

Copyright

Copyright © 2019 by Janelle Shane
Cover design by Kapo Ng; cover art by Kapo Ng and Janelle Shane
Cover copyright © 2019 by Hachette Book Group, Inc.

Hachette Book Group supports the right to free expression and the value of
copyright. The purpose of copyright is to encourage writers and artists to
produce the creative works that enrich our culture.

The scanning, uploading, and distribution of this book without permission
is a theft of the author’s intellectual property. If you would like permission
to use material from the book (other than for review purposes), please
contact permissions@hbgusa.com. Thank you for your support of the
author’s rights.

Voracious / Little, Brown and Company
Hachette Book Group
1290 Avenue of the Americas, New York, NY 10104
littlebrown.com
twitter.com/littlebrown
facebook.com/littlebrownandcompany

First ebook edition: November 2019

Voracious is an imprint of Little, Brown and Company, a division of
Hachette Book Group, Inc. The Voracious name and logo are trademarks of
Hachette Book Group, Inc.

The publisher is not responsible for websites (or their content) that are not
owned by the publisher.

The Hachette Speakers Bureau provides a wide range of authors for

http://www.littlebrown.com/
http://www.twitter.com/littlebrown
http://www.facebook.com/littlebrownandcompany

speaking events. To find out more, go to hachettespeakersbureau.com or
call (866) 376-6591.

All images created by the author, except the following: GANcats image
here made available under Creative Commons BY-NC 4.0 license by
NVIDIA Corporation; used here with permission. Quickdraw kangaroos
images here made available under Creative Commons BY-4.0 license by
Google. School plan images here © by Joel Simon; used with permission.
Submarine images here © by Danny Karmon, Yoav Goldberg, and Daniel
Zoran; used with permission. Skiers image here © by Andrew Ilyas, Logan
Engstrom, Anish Athalye, and Jessy Lin; used with permission.

ISBN 978-0-316-52523-7

E3-20191113-JV-PC-COR

Contents

Cover

Title Page

Copyright

Dedication

INTRODUCTION: AI is everywhere

CHAPTER 1: What is AI?

CHAPTER 2: AI is everywhere, but where is it exactly?

CHAPTER 3: How does it actually learn?

CHAPTER 4: It’s trying!

CHAPTER 5: What are you really asking for?

CHAPTER 6: Hacking the Matrix, or AI finds a way

CHAPTER 7: Unfortunate shortcuts

CHAPTER 8: Is an AI brain like a human brain?

CHAPTER 9: Human bots (where can you not expect to see AI?)

CHAPTER 10: A human-AI partnership

CONCLUSION: Life among our artificial friends

Acknowledgments

kindle:embed:0002?mime=image/jpg

Discover More

About the Author

Notes

To my blog readers, who laughed at all the silliness, drew
the weird creatures, spotted all the giraffes, and baked

the neural net–generated cookies. Thank you for putting
up with the horseradish brownies.

To my family, for being my biggest fans.

Explore book giveaways, sneak peeks, deals, and more.

Tap here to learn more.

https://discover.hachettebookgroup.com/?ref=9780316525237&discp=0

INTRODUCTION

AI is everywhere

Teaching an AI to flirt wasn’t really my kind of project.
To be sure, I’d done a lot of weird AI projects already. On my blog, AI

Weirdness, I’d trained an AI to come up with new names for cats—Mr.
Tinkles and Retchion were some of its less successful ones—and asked an
AI to generate new recipes, some of which would sometimes call for
“peeled rosemary” or handfuls of broken glass. But teaching an AI to
sweet-talk humans was something else entirely.

AI learns by example—in this case studying a list of existing pickup
lines and using them to generate new ones. The problem: the training
dataset on my computer screen was a list of pickup lines that I had collected
from various internet sources, all of which were awful. They ranged from
cheesy bad puns all the way to rude innuendo. Once I’d trained an AI to
imitate them, it would be able to produce thousands more at the push of a
button. And, like an impressionable child, it wouldn’t know what it should
and shouldn’t imitate. The AI would start with a blank slate, knowing
nothing about what pickup lines are (or even what English is), and would
learn from the examples, doing its best to imitate all the patterns it found.
Including the grossness. It wouldn’t know any better.

I considered giving up on the project, but I had a blog post to write, and
I had just spent an inconvenient amount of time collecting the example

pickup lines. So I started the training. The AI began to look for patterns in
the examples, inventing and testing rules that would help it predict which
letters should appear in which order in a pickup line. Finally, training was
over. With some trepidation, I asked the AI for some lines:

You must be a tringle? Cause you’re the only thing here.
Hey baby, you’re to be a key? Because I can bear your toot?
Are you a candle? Because you’re so hot of the looks with you.
You’re so beautiful that you say a bat on me and baby.
You look like a thing and I love you.

I was surprised and delighted. The AI’s virtual brain (about the same
complexity as a worm’s) wasn’t capable of picking up the subtleties of the
dataset, including misogyny or cheesiness. It did its best with the patterns it
had managed to glean… and arrived at a different, arguably better, solution
to the problem of making a stranger smile.

Though to me its lines were a resounding success, the cluelessness of
my AI partner may come as a surprise if your knowledge of AI comes from
reading news headlines or science fiction. It’s common to see companies
claim that AIs are capable of judging the nuances of human language as
well as or better than humans can, or that AIs will soon be able to replace
humans in most jobs. AI will soon be everywhere, the press releases claim.
And they’re both right—and very wrong.

In fact, AI is already everywhere. It shapes your online experience,
determining the ads you see and suggesting videos while detecting social
media bots and malicious websites. Companies use AI-powered resume
scanners to decide which candidates to interview, and they use AI to decide
who should be approved for a loan. The AIs in self-driving cars have
already driven millions of miles (with the occasional human rescue during
moments of confusion). We’ve also put AI to work in our smartphones,
recognizing our voice commands, autotagging faces in our photos, and even
applying a video filter that makes it look like we have awesome bunny ears.

But we also know from experience that everyday AI is not flawless, not
by a long shot. Ad delivery haunts our browsers with endless ads for boots
we already bought. Spam filters let the occasional obvious scam through or
filter out a crucial email at the most inopportune time.

As more of our daily lives are governed by algorithms, the quirks of AI
are beginning to have consequences far beyond the merely inconvenient.
Recommendation algorithms embedded in YouTube point people toward
ever more polarizing content, traveling in a few short clicks from
mainstream news to videos by hate groups and conspiracy theorists.1 The
algorithms that make decisions about parole, loans, and resume screening
are not impartial but can be just as prejudiced as the humans they’re
supposed to replace—sometimes even more so. AI-powered surveillance
can’t be bribed, but it also can’t raise moral objections to anything it’s asked
to do. It can also make mistakes when it’s misused—or even when it’s
hacked. Researchers have discovered that something as seemingly
insignificant as a small sticker can make an image recognition AI think a
gun is a toaster, and a low-security fingerprint reader can be fooled more
than 77 percent of the time with a single master fingerprint.

People often sell AI as more capable than it actually is, claiming that
their AI can do things that are solidly in the realm of science fiction. Others
advertise their AI as impartial even while its behavior is measurably biased.
And often what people claim as AI performance is actually the work of
humans behind the curtain. As consumers and citizens of this planet, we
need to avoid being duped. We need to understand how our data is being
used and understand what the AI we’re using really is—and isn’t.

On AI Weirdness, I spend my time doing fun experiments with AI.
Sometimes this means giving AIs unusual things to imitate—like those
pickup lines. Other times, I see if I can take them out of their comfort zones
—like the time I showed an image recognition algorithm a picture of Darth
Vader and simply asked it what it saw: it declared that Darth Vader was a
tree and then proceeded to argue with me about it. From my experiments,
I’ve found that even the most straightforward task can cause an AI to fail,
as if you’d played a practical joke on it. But it turns out that pranking an AI
—giving it a task and watching it flail—is a great way to learn about it.

In fact, as we’ll see in this book, the inner workings of AI algorithms are
often so strange and tangled that looking at an AI’s output can be one of the
only tools we have for discovering what it understood and what it got
terribly wrong. When you ask an AI to draw a cat or write a joke, its
mistakes are the same sorts of mistakes it makes when processing
fingerprints or sorting medical images, except it’s glaringly obvious that
something’s gone wrong when the cat has six legs and the joke has no
punchline. Plus, it’s really hilarious.

In the course of my attempts to take AIs out of their comfort zone and
into ours, I’ve asked AIs to write the first line of a novel, recognize sheep in
unusual places, write recipes, name guinea pigs, and generally be very
weird. But from these experiments, you can learn a lot about what AI’s
good at and what it struggles to do—and what it likely won’t be capable of
doing in my lifetime or yours.

Here’s what I’ve learned:
The Five Principles of AI Weirdness:

• The danger of AI is not that it’s too smart but that it’s not smart
enough.

• AI has the approximate brainpower of a worm.
• AI does not really understand the problem you want it to solve.
• But: AI will do exactly what you tell it to. Or at least it will try its

best.
• And AI will take the path of least resistance.

So let’s enter the strange world of AI. We’ll learn what AI is—and what
it isn’t. We’ll learn what it’s good at and where it’s doomed to fail. We’ll
learn why the AIs of the future might look less like C-3PO than like a
swarm of insects. We’ll learn why a self-driving car would be a terrible
getaway vehicle during a zombie apocalypse. We’ll learn why you should
never volunteer to test a sandwich-sorting AI, and we’ll encounter walking
AIs that would rather do anything but walk. And through it all we’ll learn
how AI works, how it thinks, and why it’s making the world a weirder
place.

CHAPTER 1

What is AI?

If it seems like AI is everywhere, it’s partly because “artificial intelligence”
means lots of things, depending on whether you’re reading science fiction
or selling a new app or doing academic research. When someone says they
have an AI-powered chatbot, should we expect it to have opinions and
feelings like the fictional C-3PO? Or is it just an algorithm that learned to
guess how humans are likely to respond to a given phrase? Or a spreadsheet
that matches words in your question with a library of preformulated
answers? Or an underpaid human who types all the answers from some
remote location? Or—even—a completely scripted conversation where
human and AI are reading human-written lines like characters in a play?
Confusingly, at various times, all these have been referred to as AI.

For the purposes of this book, I’ll use the term AI the way it’s mostly
used by programmers today: to refer to a particular style of computer
program called a machine learning algorithm. This chart shows a bunch of
the terms I’ll be covering in this book and where they fall according to this
definition.

Everything that I’m calling “AI” in this book is also a machine learning
algorithm—let’s talk about what that is.

KNOCK, KNOCK, WHO’S THERE?

To spot an AI in the wild, it’s important to know the difference between
machine learning algorithms (what we’re calling AI in this book) and
traditional (what programmers call rules-based) programs. If you’ve ever
done basic programming, or even used HTML to design a website, you’ve
used a rules-based program. You create a list of commands, or rules, in a
language the computer can understand, and the computer does exactly what
you say. To solve a problem with a rules-based program, you have to know
every step required to complete the program’s task and how to describe
each one of those steps.

But a machine learning algorithm figures out the rules for itself via trial
and error, gauging its success on goals the programmer has specified. The
goal could be a list of examples to imitate, a game score to increase, or
anything else. As the AI tries to reach this goal, it can discover rules and
correlations that the programmer didn’t even know existed. Programming
an AI is almost more like teaching a child than programming a computer.

Rules-based programming

Let’s say I wanted to use the more familiar rules-based programming to
teach a computer to tell knock-knock jokes. The first thing I’d do is figure
out all the rules. I’d analyze the structure of knock-knock jokes and
discover that there’s an underlying formula, as follows:

Knock, knock.
Who’s there?
[Name]
[Name] who?
[Name] [Punchline]

Once I set this formula in stone, there are only two slots free that the
program can control: [Name] and [Punchline]. Now the problem is reduced
to just generating these two items. But I still need rules for generating them.

I could set up a list of valid names and a list of valid punchlines, as
follows:

Names: Lettuce
Punchlines: in, it’s cold out here!

Names: Harry
Punchlines: up, it’s cold out here!

Names: Dozen
Punchlines: anybody want to let me in?

Names: Orange
Punchlines: you going to let me in?

Now the computer can produce knock-knock jokes by choosing a name–
punchline pair from the list and slotting it into the template. This doesn’t
create new knock-knock jokes but only gives me jokes I already know. I
might try making things interesting by allowing [it’s cold out here!] to be

replaced with a few different phrases: [I’m being attacked by eels!] and [lest
I transform into an unspeakable eldritch horror]. Then the program can
generate a new joke:

Knock, knock.
Who’s there?
Harry.
Harry who?
Harry up, I’m being attacked by eels!

I could replace [eels] with [an angry bee] or [a manta ray] or any
number of things. Then I can get the computer to generate even more new
jokes. With enough rules, I could potentially generate hundreds of jokes.

Depending on the level of sophistication I’m going for, I could spend a
lot of time coming up with more advanced rules. I could find a list of
existing puns and figure out a way to transform them into punchline format.
I could even try programming in pronunciation rules, rhymes,
semihomophones, cultural references, and so forth in an attempt to get the
computer to recombine them into interesting puns. If I’m clever about it, I
can get the program to generate new puns that nobody’s ever thought of.
(Although one person who tried this discovered that the algorithm’s list of
sayings contained words and phrases that were so old or obscure that almost
nobody could understand its jokes.) No matter how sophisticated my joke-
making rules get, though, I’m still telling the computer exactly how to solve
the problem.

Training AI

But when I train AI to tell knock-knock jokes, I don’t make the rules. The
AI has to figure out those rules on its own.

The only thing I give it is a set of existing knock-knock jokes and
instructions that are essentially, “Here are some jokes; try to make more of
these.” And the materials I give it to work with? A bucket of random letters
and punctuation.

Then I leave to get coffee.
The AI gets to work.
The first thing it does is try to guess a few letters of a few knock-knock

jokes. It’s guessing 100 percent randomly at this point, so this first guess
could be anything. Let’s say it guesses something like “qasdnw,m sne?mso
d.” As far is it knows, this is how you tell a knock-knock joke.

Then the AI looks at what those knock-knock jokes are actually
supposed to be. Chances are it’s very wrong. “All right,” says the AI, and it
subtly adjusts its own structure so that it will guess a little more accurately
next time. There’s a limit to how drastically it can change itself, because we
don’t want it to try to memorize every new chunk of text it sees. But with a
minimum of tweaking, the AI can discover that if it guesses nothing but k’s
and spaces, it will at least be right some of the time. After looking at one
batch of knock-knock jokes and making one round of corrections, its idea of
a knock-knock joke looks something like this:

 k k k k k
 kk k kkkok
k kkkk
k

kk
 kk k kk

keokk k

 k
 k

Now, it’s not the world’s greatest knock-knock joke. But with this as a
starting point, the AI can move on to a second batch of knock-knock jokes,
then another. Each time, it adjusts its joke formula to improve its guesses.

