), but Sunecher et al. (2020) maintain using
the ν parameter instead of φ = ln (ν); see Section 2.6 for details regarding the MCMP2
distribution.
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Mamode Khan et al. (2018) meanwhile develop a longitudinal CMPMA(1)
of the form

Vit = γ ◦ ηi,t−1 + ηit, (7.44)

for i = 1, . . . , I and t = 1, . . . , T , where {ηit} is CMP(λit, ν) distributed
with λit = exp (Xtβ) for covariates Xt = (Xt1, . . . , Xtp)′ and coefficients
β = (β1, . . . ,βp); the time-dependent covariates induce the nonstationary
correlation structure, while γ and ◦ remain the binomial thinning opera-
tion described in Equation (7.21). In this longitudinal framework, subject
observations (i.e. Vit and Vjt for i �= j) are uncorrelated. Other properties
stemming from this moving average include that the innovations are un-
correlated (i.e. ηit and ηi,t+h are uncorrelated for h �= 0); Vit and ηi,t+h are
independent for h �= 0; and the mean, variance, and covariance results from
the binomial thinning operation are, for i = 1, . . . , I, t = 1, . . . , T ,

1. E(γ ◦ ηit) = γE(ηit)
2. V(γ ◦ ηit) = γ (1 − γ )E(ηit) + γ 2V(ηit)
3. Cov(γ ◦ ηit1 , ηit2 ) = γCov(ηit1 , ηit2 ), where t1, t2 = 1, . . . , T; t1 �= t2.

Given that the CMP mean and variance approximations (Equations (2.23)
and (2.24)) hold, and λit = λi• (i.e. stationarity holds),

E(Vit) = (1 + γ )

[

λ
1/ν
i• −

(
ν − 1

2ν

)]

(7.45)

V(Vit) = (1 + γ 2)

(
λ

1/ν
i•
ν

)

+ γ (1 − γ )

[

λ
1/ν
i• −

(
ν − 1

2ν

)]

(7.46)

Cov(Vit, Vi,t+1) = γ λ
1/ν
i•
ν

. (7.47)

However, Equations (7.45)–(7.47) assume that ν ≤ 1 or λ > 10ν (Minka
et al., 2003; Shmueli et al., 2005).

Mamode Khan et al. (2018) conduct parameter estimation via the method
of GQL, where the loglinear association ln (λit) = xit

′β is assumed for the
intensity vector and the dispersion parameter ν is assumed constant. This
approach uses the mean score vector and exact INMA(1) auto-covariance.
The GQL estimation requires solving the equation

I∑

i=1

D′
i	

−1
i (yi − μi) = 0, (7.48)
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where D′
i is a (p + 2) × T matrix of partial derivatives of the mean response

from Subject i with respect to the parameters of interest,

∂μit

∂β j

= λ
1/ν
it xi,t,j + γ λ1/ν

i,t−1xi,t−1,j

ν
(7.49)

∂μit

∂ν
= λ1/ν

i,t−1 − ν − 1

2ν
(7.50)

∂μit

∂γ
= λ

1/ν
it ln (λ1/ν

it )

ν
− γ λ1/ν

i,t−1 ln (λ1/ν
i,t−1); (7.51)

	i is the T × T symmetric, tridiagonal auto-covariance matrix for subject i
with diagonal and off-diagonal terms

σi,(t,t) = γ (1 − γ )

(

λ
1/ν
i,t−1 − ν − 1

2ν

)

+ γ 2λ
1/ν
i,t−1 + λ1/ν

it

ν
(7.52)

σi,(t,t+1) = σi,(t+1,t) = γ λ
1/ν
it

ν
(7.53)

σi,(t,t+h) = σi,(t+h,t) = 0 for h > 1. (7.54)

Equation (7.48) is solved via the Newton–Raphson method where, for the
parameter vector θ = (β, ν, γ )′,

θ̂ r+1 = θ̂ r +
(

I∑

i=1

D′
i	

−1
i Di

)−1

r

(
I∑

i=1

D′
i	

−1
i (yi − μi)

)

r

,

and the GQL estimator θ̃ is determined when the difference between con-
secutive iterations is sufficiently small. This estimator is asymptotically
normal with mean θ and variance–covariance matrix

∑I
i=1 D′

i[	i(θ )]−1Di.
Alternatively, parameter estimation can be conducted via the generalized
method of moments (GMM) that requires the empirical auto-covariance
structure. Estimation is likewise achieved via an analogous Newton-
Rhapson iterative scheme, and the resulting estimators are consistent and
asymptotically normal; see Mamode Khan et al. (2018) for details. Simu-
lation studies found that, under either protocol, the mean estimates of the
model parameters are consistent with their respective true values, and the
associated standard errors decrease as the sample size increases. The GQL
outperforms the GMM, however, producing better estimates with smaller
standard errors.
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The SCMPMA(1) Model

Sellers et al. (2021a) introduce a first-order sCMP moving average
(SCMPMA(1)) process as an alternative construct to model count time
series data expressing data dispersion. This process has the form

Xt = C∗
t (ε∗

t−1) + ε∗
t , t = 1, 2, . . . , (7.55)

where ε∗
t is a sequence of iid sCMP(λ, ν, m1 + m2) random vari-

ables and, independent of {ε∗
t }, C∗

t ( • ) is a sequence of independent
gCMB(1/2, ν, •, m1, m2) operators; see Chapter 3 for details regarding the
sCMP and gCMB distributions. Special cases of the SCMPMA(1) include
the Al-Osh and Alzaid (1988) PMA(1) (ν = 1), as well as versions of
an NB (ν = 0, λ < 1) and binomial (ν → ∞) INMA(1), respec-
tively. The SCMPMA(1) is a stationary but not Markovian process with
sCMP(λ, ν, 2m1 + m2) marginals, where Xt+r and Xt are independent for
|r| > 1, and the autocorrelation between consecutive variables Xt and
Xt+1 is

0 ≤ ρ1 = m1

2m1 + m2
≤ 0.5, (7.56)

assuming m1, m2 ∈ N. The SCMPMA(1) joint pgf is

φXt+1,Xt (u, l) = (Z(λu, ν)Z(λl, ν))m1+m2 (Z(λul, ν))m1

(Z(λ, ν))3m1+2m2
; (7.57)

thus, the SCMPMA(1) is likewise time reversible, and the SCMPMA(1)
and SCMPAR(1) processes are similar when m1 = n1 = n2 − m2; see
Section 7.3.1 for more information regarding SCMPAR(1) processes.

A conditional estimation procedure (e.g. least squares) for any INMA
process is difficult “because of the thinning operators, unless randomiza-
tion is used” (Brännäs and Hall, 2001). Sellers et al. (2021a) propose
an ad hoc profile likelihood procedure where they first determine values
m1, m2 ∈ N for which the observed correlation ρ1 ≈ m1

2m1+m2
is satisfied

and use these values with an assumed sCMP(λ, ν, 2m1 + m2) likelihood
function to ascertain λ̂ and ν̂, while the corresponding standard errors are
obtained via the Fisher information matrix or via nonparametric bootstrap-
ping. Given the resulting combinations of {m1, m2, λ̂, ν̂}, the collection that
maximizes the likelihood for a given dataset is identified.
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Bivariate MCMP2MA(1) Model

Sunecher et al. (2020) establish a bivariate analog to the MCMP2MA(1)
model described above that has marginal CMP distributions. This first-
order bivariate mean-parametrized (of the second type) CMP moving
average (BMCMP2MA(1)) model has the forms

V1t = γ1 ◦ η1,t−1 + η1t and (7.58)

V2t = γ2 ◦ η2,t−1 + η2t, (7.59)

where {ηkt} is CMP(μkt, νk) distributed withμkt = λ1/νk

kt − νk−1
2νk

, k = 1, 2, and
γ and ◦ induce the binomial thinning operation. This construct includes a
bivariate PMA(1) as a special case when ν1 = ν2 = 1, and the model form
induces the moments

E(Vkt) ≈ γkμk,t−1 + μkt (7.60)

V(Vkt) ≈ γk(1 − γk)μk,t−1 + γ 2μk,t−1 + μkt

νk
+ (1 + γ 2)(νk − 1)

2ν2
k

(7.61)

Cov(Vkt, Vk,t+h) ≈
{

γk[2νkμkt+νk−1]
2ν2

k
h = 1

0 h > 1
(7.62)

Corr(η1t, η2t′) =
{
ρ12,t t = t′

0 t �= t′. (7.63)

These results further imply that the cross-series covariances are

Cov(V1t, V2t) = γ1γ2Cov(η1,t−1η2,t−1) + Cov(η1tη2t) (7.64)

≈ γ1γ2ρ12,t−1

√
2ν1μ1,t−1 + ν1 − 1

2ν2
1

√
2ν2μ2,t−1 + ν2 − 1

2ν2
2

+ ρ12,t

√
2ν1μ1t + ν1 − 1

2ν2
1

√
2ν2μ2t + ν2 − 1

2ν2
2

(7.65)

Cov(Vi,t+h, Vjt) ≈
{
γiρ12,t

√
2ν1μ1t+ν1−1

2ν2
1

√
2ν2μ2t+ν2−1

2ν2
2

h = 1

0 h > 1
(7.66)

for i, j ∈ {1, 2}, i �= j.
Conducting parameter estimation via a likelihood-based approach is

computationally expensive; thus, Sunecher et al. (2020) instead pursue
a modified GQL approach solving D′	−1(V − μ) = 0, where V =
(V1, V2) = (V11, . . . , V1T , V21, . . . , V2T) and μ are the vectors of length 2T
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with respective components Vkt and E(Vkt), defined in Equation (7.60); D is
a 2T × 2(p + 2) block diagonal matrix of components

∂μk

∂β∂γ ∂ν
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂μk1

∂βk1
· · · ∂μk1

∂βkp

∂μk1

∂γk

∂μk1

∂νk

d
∂μk2

∂βk1
· · · ∂μk2

∂βkp

∂μk2

∂γk

∂μk2

∂νk
...

. . .
...

...
...

∂μkT

∂βk1
· · · ∂μkT

∂βkp

∂μkT

∂γk

∂μkT

∂νk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, k = 1, 2,

and

	 =
(

V(V1) Cov(V1, V2)
Cov(V2, V1) V(V2)

)

is the variance–covariance matrix whose components are defined in Equa-
tions (7.61)–(7.66). The GQL iteratively updates via the Newton–Raphson
method until convergence is reached to determine the estimates for the pa-
rameter vector θ = (β, γ1, γ2, ν1, ν2)′. The estimates θ̂ are consistent and
asymptotically normal, assuming that regulatory conditions hold.

