

24	Patterns	for	Clean	Code
Techniques	for	Faster,	Safer	Code	with

Minimal	Debugging
	

By	Robert	Beisert

	

	

	

	

	

	

	

	

	

Published	January	2016

This	work	protected	under	U.S.	Copyright	Law

Introduction

Document	as	you	go

Treat	your	documentation	as	a	contract

Use	VI	operations	to	keep	.h	and	.c	files	consistent

Comments	-	your	path	back	through	history

Leave	the	standards	alone	-	avoid	changing	defaults	(aliases	and/or
variables)

2.	Debugging	and	Maintenance

C	“classes”	using	naming	conventions

Employ	Meaningful	Return	Types

Use	Meaningful	Names

Always	compile	with	-g

Log	Messages	-	the	more	content,	the	better

Build	around	Errors,	not	Successes

Employ	the	if-else	chain

Check	the	boundaries	(including	nonsense)

3.	Code	Conventions

Create	in	order,	Destroy	in	Reverse	Order,	Mutex	in	same	order	every
time

Yin	and	Yang	-	For	every	alloc,	there	is	a	free	(and	for	every	{,	a	})

Use	const	to	prevent	functions	from	changing	the	inputs

Don’t	mangle	your	iterators	(iterators	are	used	only	to	iterate)

Headers	should	not	create	object	code

Prototypes	and	Optimization	-	only	convert	when	ready

4.	Thought	Patterns

One	Sentence

Employ	the	3-10	rule

Logical	Unity	of	Form	and	Function

Design:	Everything	You	Need,	and	Only	What	You	Need

Object	Oriented	C

Conclusion

Introduction
When	I	was	a	child,	I	thought	I	could	do	any	number	of	things.	Before	I	could
talk,	I	fancied	that	I	was	really	good	at	running.	In	kindergarten,	I	was	proud
of	my	penmanship	and	math	skills.	In	elementary	school,	I	honestly	thought	I
was	an	excellent	video	gamer.

However,	I	was	not	that	good	at	any	of	those	things.

It’s	not	like	it	was	exactly	my	fault.	After	all,	I	was	still	new	at	these	activities.
I	had	not	received	the	training	and	the	merciless	beatings	that	life	throws	at	us
to	make	us	better.

The	same	rule	applies	to	programming.

Early	on,	I	became	aware	that	there	had	to	be	better	ways	to	do	things.	My
code	was	unruly	and	difficult	to	read,	much	less	debug.	I	didn’t	know	how
some	relatively	simple	things	worked.	I	made	the	same	mistakes	again	and
again.	But	I	learned.

This	book	contains	some	relatively	basic	approaches	for	programming	in
languages	such	as	C.	In	fact,	although	I	preferentially	work	in	C,	these	patterns
demonstrate	how	to	accomplish	most	tasks	faster	and	easier	in	any	language.

I	strongly	suggest	that	you	skim	this	work	once,	then	go	back	to	study	the
details.	None	of	these	are	difficult,	but	all	are	essential	for	optimal
programming.

1.	Simplifying	Your	Work

Document	as	you	go
Ask	any	programmer	what	the	most	irritating	part	of	programming	is,	and	they’ll	either
say	“debugging”	or	“documentation”.	Admittedly,	I	am	one	of	the	rare	exceptions	(I
dislike	the	“coding”	part	most,	because	it’s	less	about	solving	a	problem	than	it	is
translating	the	solution),	but	I	have	a	standard	which	removes	the	most	irritating	factors	of
documentation.

The	Classic	Method
During	the	programming	phase,	code	authors	sit	together	and	draft	up	diagrams	and
flowcharts	for	how	their	code	should	function.	They	then	sit	down	at	their	machines	and,
over	a	course	of	weeks	and	countless	modifications,	produce	some	quality	code.

After	they’re	done	writing	the	code,	they	go	off	to	do	more	coding.	Because	they’re
programmers,	this	is	their	natural	state.

At	some	point,	however,	they	have	to	sit	down	and	create	documentation	which	details	the
operations	of	their	functions,	the	code’s	basic	assumptions,	and	requirements	on	the	end-
users.

The	thing	is,	at	this	point,	even	the	authors	don’t	remember	what	the	code	does,	or
what	the	assumptions	are.	Even	if	they	are	documenting	the	code	right	after	cleaning	it
up,	there	are	functions	whose	purposes	are	now	essentially	erased	from	memory.

This	means	that	the	authors	have	to	sit	down,	re-read	their	code,	figure	out	the
assumptions	and	operations	again,	and	remember	what	the	requirements	are.

What	a	long,	boring	waste	of	a	programmer’s	time.

Documenting	as	you	go
First,	we	have	to	remember	a	vital	documentation	rule:	Everything	which	is	related	to
the	code	is	documentation.	All	your	comments,	graphs,	doodles,	and	idle	musings	are
valuable	insights	into	the	mind	of	the	programmer	which	constructed	this	code	(as
opposed	to	the	programmer	who	is	currently	reading	the	code).

I	highly	recommend	that,	as	you	write	your	code,	you	place	useful	comments	and	tags	in
there.	Something	as	simple	as	“THIS	BLOCK	IS	FULL	OF	VARIABLES	WE	NEED	FOR	THIS
OPERATION”	can	save	you	minutes	of	inquiry,	while	longer	comments	detailing	the
flowchart	for	a	function	(or	subfunction)	can	save	you	hours.	Also,	if	you	use	meaningful
naming	conventions	and	meaningful	cross-referencing,	you	can	skip	around	your	code	in

seconds,	connecting	the	spaghetti	into	a	single	whole.

Of	greatest	importance	to	the	end-user,	always	document	your	function’s	purpose,	return
types,	and	arguments	before	you	even	start	fleshing	out	the	details.	This	will	spare	you
confusion	(as	you	never	let	the	complexity	of	the	function	spiral	beyond	the	defined
purpose),	and	it	will	allow	you	to	create	your	final	documentation	almost	effortlessly.
NATURALLY,	IF	YOU	MAKE	FUNDAMENTAL	CHANGES	TO	A	FUNCTION,	YOU	HAVE	TO	UPDATE	YOUR
DOCUMENTATION.	IT	MAY	STILL	BE	WORTH	LEAVING	SOME	OF	THE	OLD	CODE	COMMENTED	OUT,
JUST	SO	YOU	HAVE	EVIDENCE	OF	A	USEFUL	PATTERN	OR	IDEA.

Doxygen
I	am	a	tremendous	fan	of	the	doxygen	program.	This	program	interprets	declarations	and
specially-formatted	comments	to	generate	HTML	documentation,	complete	with
hyperlinks,	graphs,	and	flow-charts.	With	this	tool,	you	can	rapidly	convert	useful	source-
code	commentary	into	powerful	documentation.

The	format	is	extremely	minimal.	All	comments	surrounded	by	/**	…	**/	blocks	are
interpreted	by	Doxygen,	along	with	all	in-line	comments	starting	with	///.	This	means	that
a	single-character	addition	in	a	regular	comment	results	in	a	doxygen	comment.

The	tag	system	in	doxygen	is	also	simple.	Every	line	beginning	with	a	particular	tag	will
produce	a	section	of	meaningful	output	in	the	final	documentation.	These	tags	include	(but
are	not	limited	to):

@param	–	Describes	a	function	input	parameter
@param[in]	–	Declares	the	parameter	to	be	input	only
@param[out]	–	Declares	the	parameter	to	be	output	only
@param[inout]	–	Declares	that	the	parameter	is	read	in,
transformed,	and	passed	back	out

@return	–	Describes	the	expected	return	value(s)
@author	–	Lists	a	name	as	the	author	of	a	file,	function,	etc.
@brief	–	Declares	that	the	line	which	follows	is	a	brief	description	of
the	function
@detail	–	Declares	that	everything	up	to	the	next	tag	is	part	of	a
detailed	function	description

We	also	can	use	///<	to	describe	enumerations,	objects	within	a	structure,	etc.

It	is	a	tremendously	powerful	tool	which	encourages	ample	in-source	commentary	and
provides	rapid	documentation	on	demand.	For	more	information,	check	out	the	Doxygen
user’s	manual.

http://www.doxygen.nl/manual/starting.html

Lesson:	Documenting	as	you	go	improves	the	accuracy
of	your	documentation,	reduces	the	time	it	takes	to
generate	documentation,	and	allows	the	programmer	to
spend	more	time	on	more	valuable	(or	interesting)
tasks.

Treat	your	documentation	as	a	contract
When	you	commit	to	a	set	of	documentation,	you	are	telling	all	the	users	how	your	code
will	work	and	how	they	should	use	it.	This	has	a	trickle-down	effect,	such	that	any
changes	to	the	documented	features	can	destroy	entire	suites	of	programs.

Violation	of	the	Rule
Suppose	you	provide	documentation	for	an	early-release	form	of	your	code.	Other	teams
and	other	companies	start	working	your	function	calls	and	structures	into	their	code.
Perhaps	these	new	codes	are	built	into	libraries,	which	are	used	to	build	large
distributables.

Then	you	add	just	one	parameter	to	one	major	function.	It’s	mostly	harmless,	right?

Unfortunately,	you	just	broke	everything.

Now	the	groups	that	were	using	your	code	have	to	go	through	the	entire	design	process
again.	They	have	to	update	all	of	their	code	to	match	your	new	definitions,	and	then	they
have	to	test	everything	to	make	sure	it	still	works.	Your	15	second	change	results	in	tens
(or	even	hundreds)	of	hours	of	work	across	the	board.

Adherence	to	the	Rule
There	are	several	ways	we	can	preserve	the	documentation	contract.

1.	 Employ	modular	design	principles.	All	additions	to	the
documentation	are	new	modules,	while	the	old	modules	remain	intact.
This	allows	your	end-users	to	decide	whether	to	accept	your	changes
or	not.

2.	 Hide	what	you’re	doing.	If	you	leave	the	function	interfaces	alone,
you	can	make	changes	to	the	functionality	without	necessarily
informing	the	end-users.	This	only	really	applies	with	runtime
libraries,	though.

3.	 Build	from	wide	to	narrow.	Just	like	a	pyramid,	you	start	with
functions	that	take	all	the	arguments	you	can	possibly	think	of.	Then,
you	tighten	the	focus	with	each	new	function	until	you	have	the
minimal	function.	This	pattern	is	extremely	useful	when	you	have
default	inputs	but	you	still	want	to	be	able	to	change	those	defaults	if
desired.

Lesson:	Your	Documentation	tells	the	world	how	to	use
your	code.	Make	sure	that	you	preserve	the
documented	functionality	and	interfaces.

														Use	VI	operations	to	keep	.h	and	.c	files
consistent
Generally,	I	don’t	much	care	for	IDEs.	In	my	experience,	IDEs	add	increasingly	specific
features	to	maintain	their	relevance,	resulting	in	bloated	software	which	takes	too	many
resources	to	accomplish	a	relatively	simple	task.

However,	as	functions	get	more	complex,	it	becomes	increasingly	difficult	to	make	your
code	match	the	original	prototypes.	This	is	where	Vi’s	“yank”	and	“mark”	features	truly
shine.