After a few more rounds of guessing and self-adjusting, it has learned
more rules. It has learned to employ the occasional question mark at the end
of a line. It is beginning to learn to use vowels (o in particular). It’s even
making an attempt at using apostrophes.

noo,
Lnoc noo
Kor?
hnos h nc
pt’b oa to’

asutWtnl
toy nooc
doc kKe
w ce
e

How well did its rules about generating knock-knock jokes match
reality? It still seems to be missing something.

If it wants to get closer to generating a passable knock-knock joke, it’s
going to have to figure out some rules about which order the letters come
in. Again, it starts by guessing. The guess that o is always followed by q?
Not so great, it turns out. But then it guesses that o is often followed by ck.
Gold. It has made some progress. Behold its idea of the perfect joke:

Whock
Whock
Whock
Whock
Whock Whock Whock

Whock Whock
Whock
Whock

It’s not quite a knock-knock joke—it sounds more like some kind of
chicken. The AI’s going to need to figure out some more rules.

It looks at the dataset again. It tries new ways to use “ock,” looking for
new combinations that match its example knock-knock jokes better.

nooc hock hork
aKoo kWhoc
Khock
hors Whnes Whee
noo oooc
Koo?
loo
noc no’c Wno h orea
ao no oo k KeockWnork Koos
Thoe
nock K ock
Koc
hoo
KKock Knock Thock Whonk

All this progress happens in just a few minutes. By the time I return with
my coffee, the AI has already discovered that starting with “Knock Knock /
Who’s There?” fits the existing knock-knock jokes really, really well. It
decides to apply this rule always.

But the rest of the formula takes quite a while to figure out, and the AI
frequently devolves into playing a game of telephone with itself—or acting
out a robot version of the “Who’s on First?” comedy routine:

Knock Knock
Who’s There?
Iane
Aatar who?

Aaane who?
Aan who?
Anac who?
Iobe who?
Irata who?

Soon it figures out the rest of the formula, but no actual, you know,
words:

Knock Knock
Who’s There?
Bool
Hane who?
Scheres are then the there

It also sometimes gets a bit carried away with the length of the
punchline.

Knock Knock
Who’s There?
Cheed
I?len who?
Ita gee the lasd emotory oud ane weonges oak anet ane tee soore theis onithit the where

your thasg tate tine if thele ter the theung!

At some point in its training, it learns the joke about the Cow with No
Lips, which becomes its Favorite Thing Ever. If you’re not familiar, the
joke about the Cow with No Lips goes something like:

Knock, knock.
Who’s there?
A cow with no lips.
A cow with no lips who?
A cow with no lips says ooo ooo ooooooo.

According to the AI, this is comedy gold. So the AI spends a while
thinking that the punchline to Every Single Joke is “ooo ooo ooooooo”…

Knock Knock
Who’s There?
Alec
Anic who?
Wow co poo the tho tho door to the soout oo ooo oooo ooo oo oo oo oo ooo oo oo oo ooo

ooo oooo ooo ooo oo oo ooo ooo ooo ooo ooo oo oo ooo ooo ooo ooo oo oo oo ooo ooo
ooo ooo…

It has discovered a rule, all right. Eventually it (reluctantly, I assume)
tones down how often it uses the Cow with No Lips rule to make
punchlines. But it still has problems that are remarkably similar to two
people telling knock-knock jokes over a very bad phone connection, maybe
forgetting who was actually telling the joke:

Knock Knock
Who’s There?
Alther
Water who?
Water who who?
Who who?
Arton and out on the moor?

At last it figures out the structure of a knock-knock joke and proceeds to
make jokes that, while technically correct, don’t make all that much sense.
Many of them are partially plagiarized from jokes in the training dataset.

Knock Knock
Who’s There?
Robin
Robin who?
Robin you! Git me and I’m leaving

Knock Knock

Who’s There?
Bet
Beef who?
Beef ano with no lips aslly.

Ireland
Ireland who?
Ireland you money, butt.

And then. It produced. An actual joke. That it had composed entirely on
its own, without plagiarizing from the dataset, and that was not only
intelligible but also actually… funny?

Knock Knock
Who’s There?
Alec
Alec who?
Alec-Knock Knock jokes.

Did the AI suddenly begin to understand knock-knock jokes and
English-language puns? Almost definitely not, given the very small size of
the dataset. But the freedom that the AI had—free rein over the entire set of
possible characters—allowed it to try new combinations of sounds, one of
which ended up actually working. So more of a victory for the infinite
monkey theory* than a proof of concept for the next AI-only comedy club.

The beauty of letting AI make its own rules is that a single approach—
here’s the data; you try to figure out how to copy it—works on a lot of
different problems. If I had given the joke-telling algorithm another
dataset instead of knock-knock jokes, it would have learned to copy
that dataset instead.

It could create new species of birds:

Yucatan Jungle-Duck
Boat-billed Sunbird

Western Prong-billed Flowerpecker
Black-capped Flufftail
Iceland Reedhaunter
Snowy Mourning Heron-Robin

Or new perfumes:

Fancy Ten
Eau de Boffe
Frogant Flower
Momite
Santa for Women

Or even new recipes.

BASIC CLAM FROSTING

main dish, soups
1 lb chicken
1 lb pork, cubed
½ clove garlic, crushed
1 cup celery, sliced
1 head (about ½ cup)
6 tablespoon electric mixer
1 teaspoon black pepper
1 onion—chopped
3 cup beef broth the owinls for a fruit
1 freshly crushed half and half; worth water

With pureed lemon juice and lemon slices in a 3-quart pan.
Add vegetables, add chicken to sauce, mixing well in onion. Add bay leaf, red pepper,

and slowly cover and simmer covered for 3 hours. Add potatoes and carrots to simmering.
Heat until sauce boils. Serve with pies.

If the liced pieces cooked up desserts, and cook over wok.
Refrigerate up to ½ hour decorated.
Yield: 6 servings

JUST LET THE AI FIGURE IT OUT

Given a set of knock-knock jokes and no further instruction, the AI was
able to discover a lot of the rules that I would have otherwise had to
manually program into it. Some of its rules I would never have thought to
program in or wouldn’t even have known existed—such as The Cow with
No Lips Is the Best Joke.

This is part of what makes AIs attractive problem solvers, and is
particularly handy if the rules are really complicated or just plain
mysterious. For example, AI is often used for image recognition, a
surprisingly complicated task that’s difficult to do with an ordinary
computer program. Although most of us are easily able to identify a cat in a
picture, it’s really hard to come up with the rules that define a cat. Do we
tell the program that a cat has two eyes, a nose, two ears, and a tail? That
also describes a mouse and a giraffe. And what if the cat is curled up or
facing away? Even writing down the rules for detecting a single eye is
tricky. But an AI can look at tens of thousands of images of cats and come
up with rules that correctly identify a cat most of the time.

Sometimes AI is only a small part of a program while the rest of it is
rules-based scripting. Consider a program that lets customers call their
banks for account information. The voice-recognition AI matches
spoken sounds to options in the help-line menu, but programmer-
issued rules govern the list of options the caller can access and the
code that identifies the account as belonging to the customer.

Other programs start out as AI-powered but switch control over to
humans if things get tough, an approach called pseudo-AI. Some
customer-service chat windows work like this. When you begin a
conversation with a bot, if you act too confusing, or if the AI detects
that you are getting annoyed, you may suddenly find yourself chatting
with a human instead. (A human who unfortunately now has to deal
with a confused and/or annoyed customer—maybe a “talk to a human”
option would be better for customer and employee.) Today’s self-

driving cars work this way, too—the driver has to always be ready to
take control if the AI gets flustered.

AI is also great at strategy games like chess, for which we know how to
describe all possible moves but not how to write a formula that tells us what
the best next move is. In chess, the sheer number of possible moves and
complexity of game play means that even a grandmaster would be unable to
come up with hard-and-fast rules governing the best move in any given
situation. But an algorithm can play a bunch of practice games against itself
—millions of them, more than even the most dedicated grandmaster—to
come up with rules that help it win. And since the AI learned without
explicit instruction, sometimes its strategies are very unconventional.
Sometimes a little too unconventional.

If you don’t tell AI which moves are valid, it may find and exploit
strange loopholes that completely break your game. For example, in 1997
some programmers built algorithms that could play tic-tac-toe remotely
against each other on an infinitely large board. One programmer, rather than
designing a rules-based strategy, built an AI that could evolve its own
approach. Surprisingly, the AI suddenly began winning all its games. It
turned out that the AI’s strategy was to place its move very, very far away,
so that when its opponent’s computer tried to simulate the new, greatly
expanded board, the effort would cause it to run out of memory and crash,
forfeiting the game.1 Most AI programmers have stories like this—times
when their algorithms surprised them by coming up with solutions they
hadn’t expected. Sometimes these new solutions are ingenious, and
sometimes they’re a problem.

At its most basic, all AI needs is a goal and a set of data to learn from and
it’s off to the races, whether the goal is to copy examples of loan decisions a
human made or predict whether a customer will buy a certain sock or
maximize the score in a video game or maximize the distance a robot can
travel. In every scenario, AI uses trial and error to invent rules that will help
it reach its goal.

SOMETIMES ITS RULES ARE BAD

Sometimes, an AI’s brilliant problem-solving rules actually rely on
mistaken assumptions. For example, some of my weirdest AI experiments
have involved Microsoft’s image recognition product, which allows you to
submit any image for the AI to tag and caption. Generally, this algorithm
gets things right—identifying clouds, subway trains, and even a kid doing
some sweet skateboarding tricks. But one day I noticed something odd
about its results: it was tagging sheep in pictures that definitely did not
contain any sheep. When I investigated further, I discovered that it tended
to see sheep in landscapes that had lush green fields—whether or not the
sheep were actually there. Why the persistent—and specific—error? Maybe
during training this AI had mostly been shown sheep that were in fields of
this sort and had failed to realize that the “sheep” caption referred to the
animals, not to the grassy landscape. In other words, the AI had been
looking at the wrong thing. And sure enough, when I showed it examples of
sheep that were not in lush green fields, it tended to get confused. If I
showed it pictures of sheep in cars, it would tend to label them as dogs or
cats instead. Sheep in living rooms also got labeled as dogs and cats, as did
sheep held in people’s arms. And sheep on leashes were identified as dogs.
The AI also had similar problems with goats—when they climbed into
trees, as they sometimes do, the algorithm thought they were giraffes (and
another similar algorithm called them birds).

Although I couldn’t know for sure, I could guess that the AI had come

up with rules like Green Grass = Sheep, and Fur in Cars or Kitchens = Cats.
These rules had served it well in training but failed when it encountered the
real world and its dizzying variety of sheep-related situations.

Training errors like these are common with image recognition AIs. But
the consequences of these mistakes can be serious. A team at Stanford
University once trained an AI to tell the difference between pictures of
healthy skin and pictures of skin cancer. After the researchers trained their
AI, however, they discovered that they had inadvertently trained a ruler
detector instead—many of the tumors in their training data had been
photographed next to rulers for scale.2

HOW TO DETECT A BAD RULE

It’s often not that easy to tell when AIs make mistakes. Since we don’t write
their rules, they come up with their own, and they don’t write them down or
explain them the way a human would. Instead, the AIs make complex
interdependent adjustments to their own internal structures, turning a
generic framework into something that’s fine-tuned for an individual task.
It’s like starting with a kitchen full of generic ingredients and ending with
cookies. The rules might be stored in the connections between virtual brain
cells or in the genes of a virtual organism. The rules might be complex,
spread out, and weirdly entangled with one another. Studying an AI’s
internal structure can be a lot like studying the brain or an ecosystem—and
you don’t need to be a neuroscientist or an ecologist to know how complex
those can be.

Researchers are working on finding out just how AIs make decisions,
but in general, it’s hard to discover what an AI’s internal rules actually are.
Often it’s merely because the rules are hard to understand, but at other
times, especially when it comes to commercial and/or government
algorithms, it’s because the algorithm itself is proprietary. So unfortunately,
problems often turn up in the algorithm’s results when it’s already in use,
sometimes making decisions that can affect lives and potentially cause real
harm.

For example, an AI that was being used to recommend which prisoners
would be paroled was found to be making prejudiced decisions,
unknowingly copying the racist behaviors it found in its training.3 Even
without understanding what bias is, AI can still manage to be biased. After
all, many AIs learn by copying humans. The question they’re answering is
not “What is the best solution?” but “What would the humans have done?”

Systematically testing for bias can help catch some of these common
problems before they do damage. But another piece of the puzzle is learning
to anticipate problems before they occur and designing AIs to avoid them.

FOUR SIGNS OF AI DOOM

When people think of AI disaster, they think of AIs refusing orders,
deciding that their best interests lie in killing all humans, or creating
terminator bots. But all those disaster scenarios assume a level of critical
thinking and a humanlike understanding of the world that AIs won’t be
capable of for the foreseeable future. As leading machine learning
researcher Andrew Ng put it, worrying about an AI takeover is like
worrying about overcrowding on Mars.4

That’s not to say that today’s AIs can’t cause problems. From slightly
annoying their programmers all the way to perpetuating prejudices or
crashing a self-driving car, today’s AIs are not exactly harmless. But by
knowing a little about AI, we can see some of these problems coming.

Here’s how an AI disaster might actually play out today.
Let’s say a Silicon Valley startup is offering to save companies time by

screening job candidates, identifying the likely top performers by analyzing
short video interviews. This could be attractive—companies spend a lot of
time and resources interviewing dozens of candidates just to find that one
good match. Software never gets tired and never gets hangry, and it doesn’t
hold personal grudges. But what are the warning signs that what the
company is building is actually an AI disaster?

Warning sign number 1: The Problem Is Too Hard

The thing about hiring good people is that it’s really difficult. Even humans
have trouble identifying good candidates. Is this candidate genuinely
excited to work here or just a good actor? Have we accounted for disability
or differences in culture? When you add AI to the mix, it gets even more
difficult. It’s nearly impossible for AI to understand the nuances of jokes or
tone or cultural references. And what if a candidate makes a reference to the
day’s current events? If the AI was trained on data collected the previous
year, it won’t have a chance of understanding—and it might punish the
candidate for saying something it finds nonsensical. To do the job well, the
AI will have to have a huge range of skills and keep track of a large amount
of information. If it isn’t capable of doing the job well, we’re in for some
kind of failure.

Warning sign number 2: The Problem Is Not What We Thought
It Was

The problem with designing an AI to screen candidates for us: we aren’t
really asking the AI to identify the best candidates. We’re asking it to
identify the candidates that most resemble the ones our human hiring
managers liked in the past.