7.4 CMP Spatio-temporal Models

A popular approach to model spatial and spatio-temporal count data struc-
tures is to assume an underlying Poisson distribution (e.g. Jackson and
Sellers, 2008; Jackson et al., 2010, Waller et al., 1997). The underly-
ing Poisson assumption, however, can be very constricting because of its
equi-dispersion constraint where real data rarely demonstrate such a form.
Suggested solutions typically address various forms of data over-dispersion
(e.g. Arab, 2015; De Oliveira, 2013); yet little attention has been paid on
data under-dispersion in a spatial or spatio-temporal setting. For greater
flexibility, Wu et al. (2013) develop a hierarchical Bayesian spatio-temporal
model based on the CMP parametrization (Equation (2.8)) that allows for
dynamic intensity and dispersion.

Let Yt = {Yt(si)} denote a collection of count data across n locations
(si, where i = 1, . . . , n) and T time points, and assume that the data col-
lection across locations Yt has a CMP(Ktλt, νt) distribution at time t with
intensities λt = {λt(s1), . . . , λt(sn)} and dispersion parameter νt, respec-
tively, t = 1, . . . , T; Kt is meanwhile an incidence matrix that accounts
for any data missingness among the locations over time as each location
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is not necessarily observed over all time points. Accordingly, Yt has vary-
ing length mt ≤ n, where mt denotes the number of locations observed at
time t, and Kt is a matrix with dimension mt × n. The intensity process is
represented as

ln (λt) = μ + �αt + εt,

for t = 1, . . . , T , where μi = Xiβ + ηi is the average intensity at location
i = 1, . . . , n, where ηi are iid normally distributed random variables with
mean 0 and variance σ 2, β assumes a normal prior distribution, and σ 2 has
an inverse Gamma prior. The residuals εt = {εt(s1), . . . , εt(sn)} are likewise
assumed to be iid normally distributed random variables with mean 0 and
variance σ 2

ε (also having an inverse Gamma distribution), and �αt repre-
sents the process of transitioning from the physical n-dimensional space
to a smaller (say) p-dimensional space, p � n via some matrix � of ba-
sis function (e.g. splines and wavelets). Finally, the p-dimensional process
αt assumes an autoregressive form αt = Hαt−1 + γ t, where H is a redis-
tribution matrix4 in the p-dimensional spectral space with a normal prior
distribution, and γ t has a multivariate normal distribution with mean 0 and
variance–covariance matrix 	γ (with an assumed Wishart prior distribu-
tion) to account for the spatial correlations within the lower-dimensional
space; α0 has a normal prior distribution.

While the dispersion can be likewise assumed to be spatial or even
spatio-temporal, Wu et al. (2013) assume a time-varying constant disper-
sion νt to ease computational complexity. Recognizing the nonnegative
support space for the dispersion and its dynamic nature, the dispersion is
assumed to adhere to the autoregressive model,

ln (νt) = φ0 + φ1 ln (νt−1) + ξt, t = 2, . . . , T ,

where ln (ν1) is uniformly distributed over the space between bounds
( ln (ν))∗ and ( ln (ν))∗ to start the autoregressive relationship, and φ0, φ1,
and ξt are themselves random with φ0 assuming a normal distribution with
mean μφ0 and variance σ 2

φ0
, φ1 is uniformly distributed in [−1,1], and ξt is a

random sample of normally distributed random variables with mean 0 and
variance σ 2

ξ .

4 Wu et al. (2013) actually consider a collection of redistribution matrices Hi, i = 1, 2, 3 in
conjunction with the considered analysis application.



282 COM–Poisson Models for Serially Dependent Count Data

Bayesian estimation is conducted via Markov Chain Monte Carlo
(MCMC) using Metropolis–Hastings within Gibbs sampling. Simulation
studies showed that respective parameters had posterior distributions whose
mean was nearly unbiased, and the respective standard deviations were
small such that their 95% credible intervals contained the true parameter
in all cases. The estimates improved even further with a considerable in-
crease in the number of timepoints. While the hierarchical structure of this
model introduces additional computational complexity, simulation studies
never demonstrated any convergence issues (Wu et al., 2013).

7.5 Summary

Serially dependent count data require special consideration to ensure proper
analysis and modeling that maintains the observations having a discrete
form. While stochastic processes, Markov models, time series and spatio-
temporal models all exist to model discrete data, historical methods do
not necessarily account for inherent data dispersion. This chapter presents
those methods motivated by the (univariate or multivariate) COM–Poisson
distribution (given various parametrizations) to account for data over- or
under-dispersion.

The work surrounding COM-Poisson-motivated stochastic processes
considers the matter in vastly diverse ways with broadly varying assump-
tions and underlying relationships to model the data (e.g. homogeneous
or inhomogeneous processes, or (hidden) Markov models). Data analysis
assuming a homogeneous CMP process (cmpprocess) or an underlying
CMP-hidden Markov structure can be conducted in R (MacDonald and
Bhamani, 2020; Zhu et al., 2017a,b). The other models and processes, how-
ever, do not currently offer associated R packages for analysts to conduct
related statistical computing.

CMP-based time series modeling is considered in two ways: either by
applying traditional time series modeling to the intensity parameter λ or
via integer-based time series modeling where a thinning parameter aids in
maintaining discrete outcomes over time. While substantive work has been
done regarding the development of COM-Poisson-motivated integer-based
time series models, the current research focuses only on (univariate or bi-
variate COM–Poisson) autoregressive or moving average models. This is
presumably true because of the underlying model complexities that exist
due to the stricter constraint of maintaining discreteness in the obser-
vations over time and modeling the observations directly. Data analysis
assuming a time series model on the intensity parameter, however, already
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allows for more complex structures (e.g. integer-valued generalized au-
toregressive conditional heteroscedastic (INGARCH) and autoregressive
moving average (INARMA)) because the respective underlying model is
represented via the intensity parameter that is not restricted itself to be
discrete. Considering classical time series models that assume continuous
outcomes provides greater insights into COM-Poisson-motivated time se-
ries development. Wu et al. (2013) likewise utilized this approach with their
spatio-temporal model.
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COM–Poisson Cure Rate Models

Survival analysis studies the time to event for various subjects and serves
as an important tool for study. In the biological sciences and in medicine,
for example, interest can focus on patient time to death due to various
(competing) causes. Similarly, in engineering reliability, one may study the
time-to-component failure due to analogous factors or stimuli. Cure rate
(also known as long-term survival) models serve a particular interest be-
cause, with advancements in associated disciplines, subjects can be viewed
as “cured” meaning that they do not show any recurrence of a disease
(in biomedical studies) or subsequent manufacturing error (in engineering)
following a treatment.

A mixture cure model (Berkson and Gage, 1952; Boag, 1949) describes
the survival of a mixture of cured and susceptible subjects. For a binary
variable Y , Y = 0 denotes those subjects who are “cured”; thus, we as-
sume that these individuals do not observe the event during the observation
period. Meanwhile, Y = 1 indicates individuals susceptible to any consid-
ered causes whose lifetime distributions can be modeled; see Section 8.5 for
details regarding lifetime distributions considered in this chapter. The prob-
ability that a subject is cured is usually modeled via a logistic regression,
i.e. P(Y = 1) = λ◦

1+λ◦
, where λ◦ = exp (x′β) denotes the probability of be-

ing susceptible to the event(s) (Farewell, 1982). For a mixture cure model,
the cumulative distribution function (cdf) and probability of survival at time
y for a general population can be represented as

Fp(y) = (1 − p0)Fs(y) (8.1)

Sp(y) = 1 − (1 − p0)Fs(y) = p0 + (1 − p0)Ss(y), (8.2)

where Fp and Sp, respectively, denote the cdf and survival function of the
overall population, while Fs and Ss denote the cdf and survival function of

284
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the susceptible subpopulation; p0 meanwhile denotes the probability of be-
ing cured, i.e. the “cure rate.” Accordingly, the probability of being alive
at time y can be determined based on the probability of being cured or the
probability of not being cured and being alive when one is known to be
susceptible. Various statistical methods have been proposed assuming right
censoring (Berkson and Gage, 1952; Boag, 1949) or interval censoring
(Kim and Jhun, 2008).

The promotion time cure model meanwhile presumes M compet-
ing causes associated with an event occurrence and assumes that M is
Poisson(λ∗) distributed. Let Wj denote the time to event (i.e. the “lifetime”)
caused by the jth competing factor, where j = 1, . . . , M. Given M = m,
Wj are independent and identically distributed (iid) with cdf and survival
function, F( · ) and S( · ), respectively, such that F( · ) = 1−S( · ), and Wj are
independent of M, j = 1, . . . , m. Section 8.5 discusses the various distribu-
tional models assumed for Wj; all of the distributions utilize the associated
parameter denotation γ = (γ1, . . . , γI). By construct, M and Wj are the la-
tent variables while the lifetime of an individual can be observed as Y =
min (W0, W1, W2, . . . , WM), where W0 represents the lifetime of one who is
immune to the event occurrence (i.e. P(W0 = ∞) = 1). This latter defini-
tion implies the existence of a “cure rate,” i.e. a proportion of such subjects
who are immune denoted p0 = P(M = 0) = exp ( − λ∗). The promotion
time cure model long-term survival function, corresponding probability
density function (pdf), and hazard function for the population are

Sp(y) = exp ( − λ∗F(y)) (8.3)

fp(y) = λ∗f (y) exp ( − λ∗F(y)) (8.4)

hp(y) = λ∗f (y), (8.5)

where f (y) = d
dy F(y) is a proper pdf; however, none of the population

functions is proper because the population survival function Sp(y) > 0.
Nonetheless, various properties hold, including that Sp(y) converges to p0

as y → ∞, while hp(y) converges to 0 as t → ∞ and
∫ ∞

0 hp(y)dy < ∞
(Chen et al., 1999). The analogous functions for the subpopulation that is
susceptible to the event are

Ss(y) = exp ( − λ∗F(y)) − exp ( − λ∗)

1 − exp ( − λ∗)
(8.6)

fs(y) =
(

exp ( − λ∗F(y))

1 − exp (λ∗)

)

λ∗f (y) (8.7)
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hs(y) =
(

exp ( − λ∗F(y))

exp ( − λ∗F(y)) − exp ( − λ∗)

)

hp(y) =
(

exp ( − λ∗F(y))

exp ( − λ∗F(y)) − exp ( − λ∗)

)

λ∗f (y). (8.8)

Analytic methods have been proposed under a right censoring (Chen et al.,
2008) or interval censoring (Banerjee and Carlin, 2004) framework, and
various lifetime distributions.