Yank	to	Mark
We	know	that	the	vi	equivalent	to	“copy-and-paste”	is	“yank-and-put”.	What	many	people
do	not	realize	is	that	you	can	open	any	number	of	files	in	a	single	vi	instance,	allowing
you	to	yank	from	one	file	and	put	into	another.

The	final	piece	of	this	puzzle	is	the	“mark”	feature.	It	is	possible	for	us	to	create	a	mark	on
a	given	line	with	the	following	command:

m<letter>

EXAMPLE:	ma

We	can	then	return	to	that	line	with	the	command:

‘<letter>

EXAMPLE:	‘a

This	allows	us	to	yank	large	sections	of	code	from	one	place	to	another	using	the
command:

y’<letter>

EXAMPLE:	y’a

This	is	the	“yank	to	mark”	feature.

Application	1:	Code	Completion
We	can	use	the	yank-to-mark	feature	to	copy	entire	function	prototypes	back	into	our	new
code.	To	do	this,	we	first	navigate	to	the	spot	where	our	function	call	will	go.	We	can	then
go	to	the	header	file	containing	the	required	function	prototype	and	yank	it	out.	Finally,	we
“put”	the	prototype	into	our	new	code,	then	swap	the	prototype	values	out	for	our	new
values.

For	example,	suppose	we	have	a	prototype	that	looks	something	like	this	in	a	file	FILE.H:

int	function(

int	Value_one,

char	*Value_two,

struct	astructure	Value_three

)

If	we	want	to	call	this	function	in	main.c,	we	can	open	vi	like	so:

vi	main.c	file.h

We	then	yank	everything	from	“int	function(”	to	“)”	using	our	“yank-to-mark”	feature	and
put	it	into	main.c.

At	that	point,	it	is	a	simple	matter	to	replace	the	return	value	and	all	parameters	with	the
values	that	we	should	pass	into	the	function,	all	while	ensuring	that	the	types	match.

Application	2:	Headers	match	Code
For	many	programmers,	it	is	a	pain	to	ensure	that	your	headers	and	code	files	match
exactly.	This	is	easily	achieved	with	yank,	however.

We	can	copy	all	the	code	from	the	start	to	the	end	of	the	code	file	using	the	command:

gg	(go	to	start)

yG	(yank	to	end	of	file)

We	can	then	put	everything	from	the	code	file	directly	into	the	header.

We	can	delete	all	the	code	inside	our	function	prototypes	using	the	“go-to-matching”
command.	We	can	highlight	the	start	of	a	code	block	(marked	by	the	{	brace)	and	hit	the
%	key	to	go	directly	to	its	matching	closing	brace	(}).	Thus,	we	can	delete	all	the	code
using	the	command:

d%

Then,	we	can	insert	a	semicolon	to	complete	the	function	prototype.

Using	this	feature,	we	can	create	header	files	in	seconds	which	EXACTLY	match	the	code
files	to	which	they	belong.
NOTE:	IF	YOU’RE	USING	DOXYGEN-STYLE	COMMENTS,	YOU	SHOULD	WRITE	THEM	DIRECTLY	INTO
YOUR	CODE	FILES.	THIS	WAY,	WHEN	YOU	UPDATE	THE	FUNCTION	DEFINITIONS	IN	THE	CODE,	YOU
CAN	PERFORM	ANOTHER	SIMPLE	YANK	TO	REPLACE	THE	OLD	PROTOTYPE	WITHOUT	HAVING	TO
ADJUST	YOUR	COMMENTS	AGAIN.	IT	IS	A	REAL	TIME-SAVER	AND	IT	ALLOWS	YOU	TO	SEE	YOUR
COMMENTS	WHEREVER	THE	FUNCTION	IS	DECLARED.

Lesson:	IDEs	such	as	VI	contain	powerful	tools	while
remaining	minimally	invasive.	Learn	to	leverage	these
simple	tools	to	speed	up	development.

Comments	-	your	path	back	through	history
Programmers	are	not	unlike	Dory	from	“Finding	Nemo”,	in	that	we	have	a	limited
memory.	It	seems	like	every	time	we	sit	down	to	code,	and	we	are	randomly	struck	by	a
lightning	bolt	of	inspiration,	we	immediately	lose	it	when	we	notice	something	shiny.

That’s	an	extreme	example,	sure,	but	programmers	do	have	a	problem	of	forgetfulness.	It’s
the	nature	of	the	job	–	we	have	so	many	tasks	to	perform	and	so	many	paths	to	track	that
we	can’t	possibly	hold	on	to	all	our	thoughts.

Thank	God	for	comments.

Level	0	Comments:	In-line
This	practice,	so	common	to	college-age	programmers,	is	often	lost	quickly	in	the	“real
world”.	However,	these	comments	are	perhaps	the	most	useful	comments	we	can	have.

After	all,	which	is	faster:	tracing	all	the	calls	and	variables	in	a	block	of	code,	or	reading	a
short	sentence	describing	the	intended	function?

While	I	generally	recommend	you	not	write	useless	comments	(“This	printf()	function
prints	a	line	of	text”),	there	are	several	key	things	you	can	do:

Outline	your	code	BEFORE	you	start	writing,	then	use	that	outline	to
walk	your	way	back	through	it	later
Explain	why	you	chose	one	function	over	another
Describe	the	operation	of	a	library-based	function,	so	you	don’t	have
to	keep	looking	it	up
Leave	TODO	markers	in	your	code	(vi	will	highlight	these
specifically,	so	they’re	easy	to	find	again)
Comment	out	a	“bad”	line,	so	that	you	can	see	what	it	did	before	the
fix
Leave	some	tag	that’s	easy	to	search	for	later	(like	TODO,	only
without	the	convenient	highlighting)
etc.

All	of	these	comments	improve	readability	by	restoring	some	of	the	mindset	you	had
when	you	were	writing	the	code	in	the	first	place.

Level	1	Comments:	Flowerboxes
Less	common,	but	equally	important,	are	flowerbox	comments.	These	comments	allow	the
author	of	a	piece	of	code	to	relay	more	detailed	information	in	a	compact,	highly-visible

format.

There	are	a	number	of	uses	for	flowerboxes:

Doxygen	comments	–	these	not	only	generate	HTML	documentation,
but	they	also	describe	a	function’s	purpose,	arguments,	and	return
types	inside	of	the	code	itself

I	cannot	recommend	Doxygen-style	commentary	enough
Seriously,	if	you	haven’t	looked	into	it	before,	LOOK	IT	UP

Flow	descriptions	–	these	comments	describe	a	higher-level	flow	for	a
function	or	program,	allowing	the	programmer	to	quickly	get	a	deeper
sense	of	how	the	program	is	supposed	to	work
Disclaimers	and	Formalities	–	Want	the	world	to	know	who	designed
the	code,	and	what	it’s	for?	Flowerboxes	at	the	top	of	the	page	get	it
done
Detail	an	event	or	conversation	relevant	to	the	code	–	Maybe	an
offhand	quote	from	a	fellow	programmer	inspired	the	design	of	the
next	segment	of	code.	Recording	that	information	helps	future
programmers	understand	not	just	what	the	code	is	doing,	but	why	you
chose	to	do	it	that	way

Level	2	Comments:	Logs
Some	of	my	more	recent	work	contains	fewer	comments	than	I	usually	employ.	This	is
because,	instead	of	using	inline	commentary	to	describe	an	event,	I	print	out	a	string
detailing	what	is	supposed	to	come	next.

These	are	still	basically	comments,	because	they	serve	the	purpose	of	a	comment	while
providing	information	during	runtime.	It’s	a	win-win.

Level	3	Comments:	Code	Segments
Sometimes	(usually)	we	decide	to	replace	whole	sections	of	code	with	new	code.
However,	when	we	do	a	delete-and-replace,	we	run	the	risk	of	damaging	functionality
with	no	way	to	roll	back	the	source.

Using	flowerboxes	or	#if	statements,	we	can	make	sure	that	the	old	code	is	safely	kept
away	from	the	final	product	while	allowing	us	to	restore	that	functionality	if	the	time
comes.

Also,	it’s	interesting	to	see	how	the	code	has	evolved	over	time.

http://www.doxygen.nl/manual/starting.html

Level	4	Comments:	Extra	Documentation
Strictly	speaking,	everything	that	happens	during	the	development	of	a	piece	of	code
should	be	documented.	All	conversations,	whiteboard	diagrams,	emails,	flowcharts,	and
other	documents	should	be	retained,	if	only	so	you	can	see	what	decisions	were	made.

Lesson:	We	put	comment	features	into	our	languages
for	a	reason.	Use	them	liberally	to	spare	everyone	a	lot
of	time	and	effort.

Leave	the	standards	alone	-	avoid	changing
defaults	(aliases	and/or	variables)
Fun	fact:	more	than	a	few	code	conventions	are	inspired	by	the	fact	that	everyone’s
computer	is	set	up	differently.

Problem	1:	Non-standard	tab	spaces
The	standard	UNIX/Linux	tab	standard	is	8	spaces.	That	means	that,	to	create	a	similar
spacing	to	the	default	tab,	you	would	have	to	hit	the	space	bar	eight	times.	This	standard
embraces	the	binary	underpinning	of	computers,	and	it	creates	effective	spacing
comparable	to	a	seven-character	variable	and	a	space.

However,	for	one	reason	or	another,	people	have	been	changing	that	standard	value.

I’ve	seen	everything	from	2	spaces	to	7	spaces	(although	no	one	seems	to	go	over	8),	but
rarely	do	I	see	anyone	employing	the	default	tabs.

This	makes	it	harder	to	write	“pretty”	code,	because	notation	that	lines	up	nicely	on	one
machine	looks	chaotic	on	another	machine.

Of	course,	you	could	always	destroy	your	space	bar	to	avoid	tabs	altogether,	but	I	argue
it’ll	never	be	worth	it.	At	worst,	it	makes	your	code	harder	to	modify	without	being	really
obvious,	and	at	best	it	takes	time	that	you	could	spend	anywhere	else.
BESIDES,	IF	YOU	NEED	TO	REDUCE	THE	TAB	SIZE	TO	MAKE	YOUR	CODE	FIT	ON	THE	LINE,	YOU
PROBABLY	NEED	TO	SERIOUSLY	REEVALUATE	YOUR	CODING	PRACTICES.

Problem	2:	Aliasing
Most	beginning	programmers	are	unaware	that	the	UNIX/Linux	systems	allow	you	to
assign	an	alias	(new	name)	to	a	function	or	set	of	commands.	These	are	stored	in	the
system	instead	of	in	a	code	file.

The	problem	here	should	be	obvious:	the	other	guy’s	computer	lacks	your	alias.

This	usually	trips	up	programmers	when	they	are	helping	out	a	friend,	only	to	find	that
their	aliases	don’t	work.

Generally	speaking,	don’t	use	aliases	unless	you	can	comfortably	operate	without	them.