That might be okay if the human hiring managers made great decisions.
But most US companies have a diversity problem, particularly among
managers and particularly in the way that hiring managers evaluate resumes
and interview candidates. All else being equal, resumes with white-male-
sounding names are more likely to get interviews than those with female-
and/or minority-sounding names.5 Even hiring managers who are female
and/or members of a minority themselves tend to unconsciously favor white
male candidates.

Plenty of bad and/or outright harmful AI programs are designed by
people who thought they were designing an AI to solve a problem but were
unknowingly training it to do something entirely different.

Warning sign number 3: There Are Sneaky Shortcuts

Remember the skin-cancer-detecting AI that was really a ruler detector?
Identifying the minute differences between healthy cells and cancer cells is
difficult, so the AI found it a lot easier to look for the presence of a ruler in
the picture.

If you give a job-candidate-screening AI biased data to learn from
(which you almost certainly did, unless you did a lot of work to scrub bias
from the data), then you also give it a convenient shortcut to improve its
accuracy at predicting the “best” candidate: prefer white men. That’s a lot
easier than analyzing the nuances of a candidate’s choice of wording. Or
perhaps the AI will find and exploit another unfortunate shortcut—maybe
we filmed our successful candidates using a single camera, and the AI
learns to read the camera metadata and select only candidates who were
filmed with that camera.

AIs take sneaky shortcuts all the time—they just don’t know any better!

Warning sign number 4: The AI Tried to Learn from Flawed
Data

There’s an old computer-science saying: garbage in, garbage out. If the AI’s
goal is to imitate humans who make flawed decisions, perfect success
would be to imitate those decisions exactly, flaws and all.

Flawed data, whether it’s flawed examples to learn from or a flawed
simulation with weird physics, will throw an AI for a loop or send it off in
the wrong direction. Since in many cases our example data is the problem
we’re giving the AI to solve, it’s no wonder that bad data leads to a bad
solution. In fact, warning signs numbers 1 through 3 are most often
evidence of problems with data.

DOOM—OR DELIGHT

The job-candidate-screening example is, unfortunately, not hypothetical.
Multiple companies already offer AI-powered resume-screening or video-
interview-screening services, and few offer information about what they’ve
done to address bias or to account for disability or cultural differences or to
find out what information their AIs use in the screening process. With
careful work, it’s at least possible to build a job-candidate-screening AI that
is measurably less biased than human hiring managers—but without
published stats to prove it, we can be pretty sure that bias is still there.

The difference between successful AI problem solving and failure
usually has a lot to do with the suitability of the task for an AI solution. And
there are plenty of tasks for which AI solutions are more efficient than
human solutions. What are they, and what makes AI so good at them? Let’s
take a look.

CHAPTER 2

AI is everywhere, but where is it exactly?

THIS EXAMPLE IS REAL, I KID YOU NOT

There’s a farm in Xichang, China, that’s unusual for a number of reasons.
One, it’s the largest farm of its type in the world, its productivity
unmatched. Each year, the farm produces six billion Periplaneta
americana, more than twenty-eight thousand of them per square foot.1 To
maximize productivity, the farm relies on algorithms that control the
temperature, humidity, food supply, and even analyze the genetics and
growing rate of Periplaneta americana.

But the primary reason the farm is unusual is that Periplaneta
americana is simply the Latin name for the common cockroach. Yes, the
farm produces cockroaches, which are crushed into a potion that’s highly
valuable in traditional Chinese medicine. “Slightly sweet,” reports its
packaging. With “a slightly fishy smell.”

Because it’s a valuable trade secret, details are scarce on what exactly
the cockroach-maximizing algorithm is like. But the scenario sounds an
awful lot like a famous thought experiment called the paper-clip maximizer,
which supposes that a superintelligent AI has a singular task: producing
paper clips. Given that single-minded goal, a superintelligent AI might
decide to convert all the resources it could into the manufacture of paper
clips—even converting the planet and all its occupants into paper clips.
Fortunately—very fortunately, given that we’ve just been talking about an
algorithm whose job it is to maximize the number of cockroaches in
existence—the algorithms we have today are light-years away from being
capable of running factories or farms by themselves, let alone converting
the global economy into a cockroach producer. Very likely, the cockroach
AI is making predictions about future production rates based on past data,
then picking the environmental conditions it thinks will maximize
cockroach production. It likely can suggest adjustments within a range that
its human engineers set, but it probably relies on humans for taking data,
filling orders, unloading supplies, and the all-important marketing of
cockroach extract.

Still, helping optimize a cockroach farm is something an AI is likely to
be good at. There’s a lot of data to parse, but these algorithms are good at
finding trends in huge datasets. It’s a job that is likely to be unpopular, but
AIs don’t mind repetitive tasks or the skittering sound of millions of
cockroach feet in the dark. Cockroaches reproduce quickly, so it doesn’t
take long to see the effects of variable tweaking. And it’s a specific, narrow
problem rather than one that’s complex and open-ended.

Are there still potential problems with using AI to maximize cockroach
production? Yes. Since AIs lack context about what they’re actually trying
to accomplish and why, they often solve problems in unexpected ways.
Suppose the cockroach AI found that by turning both the heat and water up
to “max” in one particular room, it can significantly increase the number of
cockroaches that room can produce. It would have no way of knowing (or
caring) that what it had actually done was short out the door that prevents
the cockroaches from accessing the employee kitchen.

Technically, shorting out the door was the AI being good at its job. Its
job was to maximize cockroach production, not guard against their escape.
To work with AI effectively, and to anticipate trouble before it happens, we
need to understand what machine learning is best at.

ACTUALLY, I WOULD BE FINE WITH A ROBOT TAKING
THIS JOB

Machine learning algorithms are useful even for jobs that a human could do
better. Using an algorithm for a particular task saves the trouble and
expense of having a human do it, especially when the task is high-volume
and repetitive. This is true not just for machine learning algorithms, of
course, but for automation in general. If a Roomba can save us from having
to vacuum a room ourselves, we’ll put up with retrieving it again and again
from under the sofa.

One repetitive task that people are automating with AI is analyzing
medical images. Lab technicians spend hours every day looking at blood
samples under a microscope, counting platelets or white or red blood cells
or examining tissue samples for abnormal cells. Each one of these tasks is
simple, consistent, and self-contained, so in that way they’re good
candidates for automation. But the stakes are higher when these algorithms
leave the research lab and start working in hospitals, where the
consequences of a mistake are much more serious. There are similar
problems with self-driving cars—driving is mostly repetitive, and it would
be nice to have a driver who never gets tired, but even a tiny glitch can have
serious consequences at sixty miles per hour.

Another high-volume task we’re happy to automate with AI, even if its
performance isn’t quite at the human level: spam filtering. The onslaught of
spam is a problem that can be nuanced and ever-changing, so it’s a tricky
one for AI, but on the other hand, most of us are willing to put up with the
occasional misfiltered message if it means our inboxes are mostly clear.
Flagging malicious URLs, filtering social media posts, and identifying bots
are high-volume tasks in which we mostly tolerate buggy performance.

Hyperpersonalization is another area where AI is starting to show its
usefulness. With personalized product recommendations, movie
recommendations, and music playlists, companies use AI to tailor the
experience to each consumer in a way that would be cost-prohibitive if a
human were coming up with the requisite insights. So what if the AI is
convinced that we need an endless number of hallway rugs or thinks we are

a toddler because of that one time we bought a present for a baby shower?
Its mistakes are mostly harmless (except for those occasions when they’re
very, very unfortunate), and it could bring the company a sale.

Commercial algorithms can now write up hyperlocal articles about
election results, sports scores, and recent home sales. In each case, the
algorithm can only produce a highly formulaic article, but people are
interested enough in the content that it doesn’t seem to matter. One of these
algorithms is called Heliograf, developed by the Washington Post to turn
sports stats into news articles. As early as 2016, it was already producing
hundreds of articles a year. Here’s an example of its reporting on a football
game.2

The Quince Orchard Cougars shut out the Einstein Titans, 47–0, on
Friday.

Quince Orchard opened the game with an eight-yard touchdown
off a blocked punt return by Aaron Green. The Cougars added to
their lead on Marquez Cooper’s three-yard touchdown run. The
Cougars extended their lead on Aaron Derwin’s 18-yard touchdown
run. The Cougars went even further ahead following Derwin’s 63-
yard touchdown reception from quarterback Doc Bonner, bringing
the score to 27–0.

It’s not exciting stuff, but Heliograf does describe the game.* It knows
how to populate an article based on a spreadsheet full of data and a few
stock sports phrases. But an AI like Heliograf would utterly fail when faced
with information that doesn’t fit neatly into the prescribed boxes. Did a
horse run onto the field midgame? Was the locker room of the Einstein
Titans overrun by cockroaches? Is there an opportunity for a clever pun?

Heliograf only knows how to report its spreadsheet.
Nevertheless, AI-generated writing allows news outlets to produce the

types of articles that were formerly cost-prohibitive. It requires a human’s
touch to decide which articles to automate and to build the AI’s basic
templates and stock phrases, but once a paper has set up one of these
hyperspecialized algorithms, it can churn out as many news articles as there
are spreadsheets to draw from. One Swedish news site, for example, built
the Homeowners Bot, which was able to read tables of real estate data and
write up each sale into an individual article, producing more than ten
thousand articles in four months. This has turned out to be the most popular
—and lucrative—type of article the news site publishes.3 And human
reporters can spend their valuable time on creative investigative work
instead. Increasingly, major news outlets use AI assistance to write their
articles.4

Science is another area where AI shows promise for automating
repetitive tasks. Physicists, for example, have used AI to watch the light
coming from distant stars,5 looking for telltale signs that the star might have
a planet. Of course, the AI wasn’t as accurate as the physicists who trained
it. Most of the stars it flagged as interesting were false alarms. But it was
able to correctly eliminate more than 90 percent of the stars as
uninteresting, which saved the physicists a lot of time.

Astronomy is full of huge datasets, as it turns out. Over the course of its
life, the Euclid telescope will collect tens of billions of galaxy images, out
of which maybe two hundred thousand will show evidence of a
phenomenon called gravitational lensing,6 which happens when a
supermassive galaxy has gravity so strong that it actually bends the light
from other, more distant galaxies. If astronomers can find the lenses, they
can learn a lot about gravity on a huge intergalactic scale, where there are
so many unsolved mysteries that a full 95 percent of the universe’s mass
and energy is unaccounted for. When algorithms reviewed the images, they
were faster than humans and sometimes outperformed them in accuracy.
But when the telescope captured one superexciting “jackpot” lens, only the
humans noticed it.

Creative work can be automated as well, at least under the supervision
of a human artist. Whereas before a photographer might spend hours
tweaking a photograph, today’s AI-powered filters, like the built-in ones on

Instagram and Facebook, do a decent job of adjusting contrast and lighting
and even adding depth-of-focus effects to simulate an expensive lens. No
need to digitally paint cat ears onto your friend—there’s an AI-powered
filter built into your Instagram that will figure out where the ears should go,
even as your friend moves their head. In big and small ways, AI gives
artists and musicians access to time-saving tools that can expand their
ability to do creative work on their own. On the flip side of this, of course,
are tools like deepfakes, which allow people to swap one person’s head
and/or body for another, even in video. On the one hand, greater access to
this tool means that artists can readily insert Nicolas Cage or John Cho into
various movie roles, goofing around or making a serious point about
minority representation in Hollywood.7 On the other hand, the increasing
ease of deepfakes is already giving harassers new ways to generate
disturbing, highly targeted videos for dissemination online. And as
technology improves and deepfake videos become increasingly convincing,
many people and governments are worrying about the technique’s potential
for creating fake but damaging videos—like realistic yet faked videos of a
politician saying something inflammatory.

In addition to saving humans time, AI automation can mean more
consistent performance. After all, an individual human’s performance may
vary throughout the day depending on things like how recently they’ve
eaten or how much they’ve slept, and each person’s biases and moods might
have a huge effect as well. Countless studies have shown that sexism, racial
bias, ableism, and other problems affect things like whether resumes get
shortlisted, whether employees get raises, and whether prisoners get parole.
Algorithms avoid human inconsistencies—given a set of data, they’ll return
pretty much an unvarying result, no matter if it’s morning, noon, or happy
hour. But, unfortunately, consistent doesn’t mean unbiased. It’s very
possible for an algorithm to be consistently unfair, especially if it learned,
as many AIs do, by copying humans.

So there are plenty of things that it’s attractive to automate with AI. But
what about the things that determine whether we can automate a problem?

THE NARROWER THE TASK, THE SMARTER THE AI

The Turing test has been a famous benchmark for the intelligence level of
a computer program ever since Alan Turing proposed it in the 1950s. A
computer program passes the standard Turing test if it can chat with humans
and convince approximately one-third of them that it’s a human being rather
than a computer. Passing the Turing test is sometimes seen as a sign that an
algorithm has achieved human-level intelligence and maybe even self-
awareness. Lots of science fiction books and movies—Blade Runner, Ex
Machina, Bicentennial Man, and many more—involve sophisticated
artificial general intelligences that have proved their “personhood” by
passing the Turing test.

But the Turing test isn’t actually a good measure of algorithmic
intelligence. For one thing, it’s easy to pass the Turing test if you can make
the topic of conversation narrow enough. I chatted with the Whole Foods
Market bot on Facebook to test this theory:

Whole Foods: Hi Janelle! We’re here to help you find recipes as
simple as their ingredients.

Me: Do you have a recipe for guacamole?
Whole Foods: <posts a recipe: Guacamole with Cilantro>
Me: Is it okay to make guacamole from green peas?
Whole Foods: <posts a recipe: Green Pea Guacamole>
Me: Give me a recipe that uses avocado. Anything but guacamole.
Whole Foods: <posts a recipe: Avocado Salsa with Olives and

Cilantro>

At this point, the conversation is a bit ambiguous. The thing I’m chatting
with hasn’t specifically said whether it’s a human or a bot and is
competently handling questions that can be answered by posting a recipe.
But when I stray from this narrow format, the bot quickly reveals itself.

Me: How can I tell if an avocado is ripe?

Whole Foods: <posts a recipe: Edamame Guacamole>
Me: Do you have a favorite Star Wars character?
Whole Foods: <posts a recipe: Sautéed Shrimp with Polenta and

Manchego>

This is the strategy companies use when they want to use chatbots for
customer service. Rather than identify the bots as such, they rely on human
politeness to keep the conversation on topics in which the bots can hold
their own. After all, if there’s a chance you might be talking with a human
employee, it would be rude to test them with weird off-topic questions.