These cure rate models are unified via the development of a COM–
Poisson cure rate model, where all of the models assume a CMP
parametrization as described in Chapter 2. Section 8.1 describes the CMP
cure rate model framework and general notation. Sections 8.2 and 8.3 de-
scribe the CMP cure rate model framework assuming right and interval
censoring, respectively. Section 8.4 describes the broader destructive CMP
cure rate model that allows for the number of competing risks to diminish
via damage or eradication. Section 8.5 details the various lifetime distribu-
tions considered in the literature to date for CMP-based cure rate modeling.
Finally, Section 8.6 concludes the chapter with discussion.

8.1 Model Background and Notation

The CMP cure rate model serves as a flexible means to describe the num-
ber of competing causes contributing to a time to event where the number
of competing causes M assumes a CMP(λ, ν) distribution with probability
pm = P(M = m) = λm

(m!)ν for m = 0, 1, 2, . . . (see Equation (2.8)); the cure
rate is

p0 = P(M = 0; λ, ν) = 1

Z(λ, ν)
. (8.9)

By definition, the CMP cure rate model contains the promotion time cure
model (Chen et al., 1999; Yakovlev and Tsodikov, 1996) and the mixture
cure model (Berkson and Gage, 1952; Boag, 1949) as special cases. The
CMP cure rate model reduces to the promotion time cure model when
ν= 1, with a cure rate of p0 = 1/Z(λ, 1) = exp ( − λ), and represents
the mixture cure model special case when ν → ∞ with a cure rate of
p0 = limν→∞ 1/Z(λ, ν) = 1/(1 + λ).

Let Wj and Y maintain the same properties as described in the promotion
time cure model. Under the CMP cure rate model construct, the long-term
survival function for the population is

Sp(y) = P(Y ≥ y) = Z(λS(y), ν)

Z(λ, ν)
, (8.10)
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where (by definition) limy→∞ Sp(y) = p0. The corresponding (improper)
density function of Y is

fp(y) = 1

Z(λ, ν)

f (y)

S(y)

∞∑

j=1

j[λS(y)]j

(j!)ν , (8.11)

where f (y) and S(y), respectively, denote the pdf and survival function of Y .
This description is a natural extension from the promotion cure time model
framework to utilize the flexibility of the CMP distribution, and this ap-
proach is noted in several works (e.g. Balakrishnan and Pal, 2015a; Cancho
et al., 2012; Rodrigues et al., 2009). Other references (e.g. Balakrishnan
and Pal, 2012), however, likewise draw from the mixture cure model as
motivation, partitioning the general population into those that are immune
versus susceptible to the competing causes as described in Equations (8.1)
and (8.2). This decomposition implies that limy→∞ Sp(y) = p0.

Just as the CMP cure rate structure borrows strength from both the pro-
motion time cure model and the mixture cure model, the same is true
when considering link functions to associate the covariates. One option
(stemming from the promotion time cure model) is to associate λi with
covariates xi via a loglinear link function, ln (λi) = x′

iβ with coefficients,
β = (β0,β1, . . . ,βb)′ (Balakrishnan and Pal, 2012; Cancho et al., 2012; Ro-
drigues et al., 2009). While this is a viable approach in general, the loglinear
link for λ can be problematic in the broader CMP cure rate model because
it cannot restrict λ < 1 for the special case of the geometric cure rate model
(i.e. the CMP cure rate where ν = 0). An alternate approach (often utilized
in mixture cure models) is to consider a logistic link to associate the cure
rate p0 with the covariates xi (Balakrishnan and Feng, 2018; Balakrishnan
and Pal, 2013, 2015a, 2016; Balakrishnan et al., 2017). Setting the logistic
model formulation equal to the cure rate definition for the CMP cure rate
model (Equation (8.9)) implies

p0 = 1

1 + exp (x′β)
= 1

Z(λ, ν)
(8.12)

such that, for a given ν, p0 only depends on λ. Accordingly, we have the
function g(λ; ν) = Z(λ, ν) = 1 + exp (x′β) and λ = g−1(1 + exp (x′β); ν).
The logistic link function implies a broader functional relationship between
λ and the covariates for a given ν, i.e. g(λ; ν) = 1 + exp (x′β), where
the function g is a monotone increasing function whose inverse is deter-
mined numerically. For each of the special CMP cases, however, g−1(λ; ν)
has a closed form (Balakrishnan and Pal, 2013); see Table 8.1 for details
regarding the Poisson, geometric, and Bernoulli cases.
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Table 8.1 Special-case CMP cure rate models that have closed forms for g(λ; ν)
and λ = g−1(1 + exp (x′β); ν).

Special case Restriction g(λ; ν) λ

Poisson ν = 1 g(λ; ν = 1) = exp (λ) ln (1 + exp (x′β))

Geometric ν = 0 with λ < 1 g(λ; ν = 0) = 1

1 − λ
exp (x′β)

1 + exp (x′β)
Bernoulli ν → ∞ g(λ; ν → ∞) = 1 + λ exp (x′β)

8.2 Right Censoring

Discussion in this section assumes noninformative right censoring where
Ti = min (Yi, Ci) denotes the observed survival time as Yi or Ci, i.e. ei-
ther the time to the event or censoring time, respectively. For Subject
i = 1, . . . , n, let δi = I(Yi ≤ Ci) denote the indicator variable that equals 1
(0) if the time to event (censoring time) is observed. Given the respective
pairs of observed times and associated censor indicators for the n subjects
{(ti, δi) : i = 1, . . . , n}, the resulting likelihood function is

L(θ ; t, δ) ∝
n∏

i=1

[fp(ti; θ )]δi [Sp(ti; θ)]1−δi (8.13)

for a set of parameters θ = (β ′, ν, γ )′.

8.2.1 Parameter Estimation Methods

Maximum Likelihood Estimation

Rodrigues et al. (2009) utilize the method of maximum likelihood (ML)
for parameter estimation, directly optimizing the log-likelihood with re-
spect to the parameters of interest. Substituting the respective definitions
for Sp and fp (Equations (8.10) and (8.11)) into Equation (8.13) produces
the likelihood function

L(θ ; t, δ) ∝
n∏

i=1

1

Z(λi, ν)

⎧
⎨

⎩

f (ti; γ )

S(ti; γ )

∞∑

j=1

j(λiS(ti; γ ))j

(j!)ν

⎫
⎬

⎭

δi

× [Z(λiS(ti; γ ), ν)]1−δi , (8.14)

where θ = (β ′, ν, γ ′) and λi = exp (x′
iβ) (i.e. a loglinear link with β ′ =

(β0,β1, . . . ,βb)). To obtain the maximum likelihood estimates (MLEs)
θ̂ = (β̂

′
, ν̂, γ̂ ′), Equation (8.14) is optimized numerically via the Rigby
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and Stasinopoulos (2005) method contained in the R package gamlss
(Stasinopoulos and Rigby, 2007). The normalizing constant Z(λ, ν) =∑∞

j=0
λj

(j!)ν is meanwhile approximated by truncating the infinite sum at some

K > (λ/ε)1/ν for small ε > 0. Given appropriate regularity conditions, θ̂

has an asymptotic distribution that is multivariate normal with mean θ and
variance–covariance matrix 	(θ̂ ), estimated as

	̂(θ̂) =
[

−∂
2 ln (L(θ ; t, δ))

∂θ∂θ ′

]−1

|θ=θ̂ . (8.15)

A real-data illustration shows that the CMP cure rate model outperforms
the promotion time and mixture cure models, achieving the best fit; see
Rodrigues et al. (2009) for details.

Bayesian Approach

Cancho et al. (2012) instead take a Bayesian approach toward analyzing
the CMP cure rate model whose marginal likelihood function is defined
in Equation (8.14). Assume that the parameters θ = (β ′, ν, γ ′) are inde-
pendent with respective prior distributions whose hyperparameters further
induce noninformative priors. More precisely, let β have a multivariate
normal distribution Nb+1(0, 	) and ln (ν) be normally distributed N(0, σ 2

ν ),
while the selections for γ elements are noted in Section 8.5. The resulting
posterior distribution π(θ | t, δ) ∝ L(θ ; t, δ) is not easily integrable; how-
ever, inferences regarding θ can be attained via Markov Chain Monte Carlo
(MCMC) methods.

EM Algorithm

Several works adopt the mixture cure model approach toward defining the
likelihood function, partitioning the general population into two groups (i.e.
those who are immune versus susceptible) such that Equation (8.13) can be
represented as

L(θ ; t, δ) ∝
∏

{i : δi=1}
fp(ti; θ)

∏

{i : δi=0}
[p0 + (1 − p0)Ss(ti; θ )], (8.16)

where θ = (β ′, ν, γ )′ and θ∗ = (β ′, ν)′, assuming a particular distribution
for the time-to-event variables W (Balakrishnan and Feng, 2018; Balakr-
ishnan and Pal, 2012, 2013, 2015a, 2016; Balakrishnan et al., 2017). They
further introduce the binary variable J to denote whether or not a subject
experiences the event because of the considered cause(s). By definition,
J = 1 if the subject experiences a cause(s)-related event (i.e. Ji = 1 for



290 COM–Poisson Cure Rate Models

i ∈ {i : δi = 1}), while J is otherwise unknown (as either 0 or 1) because
the subject could either never experience the event because they are im-
mune (thus, J = 0) or the subject could still experience the event but it
has yet to occur during the span of the experiment or study (i.e J unknown
for i ∈ {i : δi = 0}). Accordingly, this aspect of the work is recognized
as a missing data problem, propelling researchers to determine the MLEs
θ̂ = (β̂

′
, ν̂, γ̂ ′) via the expectation–maximization (EM) algorithm, where

the resulting complete data likelihood and corresponding log-likelihood
(without the constant) are

Lc(θ ; t, x, δ, J) ∝
∏

{i : δi=1}
[fp(ti, xi; θ)]

×
∏

{i : δi=0}
[p0(θ∗, xi)]

1−Ji [(1 − p0(θ∗, xi))Ss(ti, xi; θ )]Ji

(8.17)

ln Lc(θ ; t, x, δ, J) ∝
∑

{i : δi=1}
ln fp(ti, xi; θ) +

∑

{i : δi=0}
(1 − Ji) ln p0(θ∗, xi)

+
∑

{i : δi=0}
Ji ln [(1 − p0(θ∗, xi))Ss(ti, xi; θ)]. (8.18)

For a given ν, let θ † = (β ′, γ ′)′ and let θ
†
(k) denote its values at the kth iter-

ation. Given this framework, the expectation step determines G(θ †, π (k)) =
E( ln Lc(θ ; t, x, δ, J) | θ

†
(k), O) with regard to the distribution of unobserved

Jis, given O = {observed Jis and (ti, δi, xi); i = 1, . . . , n} for a fixed ν by
replacing Ji with its expected value, namely

π
(k)
i =

⎧
⎨

⎩

[
1−p0(θ†

(k),xi)
]
Ss(ti,xi; θ

†
(k))

Sp(ti,xi; θ
†
(k))

for i ∈ {i : δi = 0}
1 otherwise,

(8.19)

where θ
†
(k) = (β ′, γ ′)′(k) denotes values of θ† at the kth step; Tables 8.2

and 8.3 contain the resulting G(θ †, π (k)) functions for the CMP cure rate
model assuming respective lifetime distributions; see Section 8.5 for fur-
ther discussion regarding the various lifetime distributions featured in this
chapter. The respective functions can be refined for the special cases that
comprise the CMP cure rate model (i.e. the Bernoulli, Poisson, and ge-
ometric cure rate models). Meanwhile, the maximization step identifies
θ

†
(k+1) as the value that maximizes G(θ †, π (k)) with respect to the parameter

space �†, i.e. θ
†
(k+1) = arg maxθ†∈�† G(θ †, π (k)). Given the added complex-

ity of some models, the Newton–Raphson or quasi-Newton methods are



Table 8.2 Expectation step functions for fixed ν from the CMP cure rate model with right censoring and various associated lifetime
distributions.