Problem	3:	Other
There	are	any	number	of	customization	options	on	machines	these	days,	and	most	of	them
are	harmless.	At	the	end	of	the	day,	it	usually	doesn’t	matter	to	me	whether	the	machine
has	a	GNOME,	X,	or	KDE	environment.	I	can	even	work	with	VI	when	someone’s	fiddled

with	all	the	highlighting	options.

However,	when	you	start	fussing	with	anything	non-standard	(libraries,	programs,	etc.)	,
you	make	it	harder	for	everyone	else	to	replicate	what	you’re	doing.	In	a	corporate	or
open-source	sense,	that’s	disastrous.

The	Solution:	STANDARDS
I’d	argue	that	the	best	standards	are	usually	those	that	come	with	the	system,	but	there	are
other	ways	to	make	it	work.

Issue	everyone	the	same	distribution,	with	standardized	libraries	and
all
Make	everyone	work	off	of	virtual	machines,	which	are	synched	on	a
daily	basis
All	agree	to	a	standard
Work	in	terminals	without	access	to	the	variables	required	to	change
the	standards

Personally,	I’m	not	a	fan.	Just	make	sure	that	your	scripts	clearly	dictate	what	non-
standard	programs	and	libraries	they	require,	and	we	should	all	be	fine.

And	don’t	change	the	tab	space.	Eight	is	great:	four	is	poor.

Lesson:	Standards	allow	everyone	to	stay	on	the	same
page.

2.	Debugging	and	Maintenance

C	“classes”	using	naming	conventions
Encapsulation	is	a	key	aspect	of	the	Object	Oriented	Programming	model,	and	for	good
reason.	We	have	an	easier	time	grasping	units	which	do	one	thing	than	hundreds	of
independent	operations	and	objects	that	can	do	a	number	of	things.	While	C	does	not
contain	the	“class”	descriptor	found	in	C++	or	Java,	we	can	accomplish	a	similar	task	with
naming	conventions.

Principles	of	Classes
Before	we	consider	a	structure	for	naming	classes,	we	have	to	consider	the	meaning	of
“class”.

The	highest-level	observation	about	classes	is	that	they	act	as	a	unit.	Specifically,	a	class
consists	of	a	structure	and	a	set	of	functions	that	operate	on	that	structure.	Of	course,	the
structure	is	the	key	root	of	the	class,	because	all	the	functions	address	that	structure	in	one
way	or	another.

Second,	we	can	observe	that	classes	in	Java	are	relegated	to	their	OWN	separate	code
files.	This	is	due	to	a	shortcut	by	the	Java	developers	(who	decided	it	was	easier	to	prevent
collisions	by	relegating	classes	to	specifically	named	files),	but	it	is	applicable	to	all
coding	conventions.	In	compliance	with	the	unitary	nature	of	classes,	it	makes	sense	to
keep	all	the	functionality	required	for	a	class	in	a	single	file.

Finally,	we	observe	that	each	class	has	its	own	functions	(or	“methods”)	that	work
explicitly	on	that	class	object.	These	methods	may	not	have	globally	unique	names	in	the
source	code	(which	is	a	cause	for	complaint	by	those	of	us	who	employ	Linux	utilities	to
accelerate	our	programming),	but	the	symbol	table	produced	always	contains	globally
unique	names	by	prepending	a	host	of	unique	identifying	values,	which	may	include	class
name,	namespace,	and	(potentially)	file	name	from	which	the	function	is	derived.

These	observations	allow	us	to	construct	classes	in	C,	only	with	much	simpler	dynamics.

Naming	Convention
Let’s	approach	the	naming	convention	using	the	pattern	of	our	observations.

First,	we	note	that	classes	are	built	around	a	structure.	This	structure	should	have	a	unique
name	(because	all	names	in	C	must	be	unique).	Furthermore,	all	functions	which	we
would	call	“class	methods”	in	an	OOP	language	should	be	visually	tied	to	that	structure.

First:	All	functions	related	to	a	structure	(“class”)	must	contain	the	name	of	that

structure.

Second,	we	note	that	all	classes	in	Java	are	relegated	to	a	single	file.	This	is	a	reasonable
practice.

Second:	All	class	structures	and	functions	must	be	contained	in	the	same	file.

Third,	we	observe	that	each	symbol	produced	by	the	OOP	compilers	and	interpreters	is
globally	unique,	regardless	of	the	original	name’s	uniqueness.	We	can	apply	that	to	our
code	by	prepending	an	aspect	of	the	file	name	directly	to	everything	related	to	the	class.

Third:	All	class	structures	and	functions	must	begin	with	the	name	of	the	file	in
which	they	are	contained	(or	a	logical	subset	thereof,	which	is	known	to	all	users).

	

This	results	in	a	naming	convention	that	looks	something	like	this:

FileName_Structure

FileName_Structure_Function

If	you	code	using	typedef-ed	pointers	(which	is	useful	for	creating	“private”	data	elements
-	you	conceal	the	structures	by	omitting	them	from	the	.h	file,	restricting	access	only	to
defined	accessor	functions),	you	can	use	a	format	like	this	to	immediately	differentiate
between	pointers	and	structures:

typedef	struct	FileName_Structure	FILENAME_STRUCTURE

Finally,	if	you’re	concerned	about	confusing	variables	which	are	passed-in	with	those
employed	or	created	internally,	you	can	designate	a	naming	convention	like	this	to	keep
them	safe:

function_variable

	

Lesson:	We	can	use	naming	conventions	to	logically
group	functions	and	structures,	establishing	meaningful
names	while	preserving	global	uniqueness.

Employ	Meaningful	Return	Types
														I	don’t	know	how	many	hundreds	of	functions	I’ve	dealt	with	with	either	a

void	or	boolean	return	type.	While	a	boolean	return	type	at	least	tells	us	whether	the
function	ever	completed	properly,	a	void	return	carries	absolutely	no	meaning.	Where’s
the	debugging	or	error-handling	value	in	that?

Constructors
Constructor	functions	take	a	number	of	arguments	and	return	a	pointer	to	an	allocated
space.	Even	so,	there	is	a	simple	rule	for	meaningful	returns:

Constructors	return	either	a	newly	allocated	pointer	or	NULL

Of	course,	if	you	work	with	a	slightly	more	complex	constructor,	you	can	return	the
pointer	in	a	parameter.	In	these	cases,	you	should	still	make	the	constructor	return
something	meaningful.

Personally,	in	these	cases,	I	use	a	tri-state	return	type.	If	the	function	is	successful,	I’ll
return	the	size	of	the	allocated	space	(in	bytes).	If	it	has	an	error,	I’ll	return	a	negative
value	correlating	to	the	type	or	location	of	the	failure.	However,	if	the	function	works
EXCEPT	that	the	malloc	does	not	successfully	allocate	any	space,	I’ll	return	0.

Simple	Access	Functions
A	simple	access	function	returns	some	meaningful	data	value	from	a	structure.	In	these
cases,	we	return	the	value	that	we	retrieved.

Anything	that	can	possibly	fail	(even	when	it	can’t)
If	it’s	possible	for	a	function	to	fail,	we	return	that	value	inside	of	a	parameter	and	use	the
basic	rule:

Return	0	on	success	and	non-zero	on	error

This	basic	rule	applies	generally,	across	the	board.	Even	when	the	operation	has	no	chance
of	failure	(a	state	which	is	less	common	as	I	construct	better	code),	we	return	the	0	value.

Debugging	and	Logging	errors
As	systems	grow	in	complexity,	the	number	of	locations	where	an	operation	could	fail
increases.

Further,	as	the	size	of	a	function	increases,	the	number	of	ways	it	could	fail	increases.

When	we	employ	meaningful	return	types,	we	create	a	path	directly	to	the	area	where	the

problem	occurred.	So	long	as	we	know	that	function	panda	failed	with	an	error	value	of
-5,	we	know	where	the	error	was	triggered	(even	if	the	system	is	thousands	or	millions	of
lines	long).	Even	better,	if	we	designed	our	return	codes	around	specific	tests,	we	know
exactly	how	the	function	failed.

This	means	that,	without	ever	touching	the	debugger,	we	have	identified	the	location	of
our	failure	and	can	immediately	begin	determining	the	sequence	of	events	that	led	to
failure.

As	Martha	Stewart	would	say,	“It’s	a	good	thing”.

Lesson:	We	can	use	return	values	to	give	us	insight	into
a	function	(specifically,	how	it	fails).	It	also
standardizes	your	interfaces	somewhat.

Use	Meaningful	Names
While	it’s	usually	less	of	a	problem	in	C,	in	my	Java	days	I	saw	any	number	of	functions
with	names	like	“solve”	or	“act”.	These	functions	were	usually	overloaded,	so	that	“solve”
meant	one	thing	for	integers	and	a	wholly	different	thing	for	strings.

Tell	me,	if	you	were	reading	a	piece	of	code	and	you	see	a	line	like	this:

solve(a,	b,	c)

How	would	you	know	what	that	function	is	doing?

Meaningful	names
We’ve	discussed	defining	function	and	object	names	which	employ	a
CLASS_OBJECT_function	structure.	The	problem	is,	there’s	little	difference	between	the
following	Java	and	C:

Class.function

Class_object_function

In	both	of	these	cases,	if	the	“function”	name	is	just	“solve”,	there’s	not	a	lot	for	us	to	go
on.

Now,	if	we	replaced	the	function	name	with	something	like	“RSA_encrypt”	or
“DES_rotate”,	we	have	something	meaningful.	We	now	know	that	the	function	is
supposed	to	(in	the	examples)	encrypt	some	input	using	RSA	or	perform	the	rotate
operation	defined	in	the	DES	standard.

Now	we	know	exactly	what	the	function	is	supposed	to	do,	so	we	don’t	have	to	go	very	far
to	determine	whether	it’s	working	properly	or	not.

This	goes	further	than	simple	object	and	function	naming	conventions.	When	you
instantiate	a	variable,	you	run	into	the	same	problems.

Suppose	you	have	a	set	of	variables	with	names	like	these:

int	thing;

char	*stuff;

uint8_t	num;

While	these	may	be	fine	in	small	functions	(because	there’s	no	room	for	confusion	–	you
see	it	instantiated	and	employed	in	the	same	screen),	they’re	problematic	in	larger	and
higher-level	functions.

If	your	main	function	has	variables	like	that,	you	don’t	know	what	they’re	supposed	to
represent.	However,	if	they	have	names	like	these:

uint64_t	RSA_256_key_pub[4];

int	object_expected_size;

char	*error_message;

Suddenly,	we	have	an	idea	of	what	these	variables	do.

Admittedly,	this	increases	the	amount	of	time	you	spend	typing	(and	my	heart	bleeds	for
you),	but	it	reduces	confusion	while	you’re	writing	the	code	and	makes	maintenance
hundreds	of	times	easier.

Lesson:	Well-named	objects	and	functions	make
reading	and	designing	code	easier.