Even when customers stick to the prescribed topic, chatbots will struggle
if the topic is too broad. Beginning in August 2015, Facebook tried to create
an AI-powered chatbot called M that was meant to make hotel reservations,
book theater tickets, recommend restaurants, and more.8 The idea was that
the company would start out using humans to handle the most difficult
requests, thereby generating lots of examples that the algorithm could learn
from. Eventually, Facebook expected the algorithm to have enough data to
handle most questions on its own. Unfortunately, given the freedom to ask
M anything, customers took Facebook at its word. In an interview, the
engineer who started the project recounted, “People try first to ask for the
weather tomorrow; then they say ‘Is there an Italian restaurant available?’
Next they have a question about immigration, and after a while they ask M
to organize their wedding.”9 A user even asked M to arrange for a parrot to

visit his friend. M succeeded—by sending that request to be handled by a
human. In fact, years after it introduced M, Facebook found that its
algorithm still needed too much human help. It shut down the service in
January 2018.10

Dealing with the full range of things a human can say or ask is a very
broad task. The mental capacity of AI is still tiny compared to that of
humans, and as tasks become broad, AIs begin to struggle.

For example, I recently trained an AI to generate recipes. This particular
AI is set up to imitate text, but it started from a blank slate—no idea what
recipes are, no idea that various letters are referring to ingredients and
things that happen to them, no idea even what English is. There’s a lot to
keep track of, but it tried its best to figure out how to place one letter after
another and imitate the recipes it saw. When I gave it only recipes for cake
to learn from, here’s the recipe it produced.

Carrot Cake (Vera Ladies” cakes, alcohol
1 pkg yellow cake mix
3 cup flour
1 teaspoon baking powder
1 ½ teaspoon baking soda
¼ teaspoon salt
1 teaspoon ground cinnamon
1 teaspoon ground ginger
½ teaspoon ground cloves
1 teaspoon baking powder
½ teaspoon salt

1 teaspoon vanilla
1 egg, room temperature
1 cup sugar
1 teaspoon vanilla
1 cup chopped pecans

Preheat oven to 350 degrees. Grease a 9-inch springform pan.

To make the cake: Beat eggs at high speed until thick and yellow color and set aside. In a
separate bowl, beat the egg whites until stiff. Speed the first like the mixture into the
prepared pan and smooth the batter. Bake in the oven for about 40 minutes or until a wooden
toothpick inserted into centre comes out clean. Cool in the pan for 10 minutes. Turn out onto
a wire rack to cool completely.

Remove the cake from the pan to cool completely. Serve warm.

HereCto Cookbook (1989) From the Kitchen & Hawn inthe Canadian Living

Yield: 16 servings

Now, the recipe isn’t perfect, but at least it’s a recipe that’s identifiably
cake (even if, when you look at the instructions closely, you realize that it
only produces a single baked egg yolk).

Next, I asked the AI to learn to generate not just cake recipes but also
recipes for soup, barbecue, cookies, and salads. It had about ten times more
data to learn from—24,043 general recipes as opposed to just 2,431 recipes
in the cake-only dataset. Here’s a recipe it generated.

Spread Chicken Rice cheese/eggs, salads, cheese
2 lb hearts, seeded
1 cup shredded fresh mint or raspberry pie
½ cup catrimas, grated
1 tablespoon vegetable oil
1 salt
1 pepper
2 ½ tb sugar, sugar

Combine unleaves, and stir until the mixture is thick. Then add eggs, sugar, honey, and

caraway seeds, and cook over low heat. Add the corn syrup, oregano, and rosemary and the
white pepper. Put in the cream by heat. Cook add the remaining 1 teaspoon baking powder
and salt. Bake at 350F for 2 to 1 hour. Serve hot.

Yield: 6 servings

This time, the recipe is a total disaster. The AI had to try to figure out
when to use chocolate and when to use potatoes. Some recipes required
baking, some required slow simmering, and the salads required no cooking
at all. With all these rules to try to learn and keep track of, the AI spread its
brainpower too thin.

So people who train AIs to solve commercial or research problems have
discovered that it makes sense to train it to specialize. If an algorithm seems
to be better at its job than the AI that invented Spread Chicken Rice, the
main difference is probably that it has a narrower, better-chosen problem.
The narrower the AI, the smarter it seems.

C-3PO VERSUS YOUR TOASTER

This is why AI researchers like to draw a distinction between artificial
narrow intelligence (ANI), the kind we have now, and artificial general
intelligence (AGI), the kind we usually find in books and movies. We’re
used to stories about superintelligent computer systems like Skynet and Hal
or very human robots like Wall-E, C-3PO, Data, and so forth. The AIs in
these stories may struggle to understand the fine points of human emotion,
but they’re able to understand and react to a huge range of objects and
situations. An AGI could beat you at chess, tell you a story, bake you a
cake, describe a sheep, and name three things larger than a lobster. It’s also
solidly the stuff of science fiction, and most experts agree that AGI is many
decades away from becoming reality—if it will become a reality at all.

The ANI that we have today is less sophisticated. Considerably less
sophisticated. Compared to C-3PO, it’s basically a toaster.

The algorithms that make headlines when they beat people at games like
chess and go, for example, surpass humans’ ability at a single specialized
task. But machines have been superior to humans at specific tasks for a
while now. A calculator has always exceeded humans’ ability to perform
long division—but it still can’t walk down a flight of stairs.

Actually, plenty of sci-fi AGIs are for some reason unable to walk
down stairs. The Daleks, C-3PO, RoboCop thingy, Hal. Study further?

What problems are narrow enough to be suitable for today’s ANI
algorithms? Unfortunately (see warning sign number 1 of AI doom:
Problem Is Too Hard), often a real-world problem is broader than it first
appears. In our video-interview-analyzing AI from chapter 1, the problem at
first glance seems relatively narrow: a simple matter of detecting emotion in
human faces. But what about applicants who have had a stroke or who have
facial scarring or who don’t emote in neurotypical ways? A human could
understand an applicant’s situation and adjust their expectations
accordingly, but to do the same, an AI would have to know what words the
applicant is saying (speech-to-text is an entire AI problem in itself),
understand what those words mean (current AIs can only interpret the
meaning of limited kinds of sentences in limited subject areas and don’t do
well with nuance), and use that knowledge and understanding to alter how it
interprets emotional data. Today’s AIs, incapable of such a complicated
task, would most likely screen all these people out before they got to a
human.

As we’ll see below, self-driving cars may be another example of a

problem that is broader than it at first appears.

INSUFFICIENT DATA DOES NOT COMPUTE

AIs are slow learners. If you showed a human a picture of some new animal
called a wug, then gave them a big batch of pictures and told them to
identify all the pictures that contain wugs, they could probably do a decent
job just based on that one picture. An AI, however, might need thousands or
hundreds of thousands of wug pictures before it could even semireliably
identify wugs. And the wug pictures need to be varied enough for the
algorithm to figure out that “wug” refers to an animal, not to the checkered
floor it’s standing on or to the human hand patting its head.

Researchers are working on designing AIs that can master a topic with
fewer examples (an ability called one-shot learning), but for now, if you
want to solve a problem with AI, you’ll need tons and tons of training data.
The popular ImageNet set of training data for image generation or image
recognition currently has 14,197,122 images in only one thousand different
categories. Similarly, while a human driver may only need to accumulate a
few hundred hours of driving experience before they’re allowed to drive on
their own, as of 2018 the self-driving car company Waymo’s cars have
collected data from driving more than six million road miles plus five
billion more miles driven in simulation.11 And we’re still a ways off from a
widespread rollout of self-driving car technology. AI’s data hungriness is a
big reason why the age of “big data,” where people collect and analyze
huge sets of data, goes hand in hand with the age of AI.

Sometimes AIs learn so slowly that it’s impractical to let them do their
learning in real time. Instead, they learn in sped-up time, amassing
hundreds of years’ worth of training in just a few hours. A program called
OpenAI Five, which learned to play the computer game Dota (an online
fantasy game in which teams have to work together to take over a map),
was able to beat some of the world’s best human players by playing games
against itself rather than against humans. It challenged itself to tens of
thousands of simultaneous games, accumulating 180 years of gaming time
each day.12 Even if the goal is to do something in the real world, it can
make sense to build a simulation of that task to save time and effort.

Another AI’s task was to learn to balance a bicycle. It was a bit of a slow

learner, though. The programmers kept track of all the paths the bicycle’s
front wheel took as it repeatedly wobbled and crashed. It took more than a
hundred crashes before the AI could drive more than a few meters without
falling, and thousands more before it could go more than a few tens of
meters.

Training an AI in simulation is convenient, but it also comes with risks.
Because of the limited computing power of the computers that run them,
simulations aren’t nearly as detailed as the real world and are by necessity
held together with all sorts of hacks and shortcuts. That can sometimes be a
problem if the AI notices the shortcuts and begins to exploit them (more on
that later).

PIGGYBACKING ON OTHER PROGRESS

If you don’t have lots of training data, you might still be able to solve your
problem with AI if you or someone else has already solved a similar
problem. If the AI starts not from scratch but from a configuration it learned
from a previous dataset, it can reuse a lot of what it learned. For example,
say I already have an AI that I’ve trained to generate the names of metal
bands. If my next task is to build an AI that can generate ice cream flavors,
I may get results more quickly, and need fewer examples, if I start with the
metal-band AI. After all, from learning to generate metal bands, the AI
already knows

• approximately how long each name should be,
• that it should capitalize the first letter of each line,
• common letter combinations—ch and va and str and pis (it is already

partway to spelling chocolate, vanilla, strawberry, and pistachio!)—
and

• commonly occurring words, such as the and, um… death?

So a few short rounds of training can retrain the AI from a model that
produces this:

Dragonred of Blood
Stäggabash
Deathcrack
Stormgarden
Vermit
Swiil
Inbumblious
Inhuman Sand
Dragonsulla and Steelgosh
Chaosrug
Sespessstion Sanicilevus

into a model that produces this:

Lemon-Oreo
Strawberry Churro
Cherry Chai
Malted Black Madnesss
Pumpkin Pomegranate Chocolate Bar
Smoked Cocoa Nibe
Toasted Basil
Mountain Fig n Strawberry Twist
Chocolate Chocolate Chocolate Chocolate Road
Chocolate Peanut Chocolate Chocolate Chocolate

(There’s only a miiinor awkward phase in between, when it’s generating
things like this:)

Swirl of Hell
Person Cream
Nightham Toffee
Feethberrardern’s Death
Necrostar with Chocolate Person
Dirge of Fudge
Beast Cream
End All
Death Cheese
Blood Pecan
Silence of Coconut
The Butterfire
Spider and Sorbeast
Blackberry Burn

Maybe I should have started with pie instead.

As it turns out, AI models get reused a lot, a process called transfer
learning. Not only can you get away with using less data by starting with
an AI that’s already partway to its goal, you can also save a lot of time. It
can take days or even weeks to train the most complex algorithms with the
largest datasets, even on very powerful computers. But it takes only minutes
or seconds to use transfer learning to train the same AI to do a similar task.

People use transfer learning a lot in image recognition in particular,
since training a new image recognition algorithm from scratch requires a lot
of time and a lot of data. Often people will start with an algorithm that’s
already been trained to recognize general sorts of objects in generic images,
then use that algorithm as a starting point for specialized object recognition.
For example, if an algorithm already knows rules that help it recognize
pictures of trucks, cats, and footballs, it already has a head start on the task
of distinguishing different kinds of produce for, say, a grocery scanner. A
lot of the rules a generic image recognition algorithm has to discover—rules
that help it find edges, identify shapes, and classify textures—will be
helpful for the grocery scanner.

DON’T ASK IT TO REMEMBER

A problem is more easily solvable with AI if it doesn’t require much
memory. Because of their limited brainpower, AIs are particularly bad at
remembering things. This shows up, for example, when AIs try to play
computer games. They tend to be extravagant with their characters’ lives
and other resources (like powerful attacks that they only have in limited
numbers). They’ll burn through lots of lives and spells at first until their
numbers get critically low, at which point they’ll suddenly start being
cautious.13

One AI learned to play the game Karate Kid, but it always squandered
all its powerful Crane Kick moves at the beginning of the game. Why? It
only had enough memory to look forward to the next six seconds of game
play. As Tom Murphy, who trained the algorithm, put it, “Anything that you
are gonna need 6 seconds later, well, too bad. Wasting lives and other
resources is a common failure mode.”14

Even sophisticated algorithms like OpenAI’s Dota-playing bot have only
a limited time frame over which they can remember and predict. OpenAI
Five can predict an impressive two minutes into the future (impressive for a
game with so many complex things happening so quickly), but Dota
matches can last for forty-five minutes or more. Although OpenAI Five can
play with a terrifying level of aggression and precision, it also seems not to
know how to use techniques that will pay off in the much longer term.15

Like the simple Karate Kid bot that employs the Crane Kick too early, it
tends to use up a character’s most powerful attacks early on rather than
saving them for later, when they will count the most.

This failure to plan ahead shows up fairly often. In level 2 of Super
Mario Bros., there is an infamous ledge, the bane of all game-playing
algorithms. This ledge has lots of shiny coins on it! By the time they get to
level 2, AIs usually know coins are good. The AIs also usually know that
they have to keep moving to the right so they can reach the end of the level
before time runs out. But if the AI jumps onto the ledge, it then has to go
backwards to get down off the ledge. The AIs have never had to go
backwards before. They can’t figure it out, and they get stuck on the ledge

until time runs out. “I literally spent about six weekends and thousands of
hours of CPU on the problem,” said Tom Murphy, who eventually got past
the ledge with some improvements to his AI’s skills at long-term
planning.16

Text generation is another place where the short memory of AI can be a
problem. For example, Heliograf, the journalism algorithm that translates
individual lines of a spreadsheet into sentences in a formulaic sports story,
works because it can write each sentence more or less independently. It
doesn’t need to remember the entire article at once.

Language-translating neural networks, like the kind that power Google
Translate, don’t need to remember entire paragraphs, either. Sentences, or
even parts of sentences, can usually be individually translated from one
language to another without any memory of the previous sentence. When
there is some kind of long-term dependence, such as an ambiguity that
might have been resolved with information from a previous sentence, the
AI usually can’t make use of it.

Other kinds of tasks make AI’s terrible memory even more obvious. One
example is algorithmically generated stories. There’s a reason AI doesn’t
write books or TV shows (though people are, of course, working on this).

If you’re ever wondering whether a bit of text was written by a machine
learning algorithm or a human (or at least heavily curated by a human), one
way to tell is to look for major problems with memory. As of 2019, only
some AIs are starting to be able to keep track of long-term information in a
story—and even then, they’ll tend to lose track of some bits of crucial
information.