Reference Lifetime distribution G(θ†, π (k)) = E( ln Lc(θ ; t, x, δ, J) | θ
†
(k), O)

Balakrishnan and Pal (2012) Exponential n1 ln γ + ∑
{i : δi=1} ln z2(β, γ , ν; xi, ti) + ∑

{i : δi=0} w(k)
i ln z1(β, γ , ν; xi, ti)

−∑
I∗ ln z(β, ν; xi), where

z(β, ν; xi) = ∑∞
j=0

( exp (x′
iβ))j

(j!)ν , z1(β, γ , ν; xi, ti) = ∑∞
j=1

( exp (x′
iβ−γ ti))j

(j!)ν ,

z2(β, γ , ν; xi, ti) = ∑∞
j=1

(j exp (x′
iβ−γ ti))j

(j!)ν , w(k)
i = z1(β(k) ,γ (k) ,ν; xi ,ti)

1+z1(β(k) ,γ (k) ,ν; xi ,ti)

Balakrishnan and Pal (2013) Lognormal −n1 ln (
√

2π ) − n1 ln γ1 − ∑
{i : δi=1} ln ti − 1

2

∑
{i : δi=1} u2

i − ∑
{i : δi=1} ln (1 − (ui))

+∑
{i : δi=1} ln z2i + ∑

{i : δi=0} π
(k)
i ln z1i − ∑

I∗ ln (1 + exp (x′
iβ)), where

z1
.= z1(θ ; xi, ti) = ∑∞

j=1
[g−1(1+exp (x′β)(1− (ui)); ν)]j

(j!)ν ,

z2
.= z2(θ ; xi, ti) = ∑∞

j=1
j[g−1(1+exp (x′β)(1− (ui)); ν)]j

(j!)ν ,

π
(k)
i = z1(θ ; xi ,ti)

1+z1(θ ; xi ,ti)
|θ∗=θ∗(k) for censored observation i.

Balakrishnan and Pal (2015a) Generalized Gamma n1 ln (K(γ )) +
(

1
qσ − 1

)∑
{i : δi=1} ln ti − 1

q2

∑
{i : δi=1} (λti)q/σ − ∑

{i : δi=1} ln (S(ti; γ ))

+∑
{i : δi=1} ln z2i + ∑

{i : δi=0} π
(k)
i ln z1i − ∑

I∗ ln
(
1 + exp (x′

iβ)
)
, where

K(γ ) = q
σ

(λq/σ q2)
1/q2

�(1/q2)
, z1

.= z1(θ ; x, t) = ∑∞
j=1

[g−1(1+exp (x′β); ν) exp (−(γ2t)1/γ1 )]j

(j!)ν ,

z2
.= z2(θ ; x, t) = ∑∞

j=1
j[g−1(1+exp (x′β); ν) exp (−(γ2t)1/γ1 )]j

(j!)ν ,

π
(k)
i = z1(θ ; xi ,ti)

1+z1(θ ; xi ,ti)
|θ∗=θ (k) for censored observation i.

Balakrishnan and Pal (2015b) Gamma n1 ln (G(γ )) − ∑
{i : δi=1} ln (S(ti; γ )) −

(
γ2

γ 2
1

)∑
{i : δi=1} ti +

(
1
γ 2

1
− 1

)∑
{i : δi=1} ln ti

+∑
{i : δi=1} ln z2i + ∑

{i : δi=0} π
(k)
i ln z1i − ∑

I∗ ln (1 + exp (x′
iβ)), where

z1
.= z1(θ ; x, t) = ∑∞

j=1
[g−1(1+exp (x′β); ν) exp (−(γ2t)1/γ1 )]j

(j!)ν ,

z2
.= z2(θ ; x, t) = ∑∞

j=1
j[g−1(1+exp (x′β); ν) exp (−(γ2t)1/γ1 )]j

(j!)ν ,

π
(k)
i = z1(θ ; xi ,ti)

1+z1(θ ; xi ,ti)
|θ∗=θ (k) for censored observation i.



Table 8.3 Expectation step functions for fixed ν from the CMP cure rate model with right censoring and various associated lifetime
distributions (continued).

Reference Lifetime distribution G(θ†, π (k)) = E( ln Lc(θ ; t, x, δ, J) | θ
†
(k), O)

Balakrishnan and Pal (2016) Weibull −n ln γ1 + n1
γ1

ln γ2 + 1−γ1
γ1

∑
{i : δi=1} ln ti + ∑

{i : δi=1} ln z2i

+∑
{i : δi=0} π

(k)
i ln z1i − ∑

{i : δi=0∪1} ln [1 + exp (x′
iβ)], where

z1
.= z1(θ ; x, t) = ∑∞

j=1
[g−1(1+exp (x′β); ν) exp (−(γ2t)1/γ1 )]j

(j!)ν ,

z2
.= z2(θ ; x, t) = ∑∞

j=1
j[g−1(1+exp (x′β); ν) exp (−(γ2t)1/γ1 )]j

(j!)ν ,

π
(k)
i = z1(θ ; xi ,ti)

1+z1(θ ; xi ,ti)
|θ∗=θ (k) for censored observation i.

Balakrishnan et al. (2017) Proportional hazard (Weibull n1 ln γ0 − n1γ0 ln γ1 + (γ0 − 1)
∑

{i : δi=1} ln ti + ∑
{i : δi=1} x′

iγ2

baseline hazard function) −∑
{i : δi=0 or 1} ln (1 + exp (x′

iβ)) + ∑
{i : δi=1} ln z2i + ∑

{i : δi=0} π
(k)
i ln z1i, where

z1
.= z1(θ ; x, t) = ∑∞

j=1
[g−1(1+exp (x′

iβ); ν) exp[−(tiγ1)γ0 exp (x′
icγ2)]]j

(j!)ν ,

z2
.= z2(θ ; x, t) = ∑∞

j=1
j[g−1(1+exp (x′

iβ); ν) exp[−(tiγ1)γ0 exp (x′
icγ2)]]j

(j!)ν ,

π
(k)
i = z1(θ ; xi ,ti)

1+z1(θ ; xi ,ti)
|θ∗=θ (k) for censored observation i, and n1 = |{i : δi = 1}|.

Balakrishnan et al. (2017) Proportional hazard n1 ln γ0 − n1γ0 ln γ1 + (γ0 − 1)
∑

{i : δi=1} ln ti + ∑
{i : δi=1} x′

iγ2

(general form) −∑
{i : δi=0 or 1} ln (1 + exp (x′

iβ)) + ∑
{i : δi=1} ln z2i + ∑

{i : δi=0} π
(k)
i ln z1i, where

z1i
.= z1(θ ; xi, ti) = ∑∞

j=1
[g−1(1+exp (x′

iβ); ν)S(ti; γ )]j

(j!)ν ,

z2i
.= z2(θ ; xi, ti) = ∑∞

j=1
j[g−1(1+exp (x′

iβ); ν)S(ti; γ )]j

(j!)ν ,

π
(k)
i = z1(θ ; xi ,ti)

1+z1(θ ; xi ,ti)
|θ∗=θ (k) for censored observation i, and n1 = |{i : δi = 1}|.

Balakrishnan and Feng (2018) Proportional odds −∑
{i : δi=0 or 1} ln (1 + exp (x′

iβ)) + ∑
{i : δi=1} ln f (ti, γ ) − ∑

{i : δi=1} ln S(ti, γ )

+∑
{i : δi=1} ln z2i + ∑

{i : δi=0} π
(k)
i ln z1i, where

z1i
.= z1(θ ; xi, ti) = ∑∞

j=1
[g−1(1+exp (x′

iβ); ν)S(ti; γ )]j

(j!)ν ,

z2i
.= z2(θ ; xi, ti) = ∑∞

j=1
j[g−1(1+exp (x′

iβ); ν)S(ti; γ )]j

(j!)ν ,

π
(k)
i = z1(θ ; xi ,ti)

1+z1(θ ; xi ,ti)
|θ∗=θ (k) for censored observation i.
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used to perform the maximization steps. The expectation and maximiza-
tion steps are repeated with each iteration until convergence is reached and
θ̂

†
is determined for a given ν. The optimal ν̂ is then determined via the

profile likelihood approach, assessing which log-likelihood is maximum
among the collection of results, (θ̂

†
; ν). More broadly, Balakrishnan and

Pal (2015a) use the generalized gamma(g1, g2, g3) distribution to describe
the time-to-event variable and perform the expectation step for a fixed ν and
g2. As usual, the sequence of expectation and maximization steps repeats
until convergence is attained and the conditional MLEs are thus identified
for the given ν and g2. The profile likelihood approach is then applied
for ν and g2 in order to determine their MLEs for which the overall log-
likelihood function is maximized. Several works further supply the first-
and second-order derivatives of G(θ †, π (k)) to aid in constructing the score
function and Fisher information matrix associated with the general CMP
cure rate model and its special cases; see, for example, Balakrishnan and
Pal (2013), Balakrishnan and Pal (2015a), Balakrishnan and Feng (2018).
Computational efforts surrounding this method are assisted by truncating
any infinite series at some point where its contribution to the summation
is sufficiently small (i.e. less than some ε > 0; see Section 2.8 for related
discussion).