Always	compile	with	-g
														99	little	bugs	in	the	code

99	little	bugs	in	the	code

Take	one	down,	patch	it	around

117	little	bugs	in	the	code

-Alex	Shchepetilnikov,	TWITTER	Jul	2013

Experienced	programmers	have	embraced	the	truth	that,	as	the	size	of	the	code	increases,
the	number	of	bugs	increases	exponentially.	While	we	do	our	best	to	eliminate	the	most
critical	bugs	(through	patterns	and	careful	debugging),	we	never	catch	them	all.

Anyone	who	has	ever	played	a	modern	AAA	game	can	attest	to	this	fact.

Debug	tags	during	development
If	you	don’t	use	the	debug	tag	during	development,	your	debugger	is	useless.	Sure,	you
can	still	run	down	the	biggest	errors	by	watching	the	warnings	and	running	the	code	with
varied	tests,	but	you	handicap	yourself.

It	takes	all	of	fifteen	seconds	to	add	-g	to	your	makefiles’	default	compiler	tags.	The	value
you	gain	by	preserving	the	symbol	tables	is	too	great	to	ignore.

Shipped	code
So,	you	shipped	your	code.	If	you’re	a	giant	AAA	game	company	like	EA,	you	might	be
able	to	get	away	with	ignoring	the	vast	majority	of	error	reports	(because	you’re	busy
raking	in	money	from	your	annual	franchises),	but	the	rest	of	us	take	some	pride	in	our
release	code.	More	importantly,	corporate	programs	need	to	work	or	the	company	takes	on
work,	risk,	and	financial	liability.

Have	you	ever	tried	to	run	a	debugger	over	code	without	debug	tags?	There	are	no
variable	names,	the	registers	hold	meaningless	values,	and	you	will	spend	more	time
trying	to	read	the	log	outputs	than	you	do	fixing	the	problem.

Worse	still,	if	you	try	to	recompile	with	debug	tags,	you	might	eliminate	or	shift	the
problem.	This	means	that	you	will	not	successfully	debug	the	problem,	and	you	may	well
introduce	new	bugs	into	the	code.

This	is	why	it’s	valuable	to	release	code	with	the	debug	tags	intact.

When	an	error	report	comes	back	with	all	of	your	(highly	detailed)	logs,	you	can	quickly
recreate	the	issue	in	your	debugger.	Even	better,	you	can	set	effective	breakpoints	and
manipulate	the	variables	such	that	you	are	now	able	to	determine	the	source	of	the	error
and	correct	it,	distributing	a	quick	and	(relatively)	painless	patch	to	eliminate	the	issue.

THERE	ARE	EXCEPTIONS.	IF	WE’RE	DEALING	WITH	SECURE	CODE,	WE	DO	NOT	WANT	IT	TO	BE	EASY
FOR	JUST	ANYONE	TO	ACCESS	THE	INTERNALS	AND	MODIFY	THEM.	IN	THESE	CASES,	WE	CAN’T
EMPLOY	THIS	PATTERN	(WHICH	MEANS	WE	HAVE	TO	DOUBLE-DOWN	ON	OUR	LOG	FILES	TO	MAKE	UP
FOR	IT).

	

Lesson:	Debugging	does	not	end	on	release.
Maintenance	is	easier	when	we	leave	debug	tags
available.

Log	Messages	-	the	more	content,	the	better
Has	this	ever	happened	to	you:	a	program	crashes,	and	all	you	get	is	a	black	screen	or	a	set
of	meaningless	numbers?

I	know	it	happens	to	me.

Even	the	better	programs	designed	by,	say,	Microsoft,	we	get	an	error	report	containing
numbers	that	mean	absolutely	nothing	to	human	beings	–	it’s	designed	for	computers	only.

And	yet,	Microsoft	has	basically	the	right	idea.

Logs	tell	us	what’s	happening
At	its	most	basic,	a	log	is	a	message	that	a	program	prints	out	for	later	reference.	These
messages	can	be	as	simple	or	complex	as	the	programmer	desires,	but	the	programmer	has
to	decide	when	these	logs	are	printed	and	what	they’ll	say.

Commonly	(assuming	you	don’t	have	your	own	log	utilities),	we	use	formatted	text	strings
passed	out	to	the	standard	error	stream.	These	logs	look	a	bit	like:

fprintf(stderr,	“%s:%d\tERROR	HAPPENED	HERE\n”,	__FILE__,	__LINE__);

This	log	message	consists	of	a	few	key	parts:

fprintf	–	a	function	that	allows	us	to	print	to	any	stream	we	choose
(files,	output	or	input	streams,	etc)
stderr	–	the	standard	error	output	stream
A	formatted	string	detailing	the	error	information

__FILE__	is	a	macro	that	returns	the	name	of	the	file	in	which
this	error	is	thrown
__LINE__	is	a	macro	that	returns	the	line	number	on	which
this	error	is	written

With	logs	like	these,	we	can	rapidly	pinpoint	where	errors	have	occurred	and	what	kind	of
error	has	occurred.

Logs:	For	good	times	and	bad
Most	programmers	only	think	of	log	messages	when	something	goes	wrong,	but	I	argue
that	logs	are	essential	in	both	paths	of	the	tree:

If	it	fails,	you	want	to	know	where,	why,	and	how	it	failed
If	it	didn’t	fail,	you	want	to	know	that	it	worked

If	it	failed	where	you	didn’t	expect,	you	want	to	know	that	the	“it
worked”	message	didn’t	happen

These	logs	allow	the	programmer	to	determine	how	much	information	he	wants	to	see,
and	where	in	the	code	these	messages	should	appear.	As	a	result,	the	flow	of	information
out	of	the	program	is	determined	by	the	sort	of	programmer	who	is	likely	to	be
maintaining	the	code	in	the	future.

Lesson:	Logs	can	provide	a	wealth	of	debugging	and
operations	information,	so	long	as	the	programmer
designs	that	functionality	into	the	code.

Build	around	Errors,	not	Successes
In	99.9%	of	cases,	programmers	spend	most	of	their	planning	and	initial	coding	creating
the	program	that	they	want.	They	then	spend	twice	as	much	time	adding	error-handling
code	to	the	original	program,	because	they	forgot	that	things	can	(and	often	do)	go	wrong.

This	is	“happy	path”	programming,	or	success	oriented	code.

Error	orientation
We	notice	that,	in	happy	path	programming,	there	is	exactly	one	path	from	start	to	finish.
Because	there	are	so	few	branches	by	default,	most	programmers	write	code	in	a	way
that	makes	error	handling	more	complicated.	The	patterns	they	tend	to	employ	include:

Wedging	all	the	functionality	into	one	(main)	function
Assuming	all	functions	terminate	with	perfect	results
Failing	to	create	log	outputs	to	track	flow	through	the	program

The	problem	with	these	patterns	is	that	they’re	unrealistic.	Wedging	all	the	functionality
into	the	main	function	eliminates	modularity,	which	reduces	the	efficacy	of	error	checking.
Assuming	all	functions	are	successful	is	a	fool’s	dream.	And	if	you	don’t	create	logs	when
things	go	right,	you’ll	never	figure	out	how	they	went	wrong.

The	solution	to	all	of	this	is	to	design	with	failures	in	mind.

Enforce	modularity,	because	it	limits	the	range	of	things	that	could	go	wrong	at	one	time.

Check	every	input	to	every	function,	to	make	sure	they	aren’t	nonsense	(like	writing	500
bytes	to	a	single	character	pointer).

Use	the	if-else	programming	pattern	to	make	functions	internally	modular	as	well	as
externally	modular.

Create	lots	of	logs.	You	want	to	keep	records	of	everything	that’s	supposed	to	happen	and
everything	that’s	not	supposed	to	happen.	For	every	possible	failure,	attach	a	specific
failure	message	that	references	the	location	of	the	failure	in	your	code.	Between	these
logs,	you’ll	know	exactly	what’s	happening	inside	your	program	at	all	times.

If	you	create	habits	that	revolve	around	all	the	things	that	can	go	wrong	instead	of	what
you	expect	to	go	right,	you’ll	vastly	reduce	your	maintenance	and	debugging	workload.

Lesson:	Design	your	code	with	failures	in	mind.	It	saves
you	lots	of	time	in	the	long	run.

Employ	the	if-else	chain
In	languages	like	Java,	we	have	a	standardized	error-handling	paradigm	in	the	try-catch
expression.	Effectively,	this	hands	all	error-handling	off	to	the	computer,	which	monitors
all	code	in	the	try	loop	for	any	and	every	kind	of	possible	error.	While	we	are	able	to
restrict	the	range	of	errors	in	many	cases,	the	fact	is	that	this	bloats	the	program	in	both
memory	footprint	and	time	required	to	operate.

In	C,	we	have	no	such	paradigm,	so	we	have	to	use	alternative	methods	to	handle	errors.

Common	Practices
There	are	any	number	of	ways	to	deal	with	errors	outside	of	a	rigidly	defined	paradigm.

Some	(like	those	who	operate	predominantly	in	C++)	may	define	supervisor	functions	that
simulate	the	try-catch	expression.	This	is	less	than	common,	because	in	defining	the
supervisor	function	you	usually	begin	to	appreciate	the	range	of	all	possibilities.	When
you	start	trying	to	handle	every	possible	error	with	one	megafunction,	you	start	to
appreciate	the	simplicity	of	catching	errors	manually.

The	most	common	practice	is	to	test	the	output	of	functions	and	related	operations.
Whenever	you	call	an	allocation	function	like	malloc()	or	calloc(),	you	test	the	output	to
ensure	that	space	was	properly	allocated.	When	you	pass-by-reference	into	a	function,	you
test	the	inputs	to	ensure	that	they	make	sense	in	the	context	of	your	program.	Methods	like
these	allow	us	to	manually	handle	both	the	flow	and	the	error-handling	of	our	code.

However,	in	most	cases	we	have	a	“multiple-breakout”	pattern	of	tests.	These	patterns
look	something	like	this:

	

char	*	blueberry	=	(char	*)	malloc(50*sizeof(char))
if(blueberry	==	NULL)

return	-1;

int	pancake;
do_thing(blueberry,	“there	is	stuff”,	pancake);

if(pancake	<	0	||	pancake	>	534)

return	-2;
do_other_thing(pancake,	time());

if(pancake	<	65536)

return	-3;
…

return	0;

This	pattern	runs	the	risk	of	terminating	before	memory	is	properly	freed	and	parameters
are	properly	reset.	The	only	ways	to	avoid	this	terrible	condition	are	to	manually	plug	the
cleanup	into	every	error	response	(terrible)	or	to	use	goto	(not	terrible,	but	not	strictly
kosher).

If-Else	Chain
There	is	one	method	for	handling	errors	that	is	consistent	with	another	pattern	we	cover
(error-orientation):	we	build	a	great	if-else	chain	of	tests.