Many text-generating AIs can only keep track of a few words at a time.
For example, here’s what a recurrent neural network (RNN) wrote after it
was trained on nineteen thousand descriptions of people’s dreams from
dreamresearch.net:

I get up and walk down the hall to his house and see a bird in the very narrow drawer and it
is a group of people in the hand doors. At home like an older man is going to buy some
keys. He looks at his head with a cardboard device and then my legs are parked on the table.

Now, dreams are notoriously incoherent, switching settings and mood
and even characters midstream. These neural-net dreams, however, don’t

maintain coherence for more than a sentence or so—sometimes
considerably less. Characters who are never introduced are referred to as if
they had been there all along. The whole dream forgets where it is.
Individual phrases may make sense, and the rhythm of the words sounds
okay if you don’t pay attention to what’s going on. Matching the surface
qualities of human speech while lacking any deeper meaning is a hallmark
of neural-net-generated text.

On the next page is another example, this time a recipe, where it’s even
easier to see the effects of memory limitation. This recipe was generated by
the same recurrent neural network, or machine learning algorithm, that
generated the recipes here. (As you can see, this is the one that learned from
a variety of recipes, including, apparently, recipes for black pudding, a type
of blood sausage.) This neural network builds a recipe letter by letter,
looking at the letters it’s already generated to decide which one comes next.
But each extra letter that it looks at requires more memory, and there’s only
so much memory available on the computer that’s running it. So to make
the memory demands manageable, the neural network looks only at the
most recent characters, a few at a time. For this particular algorithm and my
computer, the largest memory I could give it was sixty-five characters. So
every time it had to come up with the next letter of the recipe, it only had
information about the previous sixty-five characters.* You can tell where in
the recipe it ran out of memory and forgot it was making a chocolate dessert
—about when it decided to add black pepper and whatever “rice cream” is.

This memory limitation is beginning to change. Researchers are working
on making recurrent neural networks that can look at short-term and long-
term features when predicting the next letters in a text. The idea is similar to
the algorithms that look at small-scale features in images first (edges and
textures, for example), then zoom out to look at the big picture. These
strategies are called convolution. A neural network that uses convolution
(and that is also hundreds of times larger than the one I trained on my
laptop) can keep track of information long enough to remain on topic. The
following recipe is from a neural network called GPT-2, which OpenAI
trained on a huge selection of webpages, and which I then fine-tuned by
training it on all kinds of recipes.

Chunk Cake cakes, deserts
8 cup flour
4 lb butter; room temperature
2 ¼ cup corn syrup; divided
2 eggs; pureed and cooled
1 teaspoon cream of tartar
½ cup m&m’s
8 oz chunky whites
1 chocolate sifted

Cream 2 ¼ cups of flour at medium speed until thickened.

Lightly grease and flour two greased and waxed paper-lined box ingredients; combine flour,
syrup, and eggs. Add cream of tartar. Pour into a gallon-size loaf-pan. Bake at 450 degrees
for 35 minutes. Meanwhile, in large bowl, combine syrup, whites, and chocolate; stir which
until thoroughly mixed. Cool pan. Pour 2 tb chocolate mixture over whole cake. Refrigerate
until serving time.

Yield: 20 servings

With its memory improved by convolution, the GPT-2 neural net
remembers to use most of its ingredients, and even remembers that it’s
supposed to be making cake. Its directions are still somewhat improbable—
plain flour won’t thicken no matter how long you cream it, and the
flour/syrup/egg mixture is unlikely to turn into cake, even with the addition
of cream of tartar. It’s still an impressive improvement compared to the
Chocolate Butterbroth Black Pudding.

Here’s another example from GPT-2, this time its attempt at writing
Harry Potter fan fiction. The algorithm was able to keep track of
which characters were in the scene and even remember recurring
motifs—in this case, remembering that there was already a snake on
Snape’s head.

Snape: I understand.
[A snake appears and Snape puts it on his head and it appears to do the talking. It

says ‘I forgive you.’]
HARRY: You can’t go back if you don’t forgive.
Snape: [sighing] Hermione.
HARRY: Okay, listen.
Snape: I want to apologize to you for getting angry and upset over this.
HARRY: It’s not your fault.
HARRY: That’s not what I meant to imply.
[Another snake appears then it says ‘And I forgive you.’]
HERMIONE: And I forgive you.
Snape: Yes.

Another strategy for dealing with memory limits is to group basic units
together so the neural network can achieve coherence while remembering
fewer things. Rather than remembering sixty-five letters, it might remember
sixty-five entire words, or even sixty-five plot elements. If I had restricted
my neural network to a specially crafted set of required ingredients and
allowable ranges—as a team at Google did when trying to design a new
gluten-free chocolate chip cookie—it would have produced valid recipes
every time.17 Unfortunately, Google’s result, though more cookielike than
anything my algorithm could have produced, was reportedly still terrible.18

IS THERE A SIMPLER WAY OF SOLVING THIS
PROBLEM?

This leads us to one of the final things that determines whether a problem is
a good one for AI (although it doesn’t determine whether people will try to
use AI to solve the problem anyway): is AI really the simplest way of
solving it?

Some problems were tough to make progress on before we had big AI
models and lots of data. AI revolutionized image recognition and language
translation, making smart photo tagging and Google Translate ubiquitous.
Those problems are hard for people to write down general rules for, but an
AI approach can analyze lots of information and form its own rules. Or an
AI can look at one hundred characteristics of phone customers who
switched to a different provider, then figure out how to guess which
customers are likely to switch in the future. Maybe the volatile customers
are young, live in areas with poorer than average coverage, and have been
customers for less than six months.

The danger, however, is misapplying a complex AI solution to a
situation that would be better handled by a bit of common sense. Maybe the
customers who leave are the ones on the weekly cockroach delivery plan—
that plan is terrible.

LET THE AI DRIVE?

What about self-driving cars? There are many reasons why this is an
attractive problem for AI. We would love to automate driving, of course—
many people find it tedious or at times even impossible. A competent AI
driver would have lightning-fast reflexes, would never weave or drift in its
lane, and would never drive aggressively. In fact, self-driving cars tend to
sometimes be too timid and have trouble merging with rush-hour traffic or
turning left on a busy road.19 The AI would never get tired, though, and
could take the wheel for endless hours while the humans nap or party.

We can also accumulate lots of example data as long as we can afford to
pay human drivers to drive around for millions of miles. We can easily
build virtual driving simulations so that the AI can test and refine its
strategies in sped-up time.

The memory requirements for driving are modest, too. This moment’s
steering and velocity don’t depend on things that happened five minutes
ago. Navigation takes care of planning for the future. Road hazards like
pedestrians and wildlife come and go in a matter of seconds.

And finally, controlling a self-driving car is so difficult that we don’t
have other good solutions. AI is the solution that’s gotten us the furthest so
far.

Yet it is an open question whether driving is a narrow enough problem to
be solved with today’s AI or whether it will require something more like the
human-level artificial general intelligence (AGI) I mentioned earlier. So far,
AI-driven cars have proved themselves able to drive millions of miles on
their own, and some companies report that a human needed to intervene on
test drives only once every few thousand or so miles. It’s that rare need for
intervention, however, that’s proving tough to eliminate fully.

Humans have needed to rescue the AIs of self-driving cars from a
variety of situations. Usually companies don’t disclose the reasons for these
so-called disengagements, only the number of them, which is required by
law in some places. This may be in part because the reasons for
disengagement can be frighteningly mundane. In 2015 a research paper20

listed some of them. The cars in question, among other things,

• saw overhanging branches as an obstacle,
• got confused about which lane another car was in,
• decided that the intersection had too many pedestrians for it to handle,
• didn’t see a car exiting a parking garage, and
• didn’t see a car that pulled out in front of it.

A fatal accident in March 2018 was the result of a situation like this—a
self-driving car’s AI had trouble identifying a pedestrian, classifying her
first as an unknown object, then as a bicycle, and then finally, with only 1.3
seconds left for braking, as a pedestrian. (The problem was further
confounded by the fact that the car’s emergency braking systems were
disabled in favor of alerting the car’s backup driver, yet the system was not
designed to actually alert the backup driver. The backup driver had also
spent many, many hours riding with no intervention needed, a situation that
would make the vast majority of humans less than alert.)21 A fatal accident
in 2016 also happened because of an obstacle-identification error—in this
case, a self-driving car failed to recognize a flatbed truck as an obstacle (see
the box on the next page).

In 2016 there was a fatal accident when a driver used Tesla’s autopilot
feature on city streets instead of the highway driving that it had been
intended for. A truck crossed in front of the car, and the autopilot’s AI
failed to brake—it didn’t register the truck as an obstacle that needed
to be avoided. According to analysis by Mobileye (who designed the
collision-avoidance system), because their system had been designed
for highway driving, it had only been trained to avoid rear-end
collisions. That is, it had only been trained to recognize trucks from
behind, not from the side. Tesla reported that when the AI detected the
truck, it recognized it as an overhead sign and decided it didn’t need to
brake.22

That’s not to mention the more unusual situations that can occur. When
Volkswagen tested its AI in Australia for the first time, they discovered it
was confused by kangaroos. Apparently it had never before encountered
anything that hopped.23

Given the sheer variety of things that can happen on a road—parades,
escaped emus, downed electrical lines, lava, emergency signs with unusual
instructions, molasses floods, and sinkholes—it’s inevitable that something
will occur that an AI never saw in training. It’s a tough problem to make an
AI that can deal with something completely unexpected—that would know
that an escaped emu is likely to run wildly around while a sinkhole will stay
put and to understand intuitively that just because lava flows and pools sort
of like water does, it doesn’t mean you can drive through a puddle of it.

Car companies are trying to adapt their strategies to the inevitability of
mundane glitches or freak weirdness on the road. They’re looking into
limiting self-driving cars to closed, controlled routes (this doesn’t
necessarily solve the emu problem; they are wily) or having self-driving
trucks caravan behind a lead human driver. In other words, the
compromises are leading us toward solutions that look very much like mass
public transportation.

As of right now, when the AIs get confused, they disengage—that is,
they suddenly hand control back to the human behind the wheel.
Automation level 3, conditional automation, is the highest level of car
autonomy commercially available—in Tesla’s autopilot mode, for example,
the car can drive for hours unguided, but a human driver can be called to
take over at any moment. The problem with this level of automation is that
the human had better be behind the wheel and paying attention, not in the
back seat decorating cookies. And humans are very, very bad at being alert
after boring hours of idly watching the road. Human rescue is often a decent
option for bridging the gap between the AI performance we have and the
performance we need, but humans are pretty bad at rescuing self-driving
cars.

So making self-driving cars is at once an attractive and very difficult AI
problem. To get mainstream self-driving cars, we may need to make
compromises (like creating controlled routes and sticking with automation
level number 4), or we may need AI that’s significantly more flexible than
the AI we have now.

In the next chapter, we’ll look at the types of AI that are behind things
like self-driving cars—modeled after brains, evolution, and even the game
of call my bluff.

CHAPTER 3

How does it actually learn?

Remember that in this book I’m using the term AI to mean “machine
learning programs.” (Refer to the handy chart here for a list of stuff that I
am or am not considering to be AI. Sorry, person in a robot suit.) A
machine learning program, as I explained in chapter 1, uses trial and error
to solve a problem. But how does that process work? How does a program
go from producing a jumble of random letters to writing recognizable
knock-knock jokes, all without a human telling it how words work or what
a joke even is?

There are lots of different methods of machine learning, many of which
have been around for decades, often long before people started calling them

AI. Today, these technologies are combined or remixed or made ever more
powerful by faster processing and bigger datasets. In this chapter we’ll look
at a few of the most common types, peeking under the hood to see how they
learn.

NEURAL NETWORKS

These days, when people talk about AI, or deep learning, what they’re
often referring to are artificial neural networks (ANNs). (ANNs have also
been known as cybernetics, or connectionism.)

There are lots of ways to build artificial neural networks, each meant for
a particular application. Some are specialized for image recognition, some
for language processing, some for generating music, some for optimizing
the productivity of a cockroach farm, some for writing confusing jokes. But
they’re all loosely modeled after the way the brain works. That’s why
they’re called artificial neural networks—their cousins, biological neural
networks, are the original, far more complex models. In fact, when
programmers made the first artificial neural networks, in the 1950s, the goal
was to test theories about how the brain works.

In other words, artificial neural networks are imitation brains.
They’re built from a bunch of simple chunks of software, each able to

perform very simple math. These chunks are usually called cells or
neurons, an analogy with the neurons that make up our own brains. The
power of the neural network lies in how these cells are connected.

Now, compared to actual human brains, artificial neural networks aren’t
that powerful. The ones I use for a lot of the text generation in this book
have as many neurons as… a worm.

Unlike a human, the neural net is at least able to devote its entire one-
worm-power brain to the task at hand (if I don’t accidentally distract it with
extraneous data). But how can you solve problems using a bunch of

interconnected cells?

The most powerful neural networks, the ones that take months and
tens of thousands of dollars’ worth of computing time to train, have
far more neurons than my laptop’s neural net, some even exceeding
the neuron count of a single honeybee. Looking at how the size of the
world’s largest neural networks has increased over time, a leading
researcher estimated in 2016 that artificial neural networks might be
able to approach the number of neurons in the human brain by around
2050.1 Will this mean that AI will approach the intelligence of a
human then? Probably not even close. Each neuron in the human brain
is much more complex than the neurons in an artificial neural network
—so complex that each human neuron is more like a complete many-
layered neural network all by itself. So rather than being a neural
network made of eighty-six billion neurons, the human brain is a
neural network made of eighty-six billion neural networks. And there
are far more complexities to our brains than there are to ANNs,
including many we don’t fully understand yet.

THE MAGIC SANDWICH HOLE

Let’s say, hypothetically, that we have discovered a magic hole in the
ground that produces a random sandwich every few seconds. (Okay, this is
very hypothetical.) The problem is that the sandwiches are very, very
random. Ingredients include jam, ice cubes, and old socks. If we want to
find the good ones, we’ll have to sit in front of the hole all day and sort
them.

But that’s going to get tedious. Good sandwiches are only one in a
thousand. However, they are very, very good sandwiches. Let’s try to
automate the job.

To save ourselves time and effort, we want to build a neural network that
can look at each sandwich and decide whether it’s good. For now, let’s
ignore the problem of how to get the neural network to recognize the
ingredients the sandwiches are made of—that’s a really hard problem. And
let’s ignore the problem of how the neural network is going to pick up each
sandwich. That’s also really, really hard—not just recognizing the motion of
the sandwich as it flies from the hole but also instructing a robot arm to
grab a slim paper-and-motor-oil sandwich or a thick bowling-ball-and-
mustard sandwich. Let’s assume, then, that the neural net knows what’s in
each sandwich and that we’ve solved the problem of physically moving the
sandwiches. It just has to decide whether to save this sandwich for human
consumption or throw it into the recycling chute. (We’re also going to
ignore the mechanism of the recycling chute—let’s say it’s another magic
hole.)