Initial guesses to enact the EM algorithm are determined in various ways.
Several works identify initial values for β via a (b + 1)-dimensional grid
search where, for each proposed β, initial values for γ are considered by
sampling values independently from within a suggested range of respec-
tive values. This combination of proposed initial values is finally identified
such that the observed log-likelihood is maximum. This approach is rec-
ognized as being computationally intensive. Balakrishnan and Pal (2012)
determine initial values for β based on Kaplan–Meier estimates of the cure
rates under each of the considered conditions and then backsolve for β.
These values are then plugged into the observed log-likelihood function in
order to produce a function only involving γ (recall that this work considers
an exponential lifetime distribution, hence γ is an unknown constant) that
can be maximized. Similarly, Balakrishnan and Feng (2018) determine β

based on overestimates of the cure rate under each of the considered condi-
tions and then backsolve for β, while the starting values for γ are estimated
by considering a linear model between the Nelson–Aalen estimates of the
log-odds and ln (t), given the proportional odds assumption. Balakrishnan
et al. (2017) determine initial values for β = (β0,β1) assuming that the ob-
served censoring proportion for each group is its cure rate; meanwhile, the
γ = (γ0, γ1, γ2) initial values are determined from the regression equation
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ln{− ln [Ŝ(t; γ )]} = γ0 ln t + γ2x − γ0 ln γ1,

where Ŝ(t; γ ) denotes the Kaplan–Meier estimates of S(t; γ ). As a result
of the profile likelihood approach, the respective MLEs are determined for
each of a range of ν values (e.g. ν ∈ [0, 4]) taken in increments of 0.1 such
that the ultimate determination of the MLEs is based on the collection of
MLEs and ν that produce the ultimate maximum value for the likelihood.

8.2.2 Quantifying Variation

Inverting the corresponding information matrix will provide the asymptotic
variances and covariances of β̂ and γ̂ . This, in turn, determines the standard
errors for (β̂, γ̂ ) which allows analysts to consider asymptotic confidence
intervals given the asymptotic normality of the MLEs (β̂, γ̂ ). The stan-
dard error of p̂0i can be determined via the delta method leading to the
asymptotic confidence interval for the cure rate p0 = 1

1+exp (x′β) given the
asymptotic normality of p̂0. More precisely, p0 can be estimated as p̂0 =
g(β) = 1

1+exp (x′β̂)
, given the MLE β̂, where p̂0 is asymptotically normally

distributed with mean p0 and variance d′	d where d =
(
∂g(β)
∂β0

, . . . , ∂g(β)
∂βb

)′

and 	 is the variance–covariance matrix for β̂. Analysts can establish a
confidence interval for p0 based on p̂0 and its asymptotic variance.

8.2.3 Simulation Studies

Simulation studies illustrate the model flexibilities attainable via the CMP
cure rate model, assuming any of a number of associated lifetime distri-
butions. Parameter bias, root mean-squared error (RMSE), and confidence
interval coverage probabilities are all determined to assess performance.
For the special-case cure rate simulation studies, results show that the EM
algorithm estimates converge to their true parameters, and the standard er-
ror and RMSE, decrease as the sample size increases and the censoring
proportion decreases (Balakrishnan and Pal, 2012, 2015b, 2016; Balakr-
ishnan et al., 2017). Analogous results likewise hold for fixed ν and/or
regarding the cure rate proportion – the estimates are close to their true
values, and the RMSE is low when the sample size is large and also when
the cure rate is small (Balakrishnan and Pal, 2013). The Bernoulli cure rate
model consistently produced the best coverage probabilities, and parame-
ter estimates with the smallest bias and RMSE, while the geometric cure
rate model showed substantial under-coverage, particularly when partnered
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with a high censoring proportion and small lifetime parameter values (Bal-
akrishnan et al., 2017). Utilizing EM on a CMP cure rate model with an
underlying proportional odds construct meanwhile produces accurate esti-
mates under the general CMP structure as well as its special cases. As the
sample size increases, the bias, standard error, and RMSE decrease. These
measures likewise decrease when the cure rate is high or when the amount
of censoring is small (Balakrishnan and Feng, 2018). Other works however
find that, for the general CMP cure rate data simulation, the profile likeli-
hood technique results in estimated values for ν with large bias and RMSE;
this issue, however, diminishes with the censoring proportion and as the
sample size increases. Meanwhile, the estimates for β and γ are close to
their true values; yet, their associated standard errors are smaller than ex-
pected, resulting in coverage probabilities that are less than their nominal
levels. This phenomenon is due to the constrained inaccuracy behind es-
timating ν caused by using the profile likelihood approach to estimate ν.
The fact that the standard errors wind up estimated to be smaller produces
coverage probabilities for the confidence intervals that are less than their
respective nominal levels, resulting in model parameter under-coverage
(Balakrishnan and Pal, 2015b, 2016).

Methods that a priori consider the loglinear link function ln (λ) = x′β
can experience convergence issues because, for the geometric cure rate
model, the loglinear link does not guarantee that λ < 1. The EM al-
gorithm can likewise face convergence issues for the general CMP cure
rate model, with ν being close to zero because this scenario closely mim-
ics the geometric cure rate construct. Even for those models that assume
λ = g−1(1 + exp (x′β); ν), the EM algorithm may not converge for the
general CMP cure rate model; this phenomenon does not occur, however,
when estimating parameters under any of the special case (i.e. Poisson,
geometric, or Bernoulli) cure rate models (Balakrishnan and Pal, 2013,
2015b, 2016).

8.2.4 Hypothesis Testing and Model Discernment

The likelihood ratio test (LRT) is a popular approach for hypothesis test-
ing to suggest one of the parsimonious special-case cure rate models (i.e.
H0 : ν = 1, H0 : ν = 0, or H0 : ν → ∞) versus the general CMP cure rate
model (H1 : otherwise). Accordingly, the CMP cure rate model serves as a
flexible exploration tool for determining if one of the special-case distribu-
tions can serve as an appropriate model. For H0 : ν = 1, the LRT statistic
−2 ln� has an asymptotic chi-squared distribution with one degree of
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freedom, where� equals the ratio of maximized likelihood functions under
H0 versus the unrestricted parameter space. Meanwhile, to test H0 : ν = 0
or H0 : ν → ∞, the corresponding LRT statistic has a null distribution,
equaling 0.5+0.5χ2

1 because each of these tests considers a boundary value
for ν (Self and Liang, 1987).

The chi-square distribution properly approximates the null distribution of
the LRT regarding H0 : ν = 1 versus H1 : ν �= 1. In fact, whether the under-
lying proportional odds structure is assumed to be log-logistic or Weibull,
the power function increases as the sample size increases, and as the censor-
ing proportion decreases (Balakrishnan and Feng, 2018; Balakrishnan and
Pal, 2013, 2016). For small sample sizes, however, analysts are encouraged
to consider a parametric bootstrap to perform model discernment. The re-
spective tests about the boundary (H0 : ν = 0, or H0 : ν → ∞) meanwhile
produce disparate results. The resulting mixture distributions involving a
point mass and chi-square distribution likewise approximate the null distri-
bution for the LRT associated with H0 : ν → ∞, i.e. the Bernoulli case. For
the geometric case, however, the mixture chi-square distribution does not
reasonably approximate the LRT null distribution; the “observed levels are
found to be considerably below the nominal level” (Balakrishnan and Pal,
2013, 2016).

The two boundary (i.e. Bernoulli or geometric) cure rate models pro-
duce LRTs with high power of rejecting the opposite boundary special case
(Balakrishnan and Pal, 2015b, 2016; Balakrishnan et al., 2017). This is ex-
pected because these two represent the extreme CMP cases with regard
to dispersion. Thus, when the true data stem from one of the boundary
special-case cure rate models, the other boundary case exhibits a rejection
rate that is considerably higher than other models. The LRT’s ability to re-
ject the Poisson model, however, varies. The LRT produces good power for
rejecting the Poisson cure rate model when the true model is geometric,
but not so much when the true model is Bernoulli; when the true model
is Bernoulli, the LRT’s statistical power to reject the Poisson distribution
is small. When the true cure rate model is Poisson, the LRT has reason-
able power to reject the Bernoulli model but less so for the geometric
case. The power associated with rejecting the wrong model nonetheless
generally increases with the sample size or as the censoring proportion
decreases.

Balakrishnan and Pal (2015a) use the LRT to determine whether the
CMP cure rate model with the generalized gamma (g1, g2, g3) lifetime
can be simplified to consider any of the special-case lifetime distribu-
tions (i.e. lognormal, gamma, Weibull, and exponential). For the gamma
(H0 : g2 = g3), Weibull (H0 : g2 = 1), and exponential (H0 : g2 = 1, g3 = 1)
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cases, the respective LRT statistics have a chi-squared distribution whose
degrees of freedom equal the difference in the number of parameters be-
tween the respective null models and the generalized gamma distribution.
The lognormal (H0 : g2 = 0) special case, however, lies on the boundary,
and thus the LRT statistic has an asymptotic distribution whose cumula-
tive probability is adjusted as described above. The LRT null distribution
closely approximates the respective chi-square distributions for the gamma,
Weibull, and exponential lifetime special-case distributions; however, the
lognormal case is found to be too conservative. The gamma and Weibull
distributions meanwhile do not differ significantly from each other; yet, the
LRTs find that the lognormal distribution differs statistically significantly
from the Weibull, gamma, and exponential distributions.

The Akaike information criterion (AIC) and the Bayesian information
criterion (BIC) are two popular measures used for model comparisons,
as noted and discussed in Chapter 1. These information criteria correctly
identify the best model with high accuracy when comparing the promotion
time cure model (Poisson), mixture cure model (Bernoulli), or the geo-
metric cure rate model. The respective selection rates each increase with
the sample size and with a decrease in the censoring proportion (Balakr-
ishnan and Feng, 2018; Balakrishnan and Pal, 2013, 2015b; Balakrishnan
et al., 2017). The CMP with ν ∈ [0.5, 2] more closely relates to the pro-
motion time cure model rather than the geometric or mixture cure models
because these information criteria select the Poisson model at a higher
rate than the Bernoulli or geometric distributions (Balakrishnan and Pal,
2016). Using the AIC and/or BIC for model comparison is appealing be-
cause these information criteria do not require ν to be estimated. In contrast,
the LRT approach requires estimating ν which, given the profile likelihood
approach, can be a time-consuming process.