This	pattern	is	confusing	to	many	for	two	reasons:

If	fundamentally	reorients	the	code	away	from	the	“happy-case”
paradigm	(in	which	all	error-handling	is	a	branch	off	the	main	path)	to
a	“failure	case”	paradigm	(in	which	the	happy-case	is	the	result	of
every	test	in	the	chain	failing)
All	our	happy-path	code	finds	itself	inside	of	an	if()	statement	–
nothing	can	be	permitted	to	break	the	chain

It’s	a	bit	hard	to	describe	this	pattern	without	an	example,	so	bear	with	me:

int	copy(const	char	*	const	input,	int	size,	char	*	output)
{

int	code	=	0;
if(input	==	NULL)

{

	code	=	-1;

}

else	if	(output	=	(char	*)	malloc	(size	*	sizeof(char))	,	output	==	NULL)
{

	code	=	-2;

}

else	if	(strncpy(output,	input,	size),	0)
{

	//impossible	due	to	comma-spliced	0

}

	

else	if	(strncmp(output,	input))
{

	code	=	-3;

}

else	if	(printf(“%s\n”,	output)	<	0)
{

	//printf	returns	the	number	of	printed	characters

	//Will	only	be	less	than	0	if	write	error	occurs

	code	=	-4;

}

else

{

	//could	do	something	on	successful	case,	but	can’t	think	of	what	that	would
be

}

//Normally	we	would	pass	output	back,	but	let’s	just	free	him	here	for	fun

//This	is	where	we	do	all	our	cleanup

if(output	!=	NULL)

free(output);

return	code;
}

As	we	can	see,	each	step	in	the	error-handling	function	is	treated	as	a	possible	error	case,
each	with	its	own	possible	outcome.	The	only	way	to	complete	the	function	successfully	is
to	have	every	error	test	fail.

Oh,	and	because	this	code	is	fundamentally	modular,	it	is	very	easy	to	add	and	remove
code	by	adding	another	else-if	statement	or	removing	one.

Lesson:	Switching	to	an	if-else	chain	can	improve	error
awareness	and	accelerate	your	programs	in	operation,
without	requiring	much	additional	time	to	design	and
code.

	

Check	the	boundaries	(including	nonsense)
A	wise	quote:	“When	it	goes	without	saying,	someone	should	probably	say	it.”

This	is	one	of	the	better	known	patterns	out	there,	but	it	still	bears	repeating.

The	boundaries	for	integers
When	you’re	working	with	a	range	of	integers	(for	example,	human	age	range	could	be
between	0	and	135),	we	have	two	obvious	boundary	points	to	look	at:	0	and	135.
However,	if	you	really	want	to	cover	most	of	your	gaps,	you	should	appreciate	that	you
have	six	points	to	consider:

0
0-1
0+1
135
135+1
135-1

We	know	that,	ideally,	everything	between	0	and	135	(inclusive)	should	work	properly,	but
on	the	off	chance	that	you	have	an	off-by-one	somewhere	in	your	code,	it’s	best	to	check
the	insides	carefully.	The	same	rule	applies	for	everything	outside	of	the	range;	you	want
to	ensure	that	you	catch	an	off-by-one	early	in	the	process	by	testing	the	points	just	outside
of	the	expected	range.

The	boundary	for	characters
When	we	move	on	from	numbers	things	get	a	bit	more	complicated,	but	generally
speaking	you	want	to	ensure	that	your	characters	are	inside	the	range	of	printable
characters.	This	means	that	your	code	should	be	able	to	handle	everything	from	0x20	to
0x7E.	However,	just	as	with	integers,	this	range	provides	us	six	boundaries	to	test:

0x19
0x20
0x21
0x7D
0x7E
0x7F

If	you’re	trying	to	print	values,	just	ensure	that	the	middle	4	conditions	print	properly	and

the	outer	two	do	not.	Everything	else	usually	takes	care	of	itself.

Extrapolating	to	Strings
The	boundary	rule	says	that	we	should	check	just	inside	and	outside	of	the	boundaries	that
show	themselves,	but	how	does	that	translate	to	complex	values	like	strings?

With	strings,	we	are	usually	either	handling	them	character-by-character	or	as	a	unit.	In
the	first	case,	you	can	use	the	character	boundary	rules,	but	in	the	second	case	the	biggest
thing	we	worry	about	is	size.	Here,	we	rely	on	the	integer	rule.

For	example,	if	you	have	allocated	a	buffer	of	25	characters,	you	should	test	that	buffer
with	the	following	values:

24
25
26

Ideally,	you	have	no	problems	with	24	or	25,	but	there	is	a	chance	that	you	forgot	to	clear
the	buffer,	leaving	an	unexpected	value	inside	your	buffer	on	the	next	use.	In	this	case,
testing	for	24	will	ensure	that	you	see	and	eliminate	the	issue.

For	26,	we	know	that	we’re	pushing	beyond	the	boundary	of	the	string.	In	this	case,	we
want	to	ensure	that	we	get	some	form	of	error	handling	response,	assuring	us	that	we’ve
eliminated	buffer	overflows	in	this	section	of	the	code.

And	it	goes	on
We	can	use	the	same	rule	for	address	ranges	(which	are	dependent	on	your	platform,	but
follow	similar	rules	to	string	buffers),	or	for	structure	values,	or	for	just	about	anything	we
ever	do	on	a	machine.	It’s	a	basic	principle.

We	should	also	note	that,	when	we’re	dealing	with	robust	tests,	we	want	to	test	every
possible	boundary	state.	For	example,	for	a	simple	line	like	this…

1 if	(i	<	0	&&	j	>	36)

…we	should	test	every	combination	of	the	boundaries	around	i=0	and	j=36.	This	ensures
that	we’ve	covered	all	our	bases,	and	nothing	strange	goes	wrong.

Lesson:	When	testing	our	code,	we	should	test	successes
and	failures	on	either	side	of	each	defined	boundary
point.	This	ensures	that	we	prevent	some	of	the	most
common	programming	errors.

3.	Code	Conventions

Create	in	order,	Destroy	in	Reverse	Order,	Mutex
in	same	order	every	time
Virtually	100%	of	all	memory	leaks	are	preventable,	assuming	the	programmer	knows
where	to	look.	In	many	cases,	the	leaks	occur	because	a	programmer	has	failed	to	destroy
what	he	has	created,	but	it	can	become	more	complicated	than	that.

Creation	Stack:	The	Order	Matters
In	many	cases,	we	allocate	memory	as	we	use	it,	and	we	keep	it	at	a	simple	layer.	I’ve
nearly	lost	track	of	how	many	calls	to	calloc()	or	malloc()	I’ve	hard-coded	in	the	past	few
months	alone.

This	simple	allocation	is	great,	because	it	lets	us	dynamically	generate	variables	and	store
them.	These	variables	can	be	simple	(like	char	or	int),	or	they	can	be	structures	of	varied
complexity.

The	most	complex	structures	we	allocate	require	us	to	allocate	within	the	struct.	Consider
the	following	structure:

struct	potato

{

struct	potato	*next;

char	*	string;

int	size;

}

This	structure	contains	not	one,	but	two	pointers,	and	we	need	these	pointers	to	point	to
something.	Generally	speaking,	we	would	want	to	create	a	simple	constructor	that	does
something	like	this:

struct	potato	*	make_potato()

{

struct	potato	*	hi	=	calloc(sizeof(potato));

return	hi;

}

This	would	initialize	a	potato	with	null	pointers	and	a	size	of	0.	However,	it’s	usually	more

useful	for	us	to	fill	in	some	values	on	construction	of	a	structure	like	this:

struct	potato	*	make_potato(int	input_size,	const	char	*	something)

{

struct	potato	*	hi	=	calloc(sizeof(potato));

hi->size	=	input_size;

hi->string	=	calloc(size	*	sizeof(char));

strncpy(hi->string,	something,	size);

return	hi;

}

In	this	case,	we	not	only	allocate	a	structure,	but	we	allocate	within	the	structure.	This	can
get	messy	very	quickly.

Destruction:	Follow	it	up	the	stack
The	rule	to	prevent	memory	leaks	here	is	fairly	simple:	every	destructor	should	be	the
inverse	of	its	constructor.

If	the	constructor	is	simple,	the	destructor	is	equally	simple:

int	eat_potato(struct	potato	*	hi)

{

free(hi);

return	0;

}

However,	when	the	constructor	gets	more	complex,	we	have	to	treat	it	like	a	stack.	That
means	that	we	should	run	every	destructor	in	the	inverse	order	of	construction,	so	that	we
make	sure	to	get	everything	freed	before	all	pointers	to	it	are	lost.

int	eat_potato(struct	potato	*	hi)

{

free(hi->string);

free(hi);

return	hi;

}

Lesson:	You	build	a	building	from	the	ground	up,	and
you	tear	it	down	from	the	top.	The	same	goes	for
structures.

Yin	and	Yang	-	For	every	alloc,	there	is	a	free	(and
for	every	{,	a	})
How	many	programmers	whine	that	C	is	dangerous	because	of	memory	leaks?	How	many
programmers	rely	on	IDEs	because	they	can’t	keep	track	of	how	many	layers	of	brackets
they’re	using?

All	of	this	stress	is	easily	defeated	with	a	little	bit	of	Eastern	Philosophy.

Yin:	Beginnings
In	the	binary	unifying	force	of	the	cosmos,	there	are	the	forces	of	yin	and	yang.	These
elements	are	equal	complements	to	one	another	–	where	one	exists,	the	other	necessarily
exists.

The	element	of	Yin	is	the	feminine	element,	and	it	is	associated	with	beginnings	and
creation.	For	our	purposes,	the	Yin	is	all	things	which	begin	a	course	of	action.

These	are	the	opening	brackets	and	braces.

These	are	the	allocation	functions.

These	are	the	function	prototypes	and	“happy	path”	logic.

All	of	these	things,	which	define	and	begin	courses	of	action,	are	Yin.

Yang:	Endings
Yang,	on	the	other	hand,	is	a	masculine	element	associated	with	action,	completion,	and
death.	For	our	purposes,	the	Yang	is	everything	that	closes	off	a	course	or	path	of	action.

These	are	the	closing	brackets	and	braces.

These	are	the	free	or	destruction	functions.

These	are	function	definitions	and	error-handling	paths.

All	of	these	things	are	Yang.

Yin	and	Yang	are	One
In	the	Eastern	philosophy	of	the	Tao	(literally,	the	“way”),	yin	and	yang	are	balanced
forces	that	continue	in	a	circle	for	eternity.	The	elements	pursue	one	another	–	destruction
follows	creation,	and	a	new	creation	is	born	out	of	the	old	destruction.	The	masculine	and
feminine	forces	of	the	cosmos	require	one	another	for	total	balance	and	perfect	harmony
in	the	universe.

So,	too,	it	is	in	our	code.

When	we	create	an	opening	brace,	we	must	immediately	define	the	closing	brace,	so	that
the	balance	is	preserved.

When	we	allocate	a	resource,	we	must	immediately	define	its	time	and	place	of
destruction,	so	that	balance	is	preserved.

When	we	prototype	a	function,	we	must	immediately	define	its	features,	so	that	balance	is
preserved.

By	keeping	the	two	halves	of	our	operations	united,	we	ensure	that	we	never	have	to	chase
down	the	imbalances	between	them.

Lesson:	Creation	and	destruction	are	tied	together,	so
we	should	define	them	at	the	same	time.