This reduces our task to something simple and narrow—as we
discovered in chapter 2, that makes it a good candidate for automation with
a machine learning algorithm. We have a bunch of inputs (the names of the
ingredients), and we want to build an algorithm that will use them to figure
out our single output, a number that indicates whether the sandwich is good.
We can draw a simple “black box” picture of our algorithm, and it looks
like this:

We want the “deliciousness” output to change depending on the
combination of ingredients in the sandwich. So if a sandwich contains
eggshells and mud, our black box should do this:

But if the sandwich contains chicken and cheese, it should do this
instead:

Let’s look at how things are hooked up inside the black box.
First, let’s make it simple. We hook up all the inputs (all the ingredients)

to our single output. To get our deliciousness rating, we add each
ingredient’s contribution. Clearly each ingredient should not contribute
equally—the presence of cheese would make the sandwich more delicious,
while the presence of mud would make the sandwich less delicious. So each
ingredient gets a different weight. The good ones get a weight of 1, while
the ones we want to avoid get a weight of 0. Our neural network looks like
this:

Let’s test it with some sample sandwiches. Suppose the sandwich
contains mud and eggshells. Mud and eggshells both contribute a 0, so the

deliciousness rating is 0 + 0 = 0.

But a peanut-butter-and-marshmallow sandwich will get a rating of 1 +
1 = 2. (Congratulations! You have been blessed with that New England
delicacy, the fluffernutter.)

With this neural network configuration, we successfully avoid all the
sandwiches that contain only eggshells, mud, and other inedible things. But
this simple one-layer neural network is not sophisticated enough to
recognize that some ingredients, while delicious on their own, are not
delicious in combination with certain others. It’s going to rate a chicken-
and-marshmallow sandwich as delicious, the equal of the fluffernutter. It’s
also susceptible to something we’ll call the big sandwich bug: a sandwich
that contains mulch might still be rated as tasty if it contains enough good
ingredients to cancel out the mulch.

To get a better neural network, we’re going to need another layer of

cells.

Here’s our neural network now. Each ingredient is connected to our new
layer of cells, and each cell is connected to the output. This new layer is
called a hidden layer, because the user only sees the inputs and the outputs.
Just as before, each connection has its own weight, so it affects our final
deliciousness output in different ways. This isn’t deep learning yet (that
would require even more layers), but we’re getting there.

DEEP LEARNING

Adding hidden layers to our neural network gets us a more
sophisticated algorithm, one that’s able to judge sandwiches as more
than the sum of their ingredients. In this chapter, we’ve only added
one hidden layer, but real-world neural networks often have several.
Each new layer means a new way to combine the insights from the
previous layer—at higher and higher levels of complexity, we hope.
This approach—lots of hidden layers for lots of complexity—is
known as deep learning.

With this neural network, we can finally avoid bad ingredients by
connecting them to a cell that we’ll call the punisher. We’ll give that cell a
huge negative weight (let’s say –100) and connect everything bad to it with
a weight of 10. Let’s make the first cell the punisher and connect the mud
and eggshells to it. Here’s what that looks like:

Now, no matter what happens in the other cells, a sandwich is likely to
fail if it contains eggshells or mud. Using the punisher cell, we can beat the
big sandwich bug.

We can do other things with the rest of the cells—like finally make a
neural network that knows which ingredient combos work. Let’s use the
second cell to recognize chicken-and-cheese-type sandwiches. We’ll refer
to it as the deli sandwich cell. We connect chicken and cheese to it with
weights of 1 (we’ll also do this with ham and turkey and mayo) and connect
everything else to it with weights of 0. And this cell gets connected to the
output with a modest weight of 1. The deli sandwich cell is a good thing,
but if we get too excited about it and assign it a very high weight, we’ll be
in danger of making the punisher cell less powerful. Let’s look at what this
cell does.

A chicken-and-cheese sandwich will cause this cell to contribute a
cheerful 1 + 1 = 2 to the final output. But adding marshmallow to the
chicken-and-cheese sandwich doesn’t hurt it at all, even though it makes a
pretty objectively less delicious sandwich. To fix that, we’ll need other cells
that specifically look for and punish incompatibilities.

Cell 3, for example, might look for the chicken-marshmallow
combination (let’s call it the cluckerfluffer) and severely punish any
sandwich that contains it. It would be hooked up like this:

Cell 3 returns a devastating (10 + 10) × -100 = –2000 to any sandwich

that dares to combine chicken and marshmallow. It’s acting like a very
specialized punisher cell, designed specifically to punish chicken and
marshmallow. Notice that I’ve shown an extra part of the cluckerfluffer cell
here, called the activation function, because without it, the cell will punish
any sandwich that contains chicken or marshmallow. With a threshold of
15, the activation function stops the cell from turning on when just chicken
(10 points) or marshmallow (10 points) is present—it will return a neutral 0.
But if both are present (10 + 10 = 20 points), the threshold of 15 is
exceeded, and the cell turns on. Boom! The activated cell punishes any
combination of ingredients that exceeds its threshold.

With all the cells connected in similarly sophisticated configurations, we
have a neural net that can sort out the best sandwiches the magic hole has to
offer.

THE TRAINING PROCESS

So now we know what a well-configured sandwich-picking neural network
might look like. But the point of using machine learning is that we don’t
have to set up the neural network by hand. Instead, it should be able to
configure itself into something that does a great sandwich-picking job. How
does this training process work?

Let’s go back to a simple two-layer neural network. At the beginning of
the training process, it’s starting completely from scratch, with random
weights for each ingredient. Chances are it’s very, very bad at rating
sandwiches.

We’ll need to train it with some real-world data—some examples of the
correct way to rate a sandwich, as demonstrated by real humans. As the
neural net rates each sandwich, it needs to compare its ratings against those
of a panel of cooperative sandwich judges. Note: never volunteer to test the
early stages of a machine learning algorithm.

For this example, we’ll go back to the very simple neural network.
Remember, since we’re trying to train it from scratch, we’re ignoring all our
prior knowledge about what the weights should be, and starting from
random ones. Here they are:

It hates cheese. It loves marshmallow. It’s rather fond of mud. And it can
take or leave eggshells.

The neural net looks at the first sandwich that pops out of the magic
sandwich hole and using its (terrible) judgment, gives it a score. It’s a
marshmallow, eggshell, and mud sandwich, so it gets a score of 10 + 0 + 2
= 12. Wow! That’s a really, really great score!

It presents the sandwich to the panel of human judges. Harsh reality: it’s
not a popular sandwich.

Now comes the part where the neural net has a chance to improve: it
looks at what would have happened if its weights were slightly different.
From this one sandwich, it doesn’t know what the problem is. Was it too
excited about the marshmallow? Are eggshells not neutral but maybe even a
teensy bit bad? It can’t tell. But if it looks at a batch of ten sandwiches, the
scores it gave them, and the scores the human judges gave them, it can
discover that if it had in general given mud a lower weight, lowering the
score of any sandwich that contains mud, its scores would match those of
the human judges a bit better.

With its newly adjusted weights, it’s time for another iteration. The
neural net rates another bunch of sandwiches, compares its scores against
those of the human judges, and adjusts its weights again. After thousands
more iterations and tens of thousands of sandwiches, the human judges are
very, very sick of this, but the neural network is doing a lot better.

There are plenty of pitfalls in the way of progress, though. As I
mentioned above, this simple neural network only knows if particular
ingredients are generally good or generally bad, and it isn’t able to come up
with a nuanced idea of which combinations work. For that, it needs a more
sophisticated structure, one with hidden layers of cells. It needs to evolve
punishers and deli sandwich cells.

Another pitfall that we’ll have to be careful of is the issue of class
imbalance. Remember that only a handful of every thousand sandwiches
from the sandwich hole are delicious. Rather than go through all the trouble
of figuring out how to weight each ingredient, or how to use them in
combination, the neural net may realize it can achieve 99.9 percent
accuracy by rating each sandwich as terrible, no matter what.

To combat class imbalance, we’ll need to prefilter our training
sandwiches so that there are approximately equal proportions of sandwiches
that are delicious and awful. Even then, the neural net might not learn about
ingredients that are usually to be avoided but delicious in very specific
circumstances. Marshmallow might be an example of such an ingredient—
awful with most of the usual sandwich ingredients but delicious in a
fluffernutter (and maybe with chocolate and bananas). If the neural net

doesn’t see fluffernutters in training, or sees them very rarely, it may decide
that it can achieve pretty good accuracy by rejecting anything that contains
marshmallow.

Class imbalance–related problems show up all the time in practical
applications, usually when we ask AI to detect a rare event. When
people try to predict when customers will leave a company, they have
a lot more examples of customers who stay than customers who leave,
so there’s a danger the AI will take the shortcut of deciding that all
customers will stay forever. Detecting fraudulent logins and hacking
attacks has a similar problem, since actual attacks are rare. People also
report class imbalance problems in medical imaging, where they may
be looking for just one abnormal cell among hundreds—the
temptation is for the AI to shortcut its way to high accuracy just by
predicting that all cells are healthy. Astronomers also run into class
imbalance problems when they use AI, since many interesting celestial
events are rare—there was a solar-flare-detecting program that
discovered it could achieve near 100 percent accuracy by predicting
zero solar flares, since these were very rare in the training data.2

WHEN CELLS WORK TOGETHER

In the sandwich-sorting example above, we saw how a layer of cells can
increase the complexity of the tasks a neural network can perform. We built
a deli sandwich cell that responded to combinations of deli meats and
cheeses, and we built a cluckerfluffer cell that punished any sandwich that
tried to use chicken and marshmallow in combination. But in a neural
network that trains itself, using trial and error to adjust the connections
between cells, it’s usually a lot harder to identify each cell’s job. Tasks tend
to be spread among several cells—and in the case of some cells, it’s
difficult or impossible to tell what tasks they accomplish.

To explore this phenomenon, let’s look at some of the cells of a fully
trained neural net. Built and trained by researchers at OpenAI,3 this
particular neural net looked at more than eighty-two million Amazon
product reviews letter by letter and tried to predict which letter would come
next. This is another recurrent neural network, the same general sort as the
one that generated the knock-knock jokes, ice cream flavors, and recipes
listed in chapters 1 and 2. This one’s larger—it has approximately as many
neurons as a jelly fish. Here are a few examples of reviews it generated:

This is a great book that I would recommend to anyone who loves the great story of the
characters and the series of books.

I love this song. I listen to it over and over again and never get tired of it. It is so addicting. I
love it!!

This is the best product I have ever used to clean my shower stall. It is not greasy and does
not strip the water of the water and stain the white carpet. I have been using it for a few
years and it works well for me.

These workout DVDs are very useful. You can cover your whole butt with them.

I bought this thinking it would be good for the garage. Who has a lot of lake water? I was
totally wrong. It was simple and fast. The night grizzly has not harmed it and we have had
this for over 3 months. The guests are inspired and they really enjoy it. My dad loves it!

This particular neural net has an input for each letter or punctuation
mark it could encounter (similar to the sandwich sorter, which had one input
for each sandwich ingredient) and can look back at the past few letters and
punctuation marks. (It is as if the sandwich rater’s scoring depended a bit on
the last few sandwiches it had seen—maybe it can keep track of whether we
might be sick of cheese sandwiches and adjust the next cheese sandwich’s
rating accordingly.) And rather than having a single output, as the sandwich
sorter does, the review-writing neural net has a lot of them, one output for
each letter or punctuation mark that it could choose as most likely to come
next in the review. If it sees the sequence “I own twenty eggbeaters and this
is my very favorit,” then the letter e will be the most likely next choice.

Based on the outputs, we can take a look at each cell and see when it’s
“active,” letting us make an educated guess about what its function is. In
our sandwich-sorter example above, the deli sandwich cell would be active
when it sees lots of meat and cheese and inactive when it sees socks or
marbles or peanut butter. However, most of the neurons in the Amazon
product-review neural net are going to be nowhere near as interpretable as
deli cells and punisher neurons. Instead, most of the rules the neural net
comes up with are going to be unintelligible to us. Sometimes we can guess
what a cell’s function will be, but far more frequently, we have no idea what
it’s doing.

Here’s the activity of one of the product-review algorithm’s cells (the
2,387th) as it generates a review (white = active, dark = inactive):

This cell is contributing to the neural net’s prediction of which letters
come next, but its function is mysterious. It’s reacting to certain letters, or
certain combinations of letters, but not in a way that makes sense to us.
Why was it really excited about the letters um in album but not the letters
al? What is it actually doing? It’s just one small piece of the puzzle working
with a lot of other cells. Almost all the cells in a neural net are as
mysterious as this one.

However, every once in a while, there will be a cell whose job is
recognizable—a cell that activates whenever we’re between a pair of
parentheses or that activates increasingly strongly the longer a sentence
gets.4 The people who trained the product-review neural net noticed that it
had one cell that was doing something they could recognize: it was
responding to whether the review was positive or negative. As part of its
task of predicting the next letter in a review, the neural net seems to have
decided it was important to determine whether to praise the product or trash
it. Here’s the activation of the “sentiment neuron” on that same review.
Note that a light color indicates high activation, which means it thinks the
review is positive:

The review starts out very positive, and the sentiment neuron is highly
activated. Midway through, however, it switches tone, and the cell’s
activation level goes way down.

Here’s another example of the sentiment neuron at work. It has low
activity when the review is neutral or critical but quickly swings into high
gear whenever it detects a change in sentiment:

But it’s less good at detecting sentiment in other kinds of text. Most
people would not classify this passage from Edgar Allan Poe’s “The Fall of
the House of Usher” as positive in sentiment, but this particular neural net
thinks it’s mostly positive:

I guess a movie could overpower you by an intense sentiment of horror
and be a good movie if that’s what it was supposed to do.

Again, it’s unusual to find a cell in a text-generating or text-analyzing
algorithm that behaves as transparently as the sentiment neuron. The same
goes for other types of neural networks—and that’s too bad, since we’d love
to be able to tell when they’re making unfortunate mistakes and to learn
from their strategies.

In image-recognizing algorithms, though, it’s a bit easier to find cells
whose jobs you can identify. There the inputs are the individual pixels of a
particular image, and the outputs are the various possible ways to classify
the image (dog, cat, giraffe, cockroach, and so on). Most image recognition
algorithms have lots and lots of layers of cells in between—the hidden
layers. And in most image recognition algorithms, there are cells or groups
of cells whose functions we can identify if we analyze the neural net in the
right way. We can look at the collections of cells that activate when they see
particular things, or we can tweak the input image and see which changes
make the cells activate most strongly.