Balakrishnan and Feng (2018) meanwhile find that, if the true model as-
sumes a Weibull baseline, then the chances of selecting a cure rate model
with the log-logistic baseline are small (and vice versa), and this rate de-
creases as the sample size increases or censoring decreases. Balakrishnan
and Pal (2015a) likewise show that either criterion does a good job of cor-
rectly selecting the CMP cure rate model with lognormal or exponential
distributions for the lifetime variable when those respectively represent the
true form. More broadly, however, the AIC performs better than BIC at
properly identifying the correct model. When the true lifetime variable is
gamma distributed, the AIC does well given a large sample size or small
censoring proportion, while the BIC does a good job only when the sample
size is large. Given simulated data assuming a Weibull lifetime variable,
the AIC properly selects that model more frequently with an increase in
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the sample size and a decrease in the proportion of censored observations,
while the BIC consistently mis-selected the exponential distribution.

Cancho et al. (2012) analogously propose the deviance information cri-
terion (DIC) as a Bayesian measure for model selection. Let θ 1, θ2, . . . , θL

be an MCMC sample from the posterior distribution π(θ | D) for some
dataset D, and D(θ ) = −2

∑n
i=1 ln (h(ti; θ)) denote the deviance, where

h(ti; θ) = fp(ti; θ) if the time to event is observed and h(ti; θ ) = Sp(ti; θ) if
the time to event is censored; θ = (β ′, ν, γ ′). The estimated DIC is

D̂IC = 2D̄ − D̂, where D̄ =
L∑

�=1

D(θ �)/L, and (8.20)

D̂ = D

(
1

L

L∑

�=1

θ �

)

= D

(
1

L

L∑

�=1

β ′
�,

1

L

L∑

�=1

ν�,
1

L

L∑

�=1

γ ′
�

)

; (8.21)

among a collection of considered models, the selected model is that whose
DIC is minimum. The authors also propose conducting model selection via
the conditional predictive ordinate (CPO) statistic. For a dataset with the
ith observation removed (labeled D(−i)) and associated posterior density
function π(θ | D(−i)), the ith CPO is

CPOi =
∫

�

h(ti; θ )π(θ | D(−i))dθ

with corresponding estimate

ĈPOi =
[

1

L

L∑

�=1

1

h(ti; θ �)

]−1

and A∗ = ∑n
i=1 ln (ĈPOi)/n. Large values of CPO and A∗ imply better

model fit. Both measures show that the CMP cure rate model is preferred
over the mixture cure and promotion time cure models.

8.3 Interval Censoring

Under the interval censoring framework, subjects are only observed during
regular intervals; hence, an exact time to event is not known precisely, but
rather the event has occurred within a particular interval (i.e. between con-
secutive interval timepoints). To date, only Pal and Balakrishnan (2017)
address interval censoring in a CMP cure rate model; this section sum-
marizes that work with discussion. Maintaining the notation described in
Section 8.1, assume noninformative interval censoring where events oc-
cur in an interval [L, R], where L < R denote the timepoints before
and after an event occurrence. The censoring indicator δ = I(R < ∞)
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equals 1 if an event is observed and 0 otherwise; R = ∞ represents the
case where the event is not observed by the last inspection time. The au-
thors assume a logistic link function for the cure rate p0 (Equation (8.12))
to maintain the satisfied constraints associated with the CMP model for
all ν, and let the lifetime random variable W be a Weibull distribution
with shape and scale parameters, 1/γ1 and 1/γ2, respectively; see Section
8.5 for details regarding possible lifetime distributions, while other links
can also be considered for p0. Given the respective data for the n subjects
{(Li, Ri, xi, δi) : i = 1, . . . , n}, the resulting likelihood function is

L(θ ; L, R, x, δ) ∝
n∏

i=1

[Sp(Li) − Sp(Ri)]
δi [Sp(Li)]

1−δi (8.22)

for a set of parameters θ = (β ′, ν, γ ′)′.

8.3.1 Parameter Estimation

EM Algorithm Approach

The likelihood function can be partitioned based on those subjects whose
events are observed versus otherwise, i.e. Equation (8.22) becomes

L(θ ; L, R, x, δ) ∝
∏

{i : δi=1}
(1 − p0i)[Ss(Li)−Ss(Ri)]

∏

{i : δi=0}
[p0i+(1−p0i)Ss(Li)],

(8.23)

where the added variable Ji is then incorporated as described in Section
8.2.1 to further develop a complete data likelihood function and associated
log-likelihood (minus the constant term),

Lc(θ ; L, R, x, δ, J) ∝
∏

{i : δi=1}
[(1 − p0i)[Ss(Li) − Ss(Ri)]]

Ji

×
∏

{i : δi=0}
p1−Ji

0i [(1 − p0i)Ss(Li)]
Ji

ln Lc(θ ; L, R, x, δ, J) ∝
∑

{i : δi=1}
Ji ln [(1 − p0i)[Ss(Li) − Ss(Ri)]]

+
∑

{i : δi=0}
(1 − Ji) ln (p0i)

+
∑

{i : δi=0}
Ji ln [(1 − p0i)Ss(Li)]

on which an EM algorithm is conducted. Analogous to that described in
Section 8.2.1, in the expectation step (assuming a fixed ν) with θ † = (β ′, γ ′)′
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and θ
†
(k) denoting its values at the kth iteration, Pal and Balakrishnan (2017)

determine E( ln Lc(θ ; L, R, x, δ, J | θ
†
(k), O) with regard to the distribution of

unobserved Jis, given O = {observed Jis and (Li, Ri, xi, δi), i = 1, . . . , n} by
replacing Ji with its expected value, namely

π
(k)
i =

{
(1−p0i)Ss(Li)

Sp(Li)
|θ∗=θ (k)

∗ for censored observations

1 for uncensored observations

Assuming a Weibull lifetime distribution with shape and scale parameters
1/γ1 and 1/γ2, the resulting function

G(θ †, π (k)) = E
(
ln Lc(θ ; L, R, x, δ, J) | θ

†
(k), O

)

=
∑

{i : δi=1}
ln (zi1L − zi1R) +

∑

{i : δi=0}
π

(k)
i ln (zi1L)

−
∑

{i : δi=0 or 1}
ln (1 + exp (x′

iβ)),

where

zi1t =
∞∑

j=1

[g−1(1 + exp (x′
iβ); ν)S(ti; γ )]j

(j!)ν and

π
(k)
i = zi1L

1 + zi1L
|θ†=θ

†
(k)

for censored observation i

is then maximized numerically via the EM gradient algorithm (Lange,
1995) in the maximization step in order to determine the next iteration of
estimates, i.e.

θ
†
(k+1) = arg max

θ†∈�†
G(θ †, π (k)).

This procedure continues until convergence is reached such that the MLEs
are attained for a fixed ν. The dispersion parameter ν is then estimated via
the profile likelihood method, thus identifying ν̂ that associates with the
largest log-likelihood. See Pal and Balakrishnan (2017) for details, includ-
ing the special case G(θ †, π (k)) for the geometric, Bernoulli, and Poisson
cure rate models when the data are interval censored.

8.3.2 Variation Quantification

The approximate asymptotic variance–covariance matrix associated with
the estimates can be obtained by inverting the observed Fisher information
matrix for β and γ (for a fixed ν). Assuming the usual regularity con-
ditions, the MLEs β̂ and γ̂ are asymptotically normal; thus, confidence
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intervals for the parameters β and γ can be constructed accordingly. Pal
and Balakrishnan (2017) supply the component details necessary to deter-
mine the information matrix, both for the general CMP cure rate model and
its special cases.

8.3.3 Simulation Studies

Simulation studies show that this proposed EM algorithm performs well,
producing estimates that are close to their true values associated with each
of the special-case (i.e. Poisson, geometric, and Bernoulli) cure rate mod-
els. The standard errors and RMSE decrease as the sample size increases,
and the coverage probabilities closely approximate their respective nom-
inal levels. For the general CMP cure rate model, the profile likelihood
approach works well but introduces component-level under-coverage when
estimating γ .

8.3.4 Hypothesis Testing and Model Discernment

The LRT as well as the AIC and BIC can be used for model selection and
discrimination. As described in Section 8.2.4, an LRT statistic � and cor-
responding p-value can aid in evaluating each of the respective special-case
models (i.e. Poisson with H0 : ν = 1, geometric as H0 : ν = 0, or Bernoulli
with H0 : ν → ∞) in comparison to a general CMP cure rate model where ν
takes a value not considered in the null hypothesis. In all cases, the asymp-
totic distribution reasonably approximates the LRT null distribution. When
the true model is either boundary case (i.e. H0 : ν = 0 or H0 : ν → ∞), the
test has high power to reject the other boundary case while it has less power
to reject the Poisson cure rate model. When the true cure rate model is Pois-
son, the power to reject the other special-case models is relatively low. The
AIC and BIC criteria can each tell the difference between the three special-
case cure rate models and properly determine which to be the correct model
choice. Data simulations further demonstrate the flexibility of the CMP cure
rate model. This flexibility serves as a useful tool for model determination
in that it helps to avoid potential working model mis-specification which,
in turn, can lead to a substantive bias and lack of efficiency.

8.4 Destructive CMP Cure Rate Model

A destructive cure rate model offers a more pragmatic representation of the
time to event in a competing cause scenario where the number of competing
causes can now decrease via a destructive process. Letting M denote the
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number of competing causes, we now consider the (latent) total damaged
variable

B =
{ ∑M

i=1 Xi M > 0
0 M = 0,

(8.24)

where Xi are independent and identically Bernoulli(p)-distributed random
variables (independent from M) noting the presence (1) or absence (0) of
Cause i = 1, . . . , M. By definition, B is the total number of outcomes
among M considered competing causes. Equation (8.24) illustrates that
the destruction assumes the binomial probability law, i.e. B | M = m∗
has a Binomial(m∗, p) distribution. Given B = b∗, W represents the (la-
tent) lifetime random variable, Y = min (W0, W1, . . . , Wb∗) denotes the
lifetime taking into account the B potential combinations of causes that
determine the time to event with Y = ∞ when B = 0, whose probability
p0 is the cured fraction. Rodrigues et al. (2011) introduce both a destruc-
tive length-biased Poisson and a destructive NB cure rate model as special
cases of a destructive weighted Poisson cure rate model. A destructive
length-biased Poisson is constructed via M whose associated probability
is P(M = m; λ) = e−λλm−1/(m − 1)! for m = 1, 2, 3, . . .. The resulting
destructive length-biased Poisson cure rate population survival and density
functions are

Sp(y) = [1 − pF(y)] exp ( − λpF(y)) (8.25)

fp(y) = p

(

λ+ 1

1 − pF(y)

)

[1 − pF(y)] exp ( − λpF(y))f (y), (8.26)

and cure rate, p0 = (1−p) exp (−λp). When p = 1, Sp(y) is a proper survival
function. A destructive NB cure rate model meanwhile is constructed by
defining M as having a NB(η,φ) distribution with probability mass function