Use	const	to	prevent	functions	from	changing	the
inputs
One	of	the	key	worries	I	have	heard	from	those	ill-informed	OOP	programmers	is	that	C
cannot	protect	inputs	you	pass	into	functions.	They	use	private	fields	and	retrieval
functions	to	ensure	that	the	stored	value	is	protected	from	unwanted	modification.

However,	this	concern	is	addressed	by	C’s	const	keyword.

Taking	a	const	value
There	are	times	when	we	want	to	guarantee	to	all	end	users	that	our	function	will	not
modify	particular	values.	Perhaps	we	are	reading	a	stored	key	value	in	order	to	provide	an
access,	but	we	want	to	ensure	that	nothing	we	do	modifies	that	key.

If	our	function	prototype	and	related	documentation	employ	pass-by-reference	(a	common
practice	for	large	values)	but	do	not	employ	the	const	keyword,	the	end	user	has	no
guarantee	that	the	stored	value	will	be	the	same	after	we’re	done.

The	difference	between…

	 int	func	(char	*	key)

…and…

	 int	func(const	char	*	const	key)

…is	that	the	first	interface	has	full	control	of	the	key,	while	the	second	promises	not	to
change	either	the	pointer	or	the	values	at	that	pointer.

Creating	a	const	value
Often	enough,	we	want	to	create	a	value	that	never	changes	throughout	operation.	Perhaps
it’s	a	static	variable	used	to	allocate	arrays,	or	a	static	message	we	want	to	print	out	a
number	of	times.	In	these	cases,	we	use	the	const	keyword	to	protect	an	initialized	value
from	future	changes.	For	example,	we	can	create	a	constant	integer	value	like	this:

	 const	int	index	=	256;

We	can	create	a	constant	error	message	in	the	same	way,	but	we	usually	make	sure	that	we
preserve	both	the	pointer	and	the	value	stored	therein:

	 const	char	*	const	error_message	=	“ERROR:	Something	done	goofed\n”;

NOTE:	WE	HAVE	TO	ASSIGN	THE	VARIABLE	WHEN	WE	DECLARE	IT,	BECAUSE	IT’S	A	CONSTANT
VALUE	THAT	WE	CAN	NEVER	CHANGE	AGAIN.

Keyword	const	rules
The	const	keyword	prevents	anyone	from	modifying	a	value.	However,	when	dealing	with
pointers	we	actually	have	two	values	to	preserve:	the	value	of	the	pointer,	and	the	value	at
that	pointer.

The	keyword	const	can	be	seen	to	preserve	whatever	comes	right	after	it.	That	means	that
the	statement…

	 const	char	*

…protects	the	pointer	itself,	while	the	statement…

	 char	*	const

…protects	the	value	at	that	pointer.	To	preserve	both,	we	use…

	 const	char	*	const

Dangerous,	but	useful:	Casting	with	const
We	can	actually	protect	our	values	by	casting	them	to	a	const	value.	For	example,	if	we
know	we	don’t	want	a	function	to	change	something	it	can	technically	change	(no	const	in
the	prototype),	we	can	say	something	like	this:

	

int	func(char	*	key)	{}

	

char	*	value	=	“penny”;

	

int	i	=	func((const	char	*	const)	value);

However,	we	can	also	cast	away	the	const	(which	is	where	it	gets	dangerous).	That	means
that	the	program	can	act	as	though	the	value	is	naturally	unprotected.	That	looks
something	like	this:

	

int	func(const	char	*	const	key)
{

(char	*)	key	=	(char	*)	calloc(50,	sizeof(char)
);

}

Generally	speaking,	these	actions	are	both	considered	unsafe.	They	can	be	extremely
useful	(for	example,	to	free	a	const	value	inside	of	an	allocated	structure),	but	exercise
extreme	caution.

Lesson:	The	const	keyword	creates	a	contract	in	your
code	ensuring	that	the	compiler	protects	the	integrity	of
certain	values.

Don’t	mangle	your	iterators	(iterators	are	used
only	to	iterate)
Some	patterns	are	more	obvious	than	others.	This	is	one	of	the	more	obvious	patterns,	but
it’s	violated	often	enough	to	deserve	enunciation.

Iterator	Abuse
Just	about	every	program	out	there	uses	an	iterator	for	one	reason	or	another.	Without
them,	we	can’t	build	for	loops,	and	more	than	a	few	while	loops	require	iterators	as	well.

They	let	us	perform	simple	operations	on	buffers	and	arrays.

They	let	us	control	flow	of	information.

Fundamentally,	an	iterator	is	a	control	line.	It	is	essential	that	we	maintain	the	integrity
of	our	controls,	because	without	that	control	we	exponentially	increase	the	complexity	of
the	problem.

Iterator	Abuse	is	the	act	of	violating	the	integrity	of	an	iterator,	which	destroys	the	line	of
control	and	makes	the	program	act	in	complicated	or	unexpected	ways.	This	abuse	is
performed	in	a	number	of	ways:

Reusing	the	iterator	before	its	control	function	has	been	completed
Modifying	the	iterator	inside	of	the	loop	(usually	by	a	non-
standardized	unit)
Passing	the	iterator	into	a	function	without	protection
Using	your	only	copy	of	a	pointer	as	an	iterator
etc.

What	can	you	do?
Iterator	abuse	is	one	of	the	more	easily	preventable	issues	in	our	programs.	We	have	to
adhere	to	a	few	simple	rules:

1.	 Only	use	specially-marked	values	as	iterators	(the	classic	name	is	“i”
or	“j”)

2.	 Only	use	iterators	for	iteration
3.	 Iterate	each	value	only	ONCE	per	cycle	(NO	I++;	I+=J)
4.	 In	cases	where	we	want	to	modify	the	iterator	by	a	non-standardized

unit	(for	example,	by	a	number	of	bits	equivalent	to	a	structure),	use

extreme	caution
5.	 If	iterating	inside	of	a	for	loop,	never	modify	the	iterator
6.	 If	iterating	over	a	pointer,	iterate	over	a	copy	of	that	pointer	instead	of

the	original
7.	 Either	avoid	non-standard	loop	termination	(break,	etc.)	or	avoid

referencing	the	iterator	outside	of	the	loop
8.	 Don’t	pass	iterators	into	functions	which	might	change	the	iterator

value

Lesson:	Iterators	are	oft-abused	values.	Remember	that
their	purpose	is	to	establish	simple	loops,	and	don’t	go
crazy	with	them.

Headers	should	not	create	object	code
When	we	work	in	C,	we	have	two	basic	file	types:	code	and	headers.	Guess	which	one	is
supposed	to	contain	our	code?

Header	Files
A	header	file	is	essentially	an	interface	between	a	piece	of	source	code	and	another	piece
of	source	code.	We	can	think	of	it	as	a	library	index;	it	tells	us	where	to	find	functions	and
what	we	need	to	do	to	reference	them.

However,	there	is	a	big	problem	in	the	header	world	(especially	for	those	who	come	over
from	C++):	some	programmers	put	code	in	the	header	file.

This	is	a	problem	for	a	couple	of	key	reasons:

It’s	logically	inconsistent	-	headers	and	code	are	separate	for	a	reason
It	eliminates	library	safety	-	we	don’t	compile	header	files	to	object
code,	so	we	can’t	include	that	code	in	a	library
It	extends	the	number	of	files	we	have	to	check	-	a	problem	can	now
occur	in	all	headers	(in	addition	to	all	code)
It’s	just	plain	ugly

Generally	speaking,	we	only	put	structure	definitions,	function	prototypes,	and	#define
macros	in	a	header	file.	These	things	are	100%	reference	-	they	can’t	actually	produce	any
code	by	themselves.

When	we	do	this,	we	enforce	an	essentially	modular	design.	The	compiler	uses	headers	to
create	“plug-ins”	where	library	functions	should	go,	and	the	linker	plugs	those	functions	in
when	the	time	is	right.	Everything	does	its	job,	and	all	is	right	with	the	universe.

Analogue:	#include	“*.c”
Very	few	programmers	have	ever	compiled	a	source	with	a	#include’d	code	file.

I	have.

It’s	a	dumb	thing	to	do,	because	it	complicates	compilation	and	doesn’t	make	linking	any
easier.

It’s	also	just	bad	juju.

Lesson:	Code	goes	in	the	code	file.	Headers	only
contain	references	to	things	in	the	code	file.

Prototypes	and	Optimization	-	only	convert	when
ready
The	hardest	interview	I	ever	had:	someone	told	me	to	go	up	to	a	whiteboard	and	solve	a
programming	problem,	in	code,	optimally,	on	the	first	try.

It’s	a	basic	fact	of	our	field	that	we	iterate	toward	the	final	product.	Not	unlike	a	sculptor
bringing	the	DAVID	out	of	a	piece	of	marble,	we	go	from	a	rough	piece	of	code	toward	a
refined	piece	of	code	in	a	series	of	stages.

Rough	Outline
We	usually	start	with	a	piece	of	pseudocode	that	generally	describes	what	we	want	a
function	to	do.	This	can	be	written	in	basically	any	format	(text,	outline,	pseudocode,
diagram,	etc.),	but	it	has	to	detail	the	basic	elements	we	expect	to	find	in	our	function.

Specifically,	our	outline	serves	these	two	purposes:

Expose	functionality	for	better	breakdown
Reveal	the	interface	elements	that	we	might	want	or	need

If	we	skip	this	step	entirely,	we	tend	to	spend	a	lot	of	time	reworking	our	basic	code	as	we
discover	features	we	wanted	to	include.

Exposed	Interface	with	Dynamic	Allocation
Next,	we	write	the	first	draft	of	our	code.	At	this	stage,	we	are	basically	limited	to	the
information	provided	by	the	rough	outline.

Because	we	don’t	necessarily	know	what	size	our	final	data	will	be,	we	dynamically
allocate	space	using	malloc()	or	calloc().	This	allows	us	to	quickly	modify	the	size	and
range	of	our	data	as	we	determine	what	elements	we	will	include	in	the	final	product.	This
serves	the	secondary	purpose	of	preserving	our	outline,	as	we	have	not	yet	optimized	away
extraneous	variables	required	for	simple	reading.

Furthermore,	because	we	don’t	yet	know	how	many	of	our	parameters	will	be
standardized	(through	precompiler	definitions	or	static	variables),	we	want	to	take	as	many
of	them	as	we	can	into	account.	At	this	stage,	our	interfaces	can	be	incredibly	daunting,
because	they	allow	us	to	tweak	EVERY	parameter	through	the	function	call.	We	also	want
to	pass	pointers	into	these	functions,	but	we’re	not	sure	whether	to	make	them	const,	so
there’s	a	risk	of	silly	errors.

NOTE:	At	this	stage,	we	might	start	defining	structures	to	carry	these	parameters,	just	to
reduce	the	size	of	the	interfaces.

Refined	Interface	with	Dynamic	Allocation
As	we	move	on,	we	begin	to	determine	the	size	of	our	parameters	and	the	scope	of	our
data.	While	we’re	not	yet	ready	to	jump	to	static	allocation,	we	are	becoming	aware	of
what	that	statically	allocated	data	might	look	like.