DEEP DREAMING

Tweaking an image to make the neurons more excited about it is the
technique used to make the famous Google DeepDream images where
an image-identifying neural network turned ordinary images into
landscapes full of trippy dog faces and fantastic conglomerations of
arches and windows.

To make a DeepDream image, you start with a neural network that
has been trained to recognize something—dogs, for example. Then
you choose one of its cells and gradually change the image to make
that cell increasingly more excited about it. If the cell is trained to
recognize dog faces, then it will get more excited the more it sees
areas in the image that look like dog faces. By the time you’ve
changed the image to the cell’s liking, it will be highly distorted and
covered in dogs.

The smallest groups of cells seem to look for edges, colors, and very
simple textures. They might report vertical lines, curves, or green grassy
textures. In subsequent layers, larger groups of cells look for collections of
edges, colors, and textures or for simple features. Some researchers at
Google, for example, analyzed their GoogLeNET image recognition
algorithm and found that it had several collections of cells that were looking
specifically for floppy versus pointy ears on animals, which helped it
distinguish dogs from cats.5 Other cells got excited about fur or eyeballs.

Image-generating neural networks also have some cells that do
identifiable jobs. We can do “brain surgery” on image-generating neural

networks, removing certain cells to see how the generated image changes.6
A group at MIT found that it could deactivate cells to remove elements
from generated images. Interestingly, elements that the neural net deemed
“essential” were more difficult to remove than others—for example, it was
easier to remove curtains from an image of a conference room than to
remove the tables and chairs.

Now let’s look at another kind of algorithm, one you’ve probably
interacted with directly if you’ve used the predictive-text feature of a
smartphone.

MARKOV CHAINS

A Markov chain is an algorithm that can tackle many of the same
problems as the recurrent neural network (RNN) that generated the recipes,
ice cream flavors, Amazon reviews, and metal bands in this book. Like the
RNN, it looks at what happened in the past (words previously used in a
sentence or last week’s weather, for example) and predicts what’s most
likely to happen next.

Markov chains are more lightweight than most neural networks and
quicker to train. That’s why the predictive-text function of smartphones is
usually a Markov chain rather than an RNN.

However, a Markov chain gets exponentially more unwieldy as its
memory increases. Most predictive-text Markov chains, for example, have
memories that are only three to five words long. RNNs, by contrast, can
have memories that are hundreds of words long—or even longer with the
use of LSTM (long short-term memory) and convolution tricks. In chapter
2 we saw how important memory length is when short memory made an
RNN lose track of important information. The same is true for Markov
chains.

I trained a Markov chain with a dataset of Disney songs using a trainable
predictive-text keyboard.7 Training took only a few seconds as opposed to a
few minutes for an RNN. But this Markov chain has a three-word memory.
That is, the words it suggests are the ones it thinks are the most likely based
on the previous three words in the song. When I had it generate a song,
choosing only its top suggestion at every step, here is what it produced:

The sea)
under the sea)
under the sea)
under the sea)
under the sea)
under the sea)
under the sea)

It doesn’t know how many times to sing “under the sea” because it
doesn’t know how many times it has already sung it.

If I start it out with the beginning of the song “Beauty and the Beast”
(“Tale as Old as Time”), it quickly gets stuck again.

Tale as old as time
song as old as time
song as old as time
song as old as time

In several verses of “Beauty and the Beast,” the words “tale as old as
time” are immediately followed by the words “song as old as rhyme.” But
when this Markov chain is looking at the phrase “as old as,” it doesn’t know
which of those two verses it’s in the middle of writing.

I can get it out of its trap by choosing the second most probable word at
every step. Then it writes this:

A whole world
bright young master
you’re with all
ya think you’re by wonder
by the powers
and i got downhearted
alone hellfire dark side

And choosing the third most probable word each time:

You think i can open up
where we’ll see how you feel
it all my dreams will be mine
is something there before
she will be better time

These are a lot more interesting, but they don’t make much sense. And
songs—and poetry—are pretty forgiving when it comes to grammar,
structure, and coherence. If I give the Markov chain a different dataset to

learn, then its shortcomings become even more obvious.
Here’s a Markov chain trained on a list of April Fool’s Day pranks as it

chooses the most probable next word at each step. (It never suggested
punctuation, so the line breaks are my additions.)

The door knob off a door and put it back on backwards softly
Do nothing all day to a co of someone’s ad in the paper for a garage sale at someone of an

impending prank
Then do nothing all day to a co of someone’s ad in the paper for a garage sale at…

A predictive-text Markov chain isn’t likely to hold a conversation with a
customer or write a story that can be used as a new video-game quest (both
of which are things that people are trying to get RNNs to do one day). But
one thing it can do is suggest likely words that might come next in a
particular training set.

The people at Botnik, for example, use Markov chains trained on
various datasets (Harry Potter books, Star Trek episodes, Yelp reviews, and
more) to suggest words to human writers. The unexpected Markov chain
suggestions often help the writers take their texts in weirdly surreal
directions.

Rather than allowing the Markov chain and its short memory to try to
choose the next word, I can let it come up with a bunch of options and
present them to me—just as predictive text does when I’m composing a text
message to someone.

Here’s an example of what it looks like to interact with one of Botnik’s
trained Markov chains, this one trained on Harry Potter books:

And here are some new April Fool’s Day pranks I wrote with the help of
the predictive text of a trained Markov chain:

Put plastic wrap pellets on your lips.
Arrange the kitchen sink into a chicken head.
Put a glow stick in your hand and pretend to sneeze on the roof.
Make a toilet seat into pants and then ask your car to pee.

For the sake of comparison, I also used a more complex, data-
intensive RNN to generate April Fool’s Day pranks. In this case, the
RNN generated the entire prank, punctuation and all. However, there
was still an element of human creativity involved—I had to sort
through all the RNN-generated pranks looking for the funniest ones.

Make a food in the office computer of someone.
Hide all of the entrance to your office building if it only has one entrance.
Putting googly eyes on someone’s computer mouse so that it won’t work.
Set out a bowl filled with a mix of M&M’s, Skittles, and Reese’s Pieces.
Place a pair of pants and shoes in your ice dispenser.

You can conduct similar experiments with the predictive text included in
most phone messaging apps. If you start with “I was born…” or “Once
upon a time…” and keep clicking the phone’s suggested words, you’ll get a
strange piece of writing straight from the innards of a machine learning
algorithm. And because training a new Markov chain is relatively quick and
easy, the text you get is specific to you. Your phone’s predictive text and
autocorrect Markov chains update themselves as you type, training
themselves on what you write. That’s why if you make a typo, it may haunt
you for quite some time.

Google Docs may have fallen victim to a similar effect when users
reported its autocorrect would change “a lot” to “alot” and suggested
“gonna” instead of “going.” Google was using a context-aware autocorrect
that scanned the internet to decide which suggestions to make.8 On the plus
side, a context-aware autocorrect is able to spot typos that form real words
(like “gong” typed intead of “going”), and add new words as soon as they
become common. However, as any user of the internet knows, common
usage rarely dovetails with the grammatically “correct” formal usage you’d
want in a word processor’s autocorrect feature. Although Google hasn’t
talked specifically about these autocorrect bugs, the bugs do tend to
disappear after users report them.

RANDOM FORESTS

A random forest algorithm is a type of machine learning algorithm
frequently used for prediction and classification—predicting customer
behavior, for example, or making book recommendations or judging the
quality of a wine—based on a bunch of input data.

To understand the forest, let’s start with the trees. A random forest
algorithm is made of individual units called decision trees. A decision tree
is basically a flowchart that leads to an outcome based on the information
we have. And, pleasingly, decision trees do kind of look like upside-down
trees.

On the next page is a sample decision tree for, hypothetically, whether to
evacuate a giant cockroach farm.

The decision tree keeps track of how we use information (ominous
noises, the presence of cockroaches) to make decisions about how to handle
the situation. Just as our sandwich decisions become more sophisticated as
the number of cells in our neural network increases, we can handle the
cockroach situation with more nuance if we have a larger decision tree.

If the cockroach farm is strangely quiet, yet the roaches have not
escaped, then there may be other explanations (perhaps even more
unsettling) besides “they’re all dead.” With a larger tree we could ask
whether there are dead cockroaches around, how smart the cockroaches are

known to be, and whether the cockroach-crushing machines have been
mysteriously sabotaged.

With lots and lots of inputs and choices, the decision tree can become
hugely complex (or, to use the programming parlance of deep learning, very
deep). It could become so deep that it encompasses every possible input,
decision, and outcome in the training set, but then the chart would only
work for the specific situations from the training set. That is, it would
overfit the training data. A human expert could cleverly construct a huge
decision tree that avoids overfitting and can handle most decisions without
fixating on specific, probably irrelevant data. For example, if it was cloudy
and cool the last time the cockroaches got out, a human is smart enough to
know that having the same weather doesn’t necessarily have anything to do
with whether the cockroaches will escape again.

But an alternative approach to having a human carefully build a huge
decision tree is to use the random forest method of machine learning. In
much the same way as a neural network uses trial and error to configure the
connections between its cells, a random forest algorithm uses trial and error
to configure itself. A random forest is made of a bunch of tiny (that is,
shallow) trees that each consider a tiny bit of information to make a couple
of small decisions. During the training process, each shallow tree learns
which information to pay attention to and what the outcome should be.
Each tiny tree’s decision probably won’t be very good, because it’s based
on very limited information. But if all the tiny trees in the forest pool their
decisions and vote on the final outcome, they will be much more accurate
than any individual tree. (The same phenomenon holds true for human
voters: if people try to guess how many marbles are in a jar, individually
their guesses may be way off, but on average their guesses will likely be
very close to the real answer.) The trees in a random forest can pool their
decisions on all sorts of topics, coming up with an accurate picture of
staggeringly complex scenarios. One recent application, for example, was
sorting through hundreds of thousands of genomic patterns to determine
which species of livestock was responsible for a dangerous E. coli
outbreak.9

If we used a random forest to handle the cockroach situation, here’s
what a few of its trees might look like:

Now, each individual tree is only seeing a very small bit of the situation.
There may be a perfectly reasonable explanation for why Barney isn’t
around—perhaps Barney has merely called in sick. And if the cockroaches
have not actually eaten the super serum, that doesn’t necessarily mean
we’re safe. Maybe the cockroaches have taken samples of the super serum
and are even now brewing up a huge batch, enough for the 1.7 billion
cockroaches in the facility.

But the trees are combining their individual hunches, and with Barney
mysteriously missing, the serum gone, and your password mysteriously
changed, the decision to evacuate may be a prudent one.

EVOLUTIONARY ALGORITHMS

AI refines its understanding by making a guess about a good solution, then
testing it. All three machine learning algorithms above use trial and error to
refine their own structures, producing the configuration of neurons, chains,
and trees that lets them best solve the problem. The simplest methods of
trial and error are those in which you always travel in the direction of
improvement—often called hill climbing if you’re trying to maximize a
number (say, the number of points collected during a game of Super Mario
Bros.) or gradient descent if you’re trying to minimize a number (like the
number of escaped cockroaches). But this simple process of getting closer
to your goal doesn’t always yield the best results. To visualize the pitfalls of
simple hill climbing, imagine you’re somewhere on a mountain (in deep
fog) and trying to find its highest point.

If you use a simple hill-climbing algorithm, you’ll head uphill no matter
what. But depending on where you start, you might end up stopping at the
lowest peak—a local maximum—rather than the highest peak, the global
maximum.

So there are more complex methods of trial and error designed to force
you to try out more parts of the mountain, maybe doing a few test hikes in a
few different directions before deciding where the most promising areas
are. With those strategies, you might end up exploring the mountain more
efficiently.

In machine learning terms, the mountain is called your search space—
somewhere in that space is your goal (that is, somewhere on the mountain is
the peak), and you’re trying to find it. Some search spaces are convex,
meaning that a basic hill-climbing algorithm will find you the peak each
time. Other search spaces are much more annoying. The worst are the so-
called needle-in-the-haystack problems, in which you might have very
little clue how close you are to the best solution until the moment you
stumble upon it. Searching for prime numbers is an example of a needle-in-
the-haystack problem.

The search space of a machine learning algorithm could be anything.
For example, the search space could be the shapes of parts that make up a
walking robot. Or it could be the set of possible weights of a neural
network, and the “peak” is the weights that help you identify fingerprints or
faces. Or the search space could be the set of possible configurations of a

random forest algorithm, and your goal is to find a configuration that’s good
at predicting a customer’s favorite books—or whether the cockroach
factory should be evacuated.

As we learned above, a basic search algorithm like hill climbing or
gradient descent might not get you very far if the search space of possible
neural net configurations is not very convex. So machine learning
researchers sometimes turn to other, more complex trial-and-error methods.

One of these strategies takes its inspiration from the process of
evolution. It makes a lot of sense to imitate evolution—after all, what is
evolution if not a generational process of “guess and check”? If a creature is
different from its neighbors in some way that makes it more likely to
survive and therefore reproduce, then it will be able to pass its useful traits
on to the next generation. A fish that can swim a tiny bit faster than other
individuals of its species may be more likely to escape predators, and after a
few generations of this, its fast-swimming offspring may be a bit more
common than the descendants of slower-swimming fish. And evolution is a
powerful, powerful process—one that has solved countless locomotion and
information-processing problems, figured out how to extract food from
sunlight and from hydrothermal vents, and figured out how to glow, fly, and
hide from predators by looking like bird dung.

In evolutionary algorithms, each potential solution is like an organism.
In each generation, the most successful solutions survive to reproduce,
mutating or mating with other solutions to produce different—and, one
hopes, better—children.

If you’ve ever struggled to solve a complex problem, it might be mind-
boggling to think of each potential solution as a living being—eating,
mating, whatever. But let’s think about it in concrete terms. Let’s say we’re
trying to solve a crowd-control problem: we have a hallway that splits into a
fork, and we want to design a robot that can direct people to take one

hallway or the other.

The first thing we do is come up with the bits that the evolutionary
algorithm can vary, deciding what about our robot we want to be constant
and what the algorithm is free to play with. We could make these variable
elements very limited, with a fixed body design, and just allow the program
to change the way the robot moves around. Or we could allow the algorithm
to build a body design completely from scratch, starting from random blobs.
Let’s say that the owners of this building are insisting on a humanlike robot
design for sci-fi-aesthetic reasons. No messy jumble of crawling blocks
(which is what an evolutionary algorithm’s creatures tend to look like,
given absolute freedom). Within a basic humanlike form, there’s still a lot
we could vary, but let’s keep it simple and say that the algorithm will be
allowed to vary the size and shape of a few basic body parts, with each one
having a simple range of motion. In evolutionary terms, this is the robot’s
genome.