P(M = m; η,φ) = �(m + 1/φ)

m!�(1/φ)

(
ηφ

1 + ηφ
)m ( 1

1 + ηφ
)1/φ

, m = 0, 1, 2, . . . ;

the geometric distribution with success probability (1 + ηφ)−1 is a special
case where φ = 1. Given this framework, the resulting destructive NB cure
rate population survival function and density function are

Sp(y) = [1 + ηφpF(y)]−1/φ (8.27)

fp(y) = ηp

1 + ηφpF(y)
[1 + ηφpF(y)]−1/φf (y) (8.28)

with cure rate, p0 = (1 + ηφp)−1/φ .
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The destructive CMP cure rate model is a more flexible alternative that
contains the destructive Poisson and geometric cure rate models as spe-
cial cases. For the special case where M has a CMP(λ, ν) distribution, the
respective survival and density functions, as well as the cure rate for the
destructive framework, are

Sp(y) = Z(λ[1 − pF(y)], ν)

Z(λ, ν)
(8.29)

fp(y) = pf (y)

Z(λ, ν)[1 − pF(y)]

∞∑

j=1

j[λ(1 − pF(y))]j

(j!)ν (8.30)

p0 = Z(λ(1 − p), ν)

Z(λ, ν)
(8.31)

(Pal et al., 2018; Rodrigues et al., 2011, 2012). The cure rate p0 decreases
with respect to both λ and p. For the special case where ν ∈ N, the survival
function is

Sp(y; λ, ν, p) = exp [ − λpF(y)] 1Fν(1; 1, . . . , 1; λ[1 − pF(y)])

1Fν(1; 1, . . . , 1; λ)
(8.32)

with total damage distribution having the form

P(B = b∗; λ, ν, p) = exp ( − λp) 1Fν(1; b∗ + 1, . . . , b∗ + 1; λ(1 − p))

1Fν(1; 1, . . . , 1; λ)
,

b∗ = 0, 1, 2, . . . , (8.33)

where

uFv(α1, . . . ,αu1 ;β1, . . . ,βu2 ; x) =
∞∑

m=0

α
(m)
1 α

(m)
2 × · · · × α(m)

u1

β
(m)
1 β

(m)
2 × · · · × β (m)

u2

xm

m!
is the generalized hypergeometric function with α(m) = α(α + 1) × · · · ×
(α + m − 1) denoting the rising factorial. The case where p = 1 implies
that all initial competing causes are possible, i.e. there is no destruc-
tive process. The destructive CMP cure rate model is another example
of a destructive weighted Poisson cure rate model with weight function
w(m; ν) = (m!)1−ν (Rodrigues et al., 2011); see Section 1.4 for a gen-
eral discussion of weighted Poisson distributions (including the weighted
Poisson cure rate model) and Section 2.7 for a focused discussion of the
COM–Poisson as a particular weighted Poisson distribution.

Research to date only considers the destructive CMP cure rate model
under a noninformative construct where Y is subject to right censoring,
Ci denotes the censoring time, Ti = min (Yi, Ci) denotes the lifetime,
and δi = I(Yi ≤ Ci) indicates whether or not the lifetime is observed.
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The parameter vectors λ and p, respectively, have loglinear and logistic link
functions ln (λi) = x′

1iβ1 and ln
(

pi

1−pi

)
= x′

2iβ2, where x′
1i and x′

2i have dis-
tinct elements and x′

1i does not have a column of ones, while β j, j = 1, 2 has
bj coefficients (Pal et al., 2018; Rodrigues et al., 2011, 2012). However, the
loglinear link for λ is concerning because it does not necessarily guarantee
λ < 1 for the geometric (i.e. when ν = 0) competing cause special case. No
work considers the alternate parametrization λi = g−1(1 + exp (x′

1iβ1); ν)
described in Section 8.1.

8.4.1 Parameter Estimation

Again, three approaches have been considered for parameter estimation:
the method of ML, Bayesian estimation, and the EM algorithm. Rodrigues
et al. (2011) perform ML estimation to estimate θ = (β ′

1, β ′
2, ν, γ ′)′ by

numerically optimizing ln (L(θ ;t, δ)) via Equation (8.13) in R, where Sp

and fp are defined in Equations (8.29) and (8.30). The resulting MLEs
θ̂ = (β̂

′
1, β̂

′
2, ν̂, γ̂ ′)′ have an asymptotically MVN distribution with mean θ

and approximate variance–covariance matrix 	(θ̂ ) estimated by Equation
(8.15).

Taking a Bayesian perspective, Rodrigues et al. (2012) assume that γi

(i = 1, . . . , I), β j (j = 1, 2), and ν are all independent such that the a
priori joint distribution of these parameters equals the product of marginal
distributions associated with all of the individual parameters, i.e. for θ =
(β ′

1, β ′
2, ν, γ ′),

π(θ ) = π(ν)
I∏

i=1

π(γi)
2∏

j=1

bj∏

�=1

π(βj�). (8.34)

The authors let βj� be N(0, σ 2
j�) distributed where � = 1, . . . , bj for j = 1, 2,

while ν assumes a Gamma(a1, a2) distribution. Assuming a Weibull(γ1, γ2)
distribution as described in Section 8.5 for Y as an illustration (thus I = 2),
let γ1 assume a Gamma(a1, a2) distribution and γ2 be normally distributed
with mean 0 and variance σ 2

γ2
. By definition, ν and γ1 each have shape and

scale parameters a1 and a2 such that the mean equals a1/a2. In all cases, the
hyperparameters are chosen to have vague prior distributions. The resulting
joint posterior distribution’s complex structure is difficult to study; thus, a
Gibbs sampler can be used to approximate the form of the joint distribu-
tion with Metropolis–Hastings steps performed within the Gibbs sampler
in order to simulate samples of θ .
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Pal et al. (2018) propose an EM algorithm to determine the model pa-
rameter MLEs based on noninformative right censored data, motivated by
the fact that missingness exists in that censored subjects can either be cured
or susceptible without experiencing the event by the study conclusion. Us-
ing the complete data log-likelihood (without the constant; see Equation
(8.18)), they determine the conditional expectation to be

G(θ , π (k)) =
∑

{i : δi=1}
ln fp(ti) +

∑

{i : δi=0}
(1 − π (k)

i ) ln p0i

+
∑

{i : δi=0}
π

(k)
i ln [(1 − p0i)Ss(ti)]

∝
∑

{i : δi=1}

⎡

⎣ln (pif (ti)) + ln

⎛

⎝
∞∑

j=1

j[ηi(1 − piF(ti))]j

(j!)ν

⎞

⎠− ln (Z(1 − piF(ti), ν))

⎤

⎦

+
∑

{i : δi=0}
(1 − π (k)

i ) (ln (Z(λi(1 − pi), ν)) − ln (Z(λi, ν)))

+
∑

{i : δi=0}
π

(k)
i ln

(
Z(λi(1 − piF(ti)), ν) − Z(λi(1 − pi), ν)

Z(λi, ν)

)

, (8.35)

where π (k)
i = E(Ji | θ

†
(k), O) = (1−p0i)S1(ti)

Sp(ti)
|θ=θ

†
(k)

as discussed in Balakr-
ishnan and Pal (2012), and then maximize it via the Lange (1995) EM
gradient algorithm to obtain the next iterated values of the estimated val-
ues, θ (k+1) = arg maxθ∈� G(θ , π (k)). The EM algorithm is performed until
convergence is attained in that the relative difference in successive values
is sufficiently small. The corresponding first- and second-order derivatives
of G(θ , π (k)) are supplied in the appendix of Pal et al. (2018), along with
the resulting G(θ , π (k)) and its derivatives for the destructive Bernoulli and
Poisson cure rate models, respectively. Note that these represent two of the
three special-case destructive CMP cure rate models. The destructive geo-
metric cure rate model, however, is concerning with regard to this approach
toward parameter estimation because the setup does not guarantee λ < 1
(which is a required constraint when ν = 0).

Various computational matters are noted under the destructive cure rate
framework and addressed in Pal et al. (2018). The likelihood terrain is very
flat with respect to ν, so the EM algorithm is conducted for a given ν,
and then the profile likelihood approach determines the optimal dispersion
parameter. This approach, however, does not account for variation with re-
spect to ν. The normalizing constant Z(λ, ν) = ∑∞

j=0
λj

(j!)ν is meanwhile
approximated by terminating the summation at the point where the corre-
sponding contribution to the summation is sufficiently small; see Section
2.8 for related discussion. As ν approaches 0, the required number of terms
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increases in order to reach convergence. Finally, the associated approxi-
mate variance–covariance matrix of the MLEs is determined by inverting
its observed Fisher information matrix, where the MLEs and information
matrix are used to determine the asymptotic confidence intervals based on
the MLEs being asymptotically normal.

Simulation studies showed that the EM algorithm produces estimates
that are close to their true parameters when applied to the destructive
Bernoulli and Poisson cure rate models, respectively; results showed that
the bias, standard error, and RMSE decrease as the sample size increases.
The coverage probabilities likewise approached their respective nominal
levels as the sample size increased. For the general destructive CMP cure
rate model, the profile likelihood approach for ν likewise worked well
with regard to parameter estimation, where the profile likelihood approach
considers grid spacings of 0.1 up to a reasonable range for ν > 0. This
framework resulted in a small bias, where the bias and RMSE decreased
with an increased sample size. The profile likelihood approach, however,
resulted in the variation for ν not being assessed; this produced under-
estimated coverage probabilities. Alternatively estimating all parameters
simultaneously produces larger standard errors (particularly for ν̂) such that
the coverage probabilities overshoot their expected nominal levels.

8.4.2 Hypothesis Testing and Model Discernment

The LRT, as well as the AIC and BIC, can be used for hypothesis test-
ing and model discernment, as described in Section 8.2.4. Rodrigues et al.
(2012) instead conduct model comparisons via the conditional predictive
ordinate (CPO) statistic and the deviance information criterion (DIC) as
described in Section 8.2.4, and they further consider the expected AIC
(ÊAIC = D̄ + 2k) and expected BIC (ÊBIC = D̄ + k ln (n)), respectively,
where k denotes the number of parameters, and D̄ is defined in Equa-
tion (8.20). The model with the smallest criterion (whether DIC, EAIC,
or EBIC) is the model having the best fit.