We	are	also	ready	to	restrict	the	interface,	as	we	have	determined	which	parameters	we
intend	to	manipulate	and	which	we	will	set	to	default.

There	are	two	approaches	to	entering	this	stage:

Rewrite	your	functions	to	restrict	the	interface	to	the	core	function
Write	wrapper	functions	to	restrict	the	interface	that	the	user	deals	with

Generally	speaking,	it’s	safer	and	easier	to	go	with	the	latter.

Refined	Interface	with	Static	Allocation
Now	we’ve	reached	the	point	where	we	basically	know	what	our	data	will	look	like.
We’ve	made	the	tough	calls,	determined	the	final	flow	of	the	code,	and	settled	on	the	size
and	types	of	data	we’ll	employ	at	each	level.

Now	we	begin	replacing	dynamic	allocation	with	static	allocation.	If	you’ve	structured
your	interfaces	properly,	this	is	about	as	simple	as	replacing	all	->	with	.	and	removing	all
allocation	and	free	operations.

NOTE:	Don’t	forget	to	clear	the	values	in	your	static	variables,	especially	if	you	were
relying	on	calloc()	to	do	that.

Minimal	Interface	with	Static	Allocation
Now	we	perform	the	true	optimization	stage.

Because	we’ve	finally	settled	exactly	how	our	code	will	work,	we	can	begin	to	restrict	the
inputs	to	our	functions	with	const	and	similar	keywords.	This	restricts	our	interfaces	to	the
smallest	and	most	restricted	they	can	be,	resulting	in	code	that	is	reliable	and	easy	for	the
end	user	to	work	with.

We	also	start	to	clean	up	our	headers,	removing	any	of	the	“old”	function	interfaces	which
are	wrapped	by	the	cleaner	interfaces.	This	helps	restrict	the	interfaces	and	prevents	the
end	user	from	doing	dangerous	things.

We	also	start	working	with	our	variables.	Depending	on	the	level	of	optimization	required,
we	start	to	do	things	like	move	things	to	global	scope	or	reorganize	code	to	reuse	static
variables	(which	I	generally	do	not	recommend	if	it	makes	the	code	harder	to	read).

This	stage	should	produce	a	final	set	of	code	that	you’re	happy	to	run	and	maintain,	but
there	is	another	possible	layer	of	optimization	you	can	employ…

Optional	Library	Optimization
This	is	the	sort	of	thing	programmers	had	to	do	in	the	early	days,	to	maximize	utility	of
tiny	systems.

Here	we	start	reusing	variables	on	the	register	level,	optimizing	out	log	code	(and	other
valuable	information),	and	generally	render	the	code	impossible	to	maintain.
COMPILING	WITH	OPTIMIZATION	DOES	MUCH	OF	THIS	NATURALLY.

Generally	speaking,	this	is	only	recommended	for	code	you	are	virtually	100%	certain	you
will	never	have	to	touch	again.

Lesson:	Change	and	uncertainty	is	law	in	the	earlier
stages	of	program	development.	Leave	your	early	code
very	open	for	changes,	and	optimize	as	the	project
reaches	final	definition.

4.	Thought	Patterns

One	Sentence
There	is	a	law	of	problem	solving	which	has	been	passed	around	since	time
immemorial.	To	Einstein,	the	law	looked	like	this:

If	you	can’t	explain	it	simply,	you	don’t	understand	it	well	enough.

However,	this	law	has	seen	many	refinements,	and	it	came	down	to	me	in	this
form:

If	you	can’t	explain	it	in	one	simple	sentence,	you	don’t
understand	the	problem.

While	this	appears	to	be	an	excessively	strict	rule	to	the	outside	observer,	to
the	engineer	it	is	the	height	of	wisdom.

After	all,	every	major	program	can	be	described	in	one	sentence,	which	is	the
focus	of	that	program:

Excel	–	We	need	a	program	that	automates	database	management.
Word	–	We	want	a	word	processor	that	simulates	an	entire	publishing
house.
Photoshop	–	We	want	a	graphics	program	with	all	the	tools	available	to
the	best	painters.

So,	too,	can	we	describe	every	major	function	in	a	program	with	one	simple
sentence.	After	all,	we	ultimately	want	these	functions	to	do	one	logical
operation	(in	compliance	with	the	unit	principle).	Thus,	if	you	can’t	explain	a
function	in	one	simple	sentence,	you	probably	need	to	break	it	down	some
more.

The	one-sentence	rule	is	a	rule	for	clear,	purposeful	inquiry.	The	simplicity
of	the	structure	requires	you	to	boil	your	thoughts	down,	eliminating	the
unnecessary	details	and	side-paths	to	reveal	the	heart	of	the	matter.	If	you	boil
down	a	catastrophic	error	to	something	like:

“This	function	gives	the	same	wrong	answer	every	8	or	so	passes”

you	have	the	information	you	need	to	run	down	the	bug.	After	all,	you	know
what	function	is	failing,	you	know	that	the	failure	is	consistent,	and	you	know
that	the	bug	occurs	sporadically.	This	usually	implies	that	you	forgot	to	check
something	in	the	function,	so	you	know	basically	how	to	find	and	fix	your	bug
from	that.

Lesson:		Learn	to	boil	your	thoughts	down	to	one	simple,
clear	sentence.
Note:	If	you’re	trying	to	write	a	book,	learn	to	reiterate	that	same	sentence	in
a	number	of	ways.	If	I	was	better	at	reiteration,	my	books	would	look	more	like
Dummies	guides	or	modern	programming	instruction	manuals.

	

	

Employ	the	3-10	rule
Most	programmers	are,	at	least	to	some	degree,	familiar	with	Top-Down	design	principles.
The	3-10	rule	applies	human	nature	to	the	top-down	design	rules,	creating	a	substantially
improved	method	for	project	generation.

Top-Down	Design	Theory
Joke	time!

Question:	What’s	the	best	way	to	eat	an	elephant?

Answer:	One	bite	at	a	time

I	love	these	lateral-thinking	jokes,	because	they	defy	the	methods	by	which	we	usually
approach	problems.	Generally,	we	think	of	eating	an	elephant	as	a	lump	sum,	but	this	joke
encourages	us	to	look	at	the	trivial	problem	before	us:	eat	one	bite.

Parents	use	the	same	technique	to	make	kids	eat	their	vegetables.	Kids	don’t	want	to	eat
the	whole	portion,	but	if	you	make	them	take	it	one	bite	at	a	time	they’ll	keep	eating.

This	is	the	principle	of	top-down	design:	Break	the	complex	problems	down	into	a	set
of	trivial	problems.

For	example,	if	you	wanted	to	write	an	email	client	from	scratch,	you	would	attempt	to
break	it	into	parts.	Each	protocol	would	require	its	own	code.	The	GUI	needs	to	be	its	own
code.	Database	management	requires	its	own	code.	Thus,	we	reduce	the	impossible	to	a
set	of	possible	tasks.

7	+/-	3
Those	who	study	psychology	(whether	professionally	or	as	a	hobby)	notice	that	people
cannot	hold	too	many	thoughts	in	active	memory	at	once.	If	you’ve	ever	crammed	for	a
test,	you	know	that	by	the	time	you	get	halfway	through	the	terms,	you’ve	“put	away”	the
meanings	of	the	first	few	terms.	Meanwhile,	you	can	instantly	recall	the	definition	for	the
last	term	you	studied.

Hypnotists	(who	actively	manipulate	the	conscious	and	unconscious	mind)	have	a	rule:
people	can	only	hold	between	4	and	10	thoughts	in	their	minds	at	once.	There	are	several
powerful	hypnotic	techniques	that	rely	on	this	truth	(specifically	the	“hypnotic	blitz”,
which	barrages	the	recipient	with	an	idea	until	it	sticks).

It’s	important	for	every	engineer,	designer,	and	programmer	to	remember	this	truth:	You
can	only	generally	hold	7	+/-	3	thoughts	in	your	mind	at	once.

Niklaus	Wurth’s	Rule

I	CANNOT	CONFIRM	THAT	NIKLAUS	WURTH	EXPRESSED	IT	THIS	WAY,	BUT	IT	WAS	HANDED	DOWN	TO
ME	WITH	HIS	NAME	ATTACHED.	I	CAN	CONFIRM	THAT	HE	WAS	A	GENIUS,	AND	HIS	WRITINGS	ARE
WORTH	STUDYING.

How	can	we	combine	the	top-down,	stepwise	refinement	approach	to	design	with	our
knowledge	of	human	minds?

The	Niklaus	Wurth	rule	is	actually	an	algorithm:

For	each	“lowest	level”	task	on	the	stack:

If	task	is	trivial	(can	be	done	with	a	short	piece	of	simple	code),	ignore

If	task	is	not	trivial,	break	that	task	into	3-10	smaller	tasks

Mark	the	smaller	tasks	as	“lowest	level”	tasks

Recurse

Why	3-10	pieces,	we	ask?

If	a	task	has	only	two	trivial	sub-components,	we	can	consider	the	task	trivial.

If	a	task	has	only	two	non-trivial	sub-components,	we	are	probably	not	thinking	through
the	problem	completely.

If	we	go	above	10	pieces,	we	won’t	be	able	to	hold	all	those	pieces	in	mind	at	once.	That’s
a	great	way	to	cause	redundancies,	accidentally	forget	portions,	and	substantially	increase
complexity.

Lesson:	We	can	only	handle	so	much	complexity	at
once.	We	need	to	break	the	complex	down	in	a	way	that
we	can	understand,	reducing	the	complex	to	the	trivial.

	

Logical	Unity	of	Form	and	Function
It’s	amazing	how	often	programmers	forget	the	simplest	rule	of	programming:	1=1.

This	is	the	principle	of	logical	unity	(or	modularity	–	they’re	largely	synonymous).

Unity	of	Function
If	we	adhere	to	the	principle	of	top-down	modular	design,	all	our	functions	should	be
relatively	small.	At	the	bottom	of	the	tree,	every	function	serves	one	purpose	and
accomplishes	one	basic	thing.	As	we	climb	up,	each	layer	of	functions	simply	combines
the	basic	unit	functions	to	perform	a	less-basic	unit	function.

As	an	example,	consider	the	design	of	a	simple	server.	Some	programmers	would	design
the	server	as	a	single	block,	where	every	operation	is	written	directly	into	the	main()	loop.
However,	under	the	unity	principle,	the	code	should	look	more	like	this:

main
Lookup
Initial	connection

Open	socket
	handshake

exchange	certificates
send	certificate
receive	certificate

check	remote	certificate
receive	request

check	buffer
deserialize
test
reply	on	failure

Serialize	message
Attach	header
Attach	trailer

transmit
Retrieve	data

Serialize	message
Attach	header
Attach	trailer

disconnect
protocol	based	–	close	socket

Unity	of	Form
Unity	of	form	describes	the	modularity	of	objects.	Each	object	should	be	designed	to	serve
one	logical	purpose.