8.5 Lifetime Distributions

Various lifetime distributions can be assumed for modeling the time-to-
event variable W. Balakrishnan and Pal (2012) assume that W follows an
exponential distribution with pdf and cdf, f (w; γ ) = γ exp ( − γw) and
F(w; γ ) = 1 − exp ( − γw), respectively.
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The most popular choice of distribution for W is the Weibull(s1, s2) dis-
tribution with shape parameter s1 > 0 and scale parameter s2 > 0; its pdf
and cdf, respectively, are

f (w; s1, s2) = s1

s2

(
w

s2

)s1−1

w ≥ 0 (8.36)

F(w; s1, s2) = 1 − exp

[

−
(

w

s2

)s1
]

(8.37)

(Jiang and Murthy, 2011). Several works propose a Weibull distribution
with shape parameter s1 = γ1 and scale parameter s2 = exp ( − γ2/γ1) such
that γ1 > 0, γ2 ∈ R (Cancho et al., 2012; Chen et al., 1999; Farewell, 1982;
Rodrigues et al., 2009). The Weibull parameters have robust estimates and
standard errors associated with the CMP cure rate model (Balakrishnan and
Pal, 2016). Cancho et al. (2012) assume a right-censored CMP cure rate
model with Weibull lifetimes where, assuming a Bayesian construct, they
let γ1 be Gamma(a1, a2) distributed (i.e. a Gamma distribution with mean
a1/a2) and γ2 have a normal distribution with mean 0 and variance σ 2

γ2
de-

fine the respective prior distributions, further setting the hyperparameters to
generate noninformative priors. See Section 8.2.1 for discussion regarding
parameter estimation via the Bayesian paradigm. All of the works regarding
the destructive CMP cure rate model likewise assume a Weibull distribution
of some form for the lifetime random variable W. Rodrigues et al. (2011,
2012) and assume that W has a Weibull distribution with shape parameter
s1 = γ1 and scale parameter s2 = exp ( − γ2/γ1), while Pal et al. (2018)
assume a Weibull distribution with shape and scale parameters s1 = 1/γ1

and s2 = 1/γ2, respectively.
One can assess whether a Weibull assumption is reasonable by consider-

ing a scatterplot of ln [ − ln Ŝ(t(i))] against ln (t(i)) for ordered time to events
t(i) and associated Kaplan–Meier survival estimates Ŝ(t(i)), recognizing that
the relationship

ln [ − ln S(t; γ )] = 1

γ1
ln (γ2) + 1

γ1
ln (t)

holds if the Weibull model is true. Associated tests based on the correlation
coefficient or the supremum of the absolute values of the residuals can be
conducted to draw conclusions (Balakrishnan and Pal, 2016).

Boag (1949) and Balakrishnan and Pal (2013) instead consider a lognor-
mal distribution to model the lifetime distribution, where the time-to-event
data have the pdf and survival function,
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f (w; γ ) = 1√
2πγ1w

exp

[

−1

2

(
ln (γ2w)

γ1

)2
]

(8.38)

S(w; γ ) = 1 − 
(

ln (γ2w)

γ1

)

(8.39)

for w > 0, γ1 > 0, γ2 > 0; i.e. ln (W) is normally distributed with mean
− ln (γ2) and standard deviation γ1.

Balakrishnan and Pal (2015b) consider a gamma time-to-event distribu-
tion for W. For w > 0, the density and survival functions are

f (w; γ ) =
(
γ2

γ 2
1

1/γ 2
1

)

�
(

1
γ 2

1

) w
−
(

1− 1
γ 2

1

)

exp

(

−γ2w

γ 2
1

)

(8.40)

S(w; γ ) =
�
(

1
γ 2

1
, γ2w
γ 2

1

)

�
(

1
γ 2

1

) , (8.41)

where γi > 0 for i = 1, 2, and �(α,β) = ∫ ∞
β

exp ( − x)xα−1dx and
�(ζ ) = ∫ ∞

0 exp ( − x)xζ−1dx denote the upper incomplete and complete
gamma functions, respectively, for some α,β, and ζ . The appropriateness
of this time-to-event distribution for the data can be assessed, recognizing
that (in truth) F−1(1−S(t; γ )) = t; for the ith-ordered observed lifetime and
associated Kaplan–Meier estimate Ŝ(t(i)), the scatterplot of F−1(1 − Ŝ(t(i)))
versus t(i) values should produce a straight line if the assumed distribution is
valid. Accordingly, analysts can consider the resulting correlation between
F−1(1 − Ŝ(t(i))) and t(i) or measure SD = 1

n1

∑n1

i=1 [F−1(1 − Ŝ(ti)) − ti]2 and
consider associated tests for the respective measures.

Another distrbutional option is to assume that the time-to-event random
variable W has a generalized gamma(g1, g2, g3) distribution with pdf

f (w; g1, g2, g3)

=
{

g2(g−2
2 )g−2

2 (g1w)g−2
2 (g2/g3) exp [ − g−2

2 (g1w)g2/g3 ]/[�(g−2
2 )g3w] g2 > 0

(
√

2πg3w)−1 exp
{−[ ln (g1w)]2/(2g2

3)
}

g2 = 0

(8.42)

and a survival function

S(w; g1, g2, g3) =
{
�(g−2

2 , g−2
2 (g1w)g2/g3 )/�(g−2

2 ) g2 > 0

1 − 
(

ln (g1w)
g3

)
g2 = 0

(8.43)

with scale parameter g1 > 0 and shape parameters g2 ≥ 0 and g3 > 0; �( · )
and �(α,β) = ∫ ∞

β
e−xxα−1dx, respectively, denote the complete and upper
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incomplete gamma functions, and  ( · ) denotes the standard normal cdf.
The generalized gamma distribution contains several special cases:

• Weibull (when g2 = 1); in particular, g1 = exp (γ2/γ1) and g3 =
1/γ1 provide the Rodrigues et al. (2009) and Cancho et al. (2012)
parametrization.

• lognormal (when g2 = 0); g1 = γ2 and g3 = γ1 produce the
parametrization represented in Equations (8.38) and (8.39).

• Gamma (when g2/g3 = 1); setting g1 = γ2 and g2 = g3 = γ1 produces
the parametrization used in Balakrishnan and Pal (2015b).

Balakrishnan and Pal (2015a) opt to determine the gamma and incomplete
gamma function derivatives numerically, even though explicit expressions
exist for each. For the general CMP cure rate model with generalized
gamma lifetime distribution, they find that undercoverage exists among
the other lifetime parameters because of the two-way profile likelihood ap-
proach to estimate g2. For the geometric special case (ν = 0), however,
only g3 produces undercoverage.

Balakrishnan and Feng (2018) assume that the time-to-event variables
satisfy a proportional odds model, i.e. that Wj, j = 1, . . . , M, have the odds
function O(w; x) = θOB(w), where OB(w) denotes the baseline odds func-
tion and O(w) = S(w)/F(w) defines the odds of surviving up to time w. The
authors further assume that θ has a loglinear relationship ln (θ) = x′γ ∗ with
covariates x = (x1, . . . , xp)′ and coefficients γ 2 = (γ21, . . . , γ2p)′ that further
comprise the distributional form of W. The proportional odds relationship
implies that Wj has the respective survival function and pdf,

S(w) = [1 + exp ( − x′γ 2){S−1
B (w) − 1}]−1, (8.44)

f (w) = fB(w)[ exp ( − x′γ 2)][{1 − SB(w)} exp ( − x′γ 2) + SB(w)]−2,
(8.45)

where SB(w) and fB(w) denote the baseline survival function and pdf. As-
suming a Weibull baseline distribution with shape and scale parameters,
1/γ0 and 1/γ1, respectively (Jiang and Murthy, 2011), results in the survival
and pdf having the respective forms

S(w; γ ) = [1 + e−x′γ 2 (e(γ1w)1/γ0 − 1)]−1, w > 0, (8.46)

f (w; γ ) = (γ1w)1/γ0

γ0w
ex′γ 2−(γ1w)1/γ0 [e−(γ1w)1/γ0 (ex′γ 2 − 1) + 1]−2. (8.47)
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A log-logistic baseline distribution with scale and shape parameters, γ0 > 0
and γ1 > 0 (Bennett, 1983) meanwhile has the odds function

O(w; xc, γ ) = γ
γ1

0 ex′
cγ 2

wγ1

for Wi, where γ0 > 0 and γ1 > 0, such that the resulting survival function
has the form

S(w; γ ) = γ
γ1

0 ex′
cγ 2

γ
γ1

0 ex′
cγ 2 + wγ1

, w > 0.

Assuming a log-logistic baseline odds, the geometric and Bernoulli
cure rate models attain equivalent population survival functions (under
reparametrization). Balakrishnan and Feng (2018) consider testing the ef-
fect of the proportional odds parameter, i.e. H0 : γ2 = 0 versus H1 : γ2 �= 0;
this assesses whether the constant lifetime model (whether Weibull or log-
logistic) provides a sufficient fit or if the proportional odds model is more
appropriate.

Balakrishnan et al. (2017) consider the time-to-event variables Wi to
have a proportional hazard construct, i.e. a hazard function of the form
h(w; xc, γ ) = h0(w; γ0, γ1)ex′

cγ 2 , where h0(w; γ0, γ1) is the baseline hazard
function associated with the Weibull distribution, and xc = (x1, . . . , xp)′ and
γ 2 = (γ21, . . . , γ2p)′ denote the proportional hazard regression covariates
and corresponding coefficients. Assuming a baseline Weibull distribution
with shape parameter γ0 and scale γ1 (Jiang and Murthy, 2011), the baseline
hazard function is

h0(w; γ0, γ1) = γ0

γ1

(
w

γ1

)γ0−1

with the hazard function

h(w; xc, γ ) = γ0

γ1

(
w

γ1

)γ0−1

ex′
cγ 2 ,

i.e. the hazard function of a Weibull distribution with shape γ0 and scale
γ1 exp ( − x′

cγ 2/γ0). By definition, this CMP cure rate model construct
reduces to that of Balakrishnan and Pal (2015a) when γ 2 = 0.

8.6 Summary

The CMP cure rate model provides a flexible means for describing time-to-
event data regarding a population that can be partitioned between those that
are susceptible to an event occurrence and those that are cured or immune
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to any number of competing risks that can influence an event occurrence.
This chapter discusses both a simple and destructive CMP cure rate model
assuming noninformative right censoring and likewise considers the sim-
ple CMP cure rate model under noninformative interval censoring. Given
each of the considered frameworks, this chapter discusses parameter esti-
mation via the method of maximum likelihood, Bayesian estimation, and
via expectation maximization. Model discernment is then studied through
hypothesis testing via the LRT or comparing various appropriate informa-
tion criteria to assess the appropriateness of a parsimonious special-case
cure rate model (e.g. Poisson, Bernoulli, or geometric). Unfortunately, no R
scripts are readily available in association with any of the aforementioned
CMP cure rate models in order to conduct statistical computing.
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