For	example,	the	OpenSSL	protocol	defines	an	SSL	socket	distinct	from	a	basic	socket.
The	SSL	socket	is	composed	of	two	units:

A	socket	file	descriptor
A	context	structure	containing	information	relevant	to	the	SSL	protocol

Even	though	the	context	structure	can	contain	a	substantial	amount	of	varied	data,	at	the
top	level	it	looks	like	a	distinct	unit.	It	has	one	form	–	a	container	for	SSL	data.

It’s	a	bit	more	difficult	to	describe	the	unity	of	form,	but	the	basic	rule	is	that	you	should
break	out	what	logically	makes	sense	into	its	own	structure.

Lesson:	Each	structure	serves	one	logical	purpose,	and
each	function	does	one	logical	task.	In	this	way,	we	keep
things	simple	for	programmers	to	understand	and
manipulate.

Design:	Everything	You	Need,	and	Only	What	You
Need
How	many	times	have	I	seen	this	pattern	in	object	oriented	code?

Public	Class
All	members	of	the	class	are	private
All	members	can	be	accessed	with	accessor	functions
All	members	can	be	changed	with	modifier	functions

I	hate	to	break	it	to	y’all,	but	that’s	just	a	struct.	The	only	thing	you’ve	done	is	add	a
hundred	lines	to	a	simple	process.

Access	Functions:	Only	What	You	Need
The	purpose	of	an	access	function	is	simple:	to	provide	access	to	a	portion	of	the	data,
while	hiding	the	structure	of	the	class.

As	such,	it	only	makes	sense	to	provide	access	functions	in	two	cases:

When	it’s	important	to	obscure	how	a	structure	works	(due	to	complex
operations,	typedef	abstraction,	etc.)
When	it’s	important	to	restrict	how	much	information	you	reveal

In	either	of	those	cases,	you	only	need	enough	functions	to	suit	the	need.	If	you’re
exposing	the	entire	structure	to	the	world,	there	was	no	reason	to	make	anything	private	in
the	first	place.

Modifier	Functions:	Only	what	you	want	to	change
If	your	structure	or	class	contains	constants	you	set	only	once,	why	would	you	create
explicit	modifier	functions	for	it?

Or,	if	you	always	modify	a	set	of	values	simultaneously,	why	would	you	create	individual
modifier	functions?

Think	about	your	design	before	coding	up	modifier	functions.

Constructors:	Two	Types
There	are	two	reasons	to	create	an	explicit	constructor	function:

You	have	to	allocate	values	inside	of	the	new	structure	(a	char	*,	for

example)
You	want	to	fill	the	new	structure	with	default	values	of	some	kind
(perhaps	by	input)

In	the	first	case,	you	usually	call	either	another	constructor	or	an	allocation	function	inside
of	the	constructor,	and	don’t	worry	so	much	about	anything	else.

In	the	second	case,	you	have	two	options:

Take	no	arguments,	and	fill	in	the	variables	with	a	general	default
value
Take	some	arguments,	and	fill	in	some	variables	with	specific	values

Note	that	I	don’t	list	among	the	options	“Fill	every	variable	at	once”.	While	not	inherently
bad,	this	pattern	shows	up	with	alarming	frequency	in	poorly-designed	code.	I	recommend
that	you	consider	exactly	how	many	variables	you	need	to	fill	with	a	non-default	value	on
initialization.

Destructors:	Only	One	Type
Destructor	functions	should	always	follow	the	same	pattern:

Destroy	any	allocated	values	inside	the	structure
Destroy	the	structure

If	your	destructor	does	anything	else	(besides,	perhaps,	print	something),	you	should
reevaluate	your	design.

Lesson:	Think	before	you	do.	Lots	of	programmers
over-code,	resulting	in	functions	they	neither	want	nor
need.

Object	Oriented	C
Most	modern	languages	are	designed	around	the	object	oriented	design	principles.	They
contain	syntactic	elements	that	codify	and	require	these	principles	for	code
implementation.

Unfortunately,	as	is	common	with	modern	minds,	we	leave	everything	up	to	the	computer.
This	results	in	a	gigantic	block	of	generalities,	the	result	of	which	is	slow	code	that	is
difficult	to	maintain.	For	most	modern	programmers,	the	choice	is	between	efficient	code
and	object	oriented	code.

However,	we	can	apply	the	Object	Oriented	Design	Principles	to	C	code	relatively	easily.
After	all,	the	principles	were	originally	theorized	for	use	in	languages	like	C.

Encapsulation
We’ve	already	discussed	one	aspect	of	encapsulation	(that	is,	the	unitary	nature	of
objects),	but	the	principle	also	includes	“data	hiding”.	In	“proper”	encapsulation,	the
structures	are	perfectly	opaque	to	the	end	user,	so	that	the	only	way	to	access	the	data	is
through	carefully-constructed	methods.

The	techniques	for	constructing	methods	are	already	well	understood,	but	how	does	one
create	hidden	data	in	C?

Fun	fact:	If	it’s	not	in	the	header	file,	the	end-user	can’t	touch	it.

Fun	fact	#2:	We	can	use	typedef	to	create	pointers	to	objects	in	code	files	which	do	not
themselves	appear	in	the	header.

Fun	fact	#3:	While	the	computer	can	translate	between	the	typedef	pointer	and	a	pointer	to
the	original	object	at	link	time,	the	user’s	code	cannot.

Thus,	if	we	define	struct	panda	in	a	code	file,	but	the	header	only	contains	methods	and
the	following:

typedef	struct	panda	*PANDA

the	end	user	can	only	access	the	structure	by	passing	PANDA	to	the	access	methods.

Abstraction	and	Polymorphism
We	perform	abstraction	in	only	two	ways:

Function	pointers	-	used	to	look	up	objects
Hiding	data	with	“typedef”

Function	pointers	are	too	complicated	to	go	into	now,	but	basically	we	can	write	functions
that	accept	pointers	to	functions,	the	results	of	which	produce	data	that	the	top-level
function	can	work	with.	This	allows	us	to	create	essentially	polymorphic	functions.

Because	abstraction	is	relatively	complicated	in	C,	it	encourages	programmers	to	rely	on
patterns	and	techniques	instead	of	function-overloading	and	“let	the	computer	figure	it
out”	mental	patterns.	That	means	we	don’t	employ	template	classes,	interface	classes,	or
abstract	classes	(which	I	would	argue	ultimately	make	programming	MUCH	harder),	but
we	can	still	create	functional	polymorphism	and	abstraction	if	we	so	choose.
NOTE:	WE	DO	CREATE	“TEMPLATES”	IN	C.	THESE	ARE	NOT	OOP	TEMPLATES,	BUT	RATHER	CODE
WHICH	IS	GENERALLY	APPLICABLE	TO	A	NUMBER	OF	TASKS.	WE	CAN	SIMPLY	USE	THESE
FRAMEWORK	TEMPLATES	TO	PRODUCE	NEW	CLASSES	QUICKLY.

Inheritance
What	exactly	does	inheritance	mean?

Functionally,	inheritance	ensures	that	one	class	contains	as	its	first	(and	thus,	most	easily
addressed)	member	another	class.	All	the	aspects	of	the	parent	class	are	carried	into	the
child	class,	so	that	the	child	is	merely	an	extended	version	of	the	parent.	As	such,	all	the
parent	functions	should	be	able	to	work	with	the	child	class.

We	can	do	the	exact	same	thing	in	C	using	type	casting.

We	know	that	we	can	tell	a	C	program	to	treat	data	elements	as	some	other	kind	of	data
element.	When	we	do	this,	C	“maps	out”	the	space	that	the	casted	element	should	occupy
in	the	original	element	and	treats	that	space	as	the	cast	element.

It	looks	something	like	this:

Sure	enough,	so	long	as	we	ensure	that	the	“parent”	structure	is	the	first	element	in	the
“child”	structure,	we	can	use	type	casting	to	perform	inheritance.	It’s	really	that	simple.

Lesson:	Object	Oriented	Design	principles	were
designed	during	the	C	era	for	use	with	languages	such
as	C.	All	of	the	principles	(at	least,	the	ones	that	don’t
cause	performance	issues)	are	possible	in	C.

http://fortcollinsprogram.robert-beisert.com/wp-content/uploads/2015/10/typecast.png

Conclusion
There	are	any	number	of	ways	to	write	code	which	will	compile	and	run,	and
I’ve	probably	seen	the	majority	of	them	in	the	past	year	alone.	We	tend	to	get
extremely	hung	up	on	stylistic	choices	like	brackets	(which	should	always	be
aligned	to	one	another	to	make	it	easier	to	see),	indentation	(single	tab,	default
size),	or	capitalization	(variables	should	never	be	capitalized),	but	these	things
don’t	really	affect	the	code	in	any	appreciable	way.	Ultimately,	no	matter
which	convention	you	use,	it’ll	work	if	you	can	understand	it.

However,	there	are	a	number	of	patterns	in	thought	and	practice	which
observably	accelerate	programming,	debugging,	and	maintenance.	These
patterns	should	be	common	knowledge,	and	every	programmer	should	be
expected	to	employ	them.

Think	about	the	patterns	detailed	in	this	book.	Work	them	into	your	new	code
and	observe	the	change	in	your	efficiency.

As	the	old	saying	goes,	“A	stitch	in	time,	saves	nine.”

	

About	the	Author
Robert	Beisert	is	a	graduate	of	the	University	of	Texas	at	Dallas,	where	he
studied	computer	engineering.	In	that	time,	he	was	exposed	to	some	of	the
brightest	programmers	in	the	world,	and	some	of	the	absolute	worst.
Hopefully,	he	learned	to	tell	the	difference…

If	you	would	like	to	see	more	of	his	content,	you	can	visit	his	programming
blog	at	fortcollinsprogram.robert-beisert.com

You	can	also	contact	him	at	robert@robert-beisert.com	with	any	revisions	or
further	observations	concerning	the	material	in	this	book.	The	blog	is	also
networked	with	Disqus.

mailto:robert@robert-beisert.com

	Introduction
	Document as you go
	Treat your documentation as a contract
	Use VI operations to keep .h and .c files consistent
	Comments - your path back through history
	Leave the standards alone - avoid changing defaults (aliases and/or variables)

	2. Debugging and Maintenance
	C "classes" using naming conventions
	Employ Meaningful Return Types
	Use Meaningful Names
	Always compile with -g
	Log Messages - the more content, the better
	Build around Errors, not Successes
	Employ the if-else chain
	Check the boundaries (including nonsense)

	3. Code Conventions
	Create in order, Destroy in Reverse Order, Mutex in same order every time
	Yin and Yang - For every alloc, there is a free (and for every {, a })
	Use const to prevent functions from changing the inputs
	Don't mangle your iterators (iterators are used only to iterate)
	Headers should not create object code
	Prototypes and Optimization - only convert when ready

	4. Thought Patterns
	One Sentence
	Employ the 3-10 rule
	Logical Unity of Form and Function
	Design: Everything You Need, and Only What You Need
	Object Oriented C

	Conclusion