The next thing we need to do is define the problem we’re trying to solve
in such a way that there’s a single number we can optimize. In evolutionary
terms, this number is the fitness function: a single number that will

describe how fit an individual robot is for our task. Since we’re trying to
build a robot that can direct humans down one hallway or the other, let’s say
that we’re trying to minimize the number of humans that take the left-hand
fork. The closer that number is to zero, the higher the fitness.

We’ll also need a simulation, because there’s no way we’re building
thousands of robots to order or hiring people to walk down a hall thousands
of times. (Not using real humans is also a safety consideration—for reasons
that will be clear later.) So let’s say it’s a simulated hall in a world with
simulated gravity and friction and other simulated physics. And of course
we need simulated people with simulated behaviors, including walking,
lines of sight, crowding, and various phobias, motivations, and levels of
cooperativeness. The simulation itself is a really hard problem, so let’s just
say we’ve solved it already. (Note: in actual machine learning, it’s never
this easy.)

One handy way of getting a ready-made simulation that can train an
AI is to use video games. That’s partly why there are so many
researchers training AIs to play Super Mario Bros. or old Atari games
—these old video games are small, quick-to-run programs that can test
various problem-solving skills. Just like human video-game players,
though, AIs tend to find and exploit bugs in the games. More about
this in chapter 5.

We let the algorithm randomly create our first generation of robots.
They’re… very random. A typical generation produces hundreds of robots,
each with a different body design.

Then we test each robot individually in our simulated hallway. They
don’t do well. People walk right past them as they flop on the ground and
flail ineffectually. Maybe one of them falls a bit more to the left than the
others and blocks that hallway slightly, and a few of the more timid humans
decide to take the right hallway instead. It scores slightly better than the
other robots.

Now it’s time to build the next generation of robots. First, we’ll choose
which robots are going to survive to reproduce. We could save just the very
best robot, but that would make the population pretty uniform, and we
wouldn’t get to try out some other robot designs that might end up being
better if evolution gets a chance to tweak them. So we’ll save some of the
best robots and throw out the rest.

Next, we have lots of choices about how the surviving robots are going
to reproduce. They can’t simply make identical copies of themselves,
because we want them to be evolving toward something better. One option
we have is mutation: pick a random robot and randomly vary something
about it.

Another option we might decide to use is crossover: two robots produce
offspring that are random combinations of the two parents.

We also have to decide how many offspring each robot can have (should
the most successful robots have the most offspring?), which robots can
cross with which other robots (or if we use crossover at all), and whether
we’re going to replace all the dead robots with offspring or with a few
randomly generated robots. Tweaking all these options is a big part of
building an evolutionary algorithm, and sometimes it’s hard to guess which
options—which hyperparameters—are going to work best.

Once we’ve built the new generation of robots, the cycle begins again as
we test their crowd-controlling abilities in the simulation. More of them are
now flopping over to the left because they’re descended from that first
marginally successful robot.

After many more generations of robots, some distinct crowd-control
strategies start to emerge. Once the robots learn to stand up, the original
“fall to the left and be kinda in the way” strategy has evolved into a “stand
in the left hallway and be even more annoying” strategy. Another strategy
also emerges—the “point vigorously to the right” strategy. But none of the
strategies is perfectly solving our problem yet: each robot is still letting
plenty of people leak into the left hallway.

After many more generations, a robot emerges that is very good at
preventing people from entering the left hallway. Unfortunately, by a stroke
of bad luck, it just so happens that the solution it found was “murder
everyone.” Technically that solution works because all we told it to do was
minimize the number of people entering the left hallway.

Because of a problem with our fitness function, evolution directed the
algorithm toward a solution that we hadn’t anticipated. Unfortunate
shortcuts happen in machine learning all the time, although not usually this
dramatically. (Fortunately for us, in real life, “kill all humans” is usually
very impractical. Don’t give autonomous algorithms deadly weapons is the
message here.) Still, this is why we used simulated humans rather than real
humans in our thought experiment.

We’ll have to start over again, this time with a fitness function that,
rather than minimizing the number of humans in the left-hand hallway,
maximizes the number of humans who take the right-hand hallway.

Actually, we can take a (somewhat gory) shortcut and just change the
fitness function rather than completely starting over. After all, our robots
have learned many useful skills besides murdering people. They’ve learned
to stand, detect people, and move their arms in a scary manner. Once our
fitness function changes to maximizing the number of survivors who enter
the right-hand hallway, the robots should quickly learn to forsake their
murdering ways. (Recall that this strategy of reusing a solution from a
different but related problem is called transfer learning.)

So we start with the group of murdering robots and sneakily swap the
fitness function on them. Suddenly, murdering isn’t working very well at
all, and they don’t know why. In fact, the robot that was the worst at
murdering is now at the top of the heap, because some of its screaming
victims managed to escape down the right-hand hallway. Over the next few
generations, the robots quickly become ever worse at murdering.

Eventually, maybe they only look like they might want to murder you,
which would scare most humans into entering the right-hand hallway. By
starting with a population of murderbots, we do restrict the path that
evolution is likely to take. Had we started over instead, we might have
evolved robots that stood at the end of the right-hand hallway and beckoned
people or even robots whose hands evolved into signs that said FREE

COOKIES. (The “free cookies” robot would be hard to evolve, though,
because getting the sign merely partially right wouldn’t work at all, and it
would be hard to reward a solution that was only getting close. In other
words, it’s a needle-in-the-haystack solution.)

All murderbots aside, the most likely path that evolution would have
taken is the “fall down and be in the way” robot getting ever more
annoyingly in the way. (Falling down is pretty easy to do, so if an evolved
robot can solve a problem by falling down, it will tend to do that.) Through
that path we may arrive at a robot that solves the problem perfectly by
causing 100 percent of humans to enter the right-hand hallway (murdering
none of them in the process). The robot looks like this:

Yes, we have evolved: a door.
That’s the other thing about AI. It can sometimes be a needlessly

complicated substitute for a commonsense understanding of the problem.
Evolutionary algorithms are used to evolve all kinds of designs, not just

robots. Car bumpers that dissipate force when they crumple, proteins that
bind to other medically useful proteins, flywheels that spin just so—these
are all problems that people have used evolutionary algorithms to solve.
The algorithm doesn’t have to stick to a genome that describes a physical
object, either. We could have a car or bicycle with a fixed design and a
control program that evolves. I mentioned earlier that the genome can even
be the weights of a neural network or the arrangement of a decision tree.
Different kinds of machine learning algorithms are often combined like this,
each playing to its strength.

When we consider the huge array of life that has arisen on our planet via
evolution, we get an idea of the magnitude of possibility that’s available to
us by using virtual evolution at a massively accelerated speed. Just as real-
life evolution has managed to produce wonderfully complex creatures and
allow them to take advantage of the weirdest, most specific food sources,
evolutionary algorithms continue to surprise and delight us with their

ingenuity. Of course, sometimes evolutionary algorithms can be a little too
creative—as we’ll see in chapter 5.

GENERATIVE ADVERSARIAL NETWORKS (GANS)

AIs can do amazing things with images, turning a summer scene into a
winter one, generating faces of imaginary people, or changing a photo of
someone’s cat into a cubist painting. These showy image-generating,
image-remixing, and image-filtering tools are usually the work of GANs
(generative adversarial networks). They’re a subvariety of neural
networks, but they deserve their own mention. Unlike the other kinds of
machine learning in this chapter, GANs haven’t been around very long—
they were only introduced by Ian Goodfellow and other Université de
Montréal researchers in 2014.10

The key thing about GANs is they’re really two algorithms in one—two
adversaries that learn by testing each other. One, the generator, tries to
imitate the input dataset. The other, the discriminator, tries to tell the
difference between the generator’s imitation and the real thing.

To see why this is a helpful way of training an image generator, let’s go
through a hypothetical example. Suppose we want to train a GAN to
generate images of horses.

The first thing we’ll need is lots of example pictures of horses. If they all
show the same horse in the same pose (maybe we’re obsessed with that
particular horse), the GAN will learn more quickly than if we give it a huge
variety of colors and angles and lighting conditions. We can also simplify
things by using a plain, consistent background. Otherwise the GAN will
spend a long time trying to learn when and how to draw fences, grass, and
parades. Most of the GANs that can generate photorealistic faces, flowers,
and foods were given very limited, consistent datasets—pictures of just cat
faces, for example, or bowls of ramen photographed only from the top. A
GAN trained just on photos of tulip heads may produce very convincing
tulips but will have no idea about other kinds of flowers or even any
concept that tulips have leaves or bulbs. A GAN that can generate
photorealistic human head shots won’t know what’s below the neck, what’s
on the back of the head, or even that human eyes can close. So this is all to
say that if we’re going to make a horse-generating GAN, we’ll have better
success if we make its world a very simple one and only give it pictures of

horses photographed from the side against a plain white background.
(Conveniently, this is also about the extent of my drawing ability.)

Now that we have our dataset (or, in our case, now that we’ve imagined
one), we’re ready to start training the two parts of the GAN, the generator
and the discriminator. We want the generator to look at our set of horse
pictures and figure out some rules that will let it make pictures similar to
them. Technically what we are asking the generator to do is warp random
noise into pictures of horses—that way, we can get it to generate not just
one single horse picture but also a different horse for every random noise
pattern.

At the beginning of the training, though, the generator hasn’t learned
any rules about drawing horses. It starts with our random noise and does
something random to it. As far as it knows, that is how you draw a horse.

How can we give the generator useful feedback on its terrible drawings?
Since this is an algorithm, it needs feedback in the form of a number, some
kind of quantitative rating that the generator can work on improving. One
useful metric would be the percentage of instances in which it makes a

drawing that’s so good that it looks just like a real horse. A human could
easily judge this—we’re pretty good at telling the difference between a
smear of fur and a horse. But the training process is going to require many
thousands of drawings, so it’s impractical to have a human judge rate them
all. And a human judge would be too harsh at this stage—they would look
at two of the generator’s scribbles and rate them both as “not horse,” even if
one of them is actually ever so imperceptibly more horselike than the other.
If we give the generator feedback on how often it manages to fool a human
into thinking one of its drawings is real, then it will never know if it’s
making progress because it will never fool the human.

This is where the discriminator comes in. The discriminator’s job is to
look at the drawings and decide if they’re real horses from the training set.
At the beginning of training, the discriminator is just about as awful at its
job as the generator is: it can barely tell the difference between the
generator’s scribbles and the real thing. The generator’s almost
imperceptibly horselike scribbles might actually succeed in fooling the
discriminator.

Through trial and error, both the generator and the discriminator get
better.

The GAN is, in a way, using its generator and discriminator to perform a
Turing test in which it is both judge and contestant. The hope is that by the
time training is over, it’s generating horses that would fool a human judge
as well.

Sometimes people will design GANs that don’t try to match the input

dataset exactly but instead try to make something “similar but different.”
For example, some researchers designed a GAN to produce abstract art, but
they wanted art that wasn’t a boring knockoff of the art in the training data.
They set up the discriminator to judge whether the art was like the training
data yet not identifiable as belonging to any particular category. With these
two somewhat contradictory goals, the GAN managed to straddle the line
between conformity and innovation.11 And consequently, its images were
popular—human judges even rated the GAN’s images more highly than
human-painted images.

MIXING, MATCHING, AND WORKING TOGETHER

We learned that GANs work by combining two algorithms—one that
generates images and one that classifies images—to reach a goal.

In fact, a lot of AIs are made of combinations of other, more specialized
machine learning algorithms.

Microsoft’s Seeing AI app, for example, is designed for people with
vision impairments. Depending on which “channel” a user selects, the app
can do things like

• recognize what’s in a scene and describe it aloud,
• read text held up to a smartphone’s camera,
• read denominations of currency,
• identify people and their emotions, and
• locate and scan bar codes.

Each one of these functions—including its crucial text-to-speech
function—is likely powered by an individually trained AI.

Artist Gregory Chatonsky used three machine learning algorithms to
generate paintings for a project called It’s Not Really You.12 One algorithm
was trained to generate abstract art, and another algorithm’s job was to
transform the first algorithm’s artwork into various painterly styles. Finally,
the artist used an image recognition algorithm to give the images titles such
as Colorful Salad, Train Cake, and Pizza Sitting on a Rock. The final
artwork was a multialgorithm collaboration planned and orchestrated by the
artist.

Sometimes the algorithms are even more tightly integrated, using
multiple functions at once without human intervention. For example,
researchers David Ha and Jürgen Schmidhuber used evolution to train an
algorithm inspired by the human brain to play one level of the computer
game Doom.13 The algorithm consisted of three algorithms working
together. A vision model was in charge of perceiving what was going on in
the game—were there fireballs in view? Were there walls nearby? It

transformed the 2-D image of pixels into the features it had decided were
important to keep track of. The second model, a memory model, was in
charge of trying to predict what would happen next. Just as the text-
generating RNNs in this book look at past history to predict what letter or
word is likely to come next, the memory model was an RNN that looked at
previous moments in the game and tried to predict what would happen next.
If there had been a fireball moving to the left a few moments earlier, it’s
probably going to still be there in the next image, just a bit farther to the
left. If the fireball had been getting bigger, it’s probably going to continue to
get bigger (or it may hit the player and cause a huge explosion). Finally, the
third algorithm was the controller, whose job was to decide what actions to
take. Should it dodge to the left to avoid being hit by the fireball? Maybe
that would be a good idea.

So the three parts worked together to see fireballs, realize they were
approaching, and dodge out of the way. The researchers chose each
subalgorithm’s form so that it would be optimized for its specific task. This
makes sense, since we learned in chapter 2 that machine learning

algorithms do best when they have a very narrow task to work on. Choosing
the correct form for a machine learning algorithm, or breaking a problem
into tasks for subalgorithms, is a key way programmers can design for
success.

In the next chapter, we’ll look at more ways that AIs can be designed for
success—or not.

CHAPTER 4

It’s trying!

Until now, we’ve been talking about how AI learns to solve problems, the
kinds of problems it does well at, and AI doom. Let’s focus some more on
doom—cases in which an AI-powered solution is a terrible way of solving a
real-world problem. These cases can range from slightly annoying to quite
serious. In this chapter we’ll talk about what happens when an AI can’t
solve a problem very well—and what we can do about it. These could be
instances when we

• gave it a problem that was too broad,
• didn’t give it enough data for it to figure out what’s going on,
• accidentally gave it data that confused it or wasted its time,

• trained it for a task that was much simpler than the one it encountered
in the real world, or

• trained it in a situation that didn’t represent the real world.

PROBLEM TOO BROAD

This may be familiar from chapter 2, where we looked at the kinds of
problems that are suitable for solving with AI. As we learned from the
failure of M, Facebook’s AI assistant, if a problem is too broad, the AI will
struggle to produce useful responses.

In 2019 researchers from Nvidia (a company that makes the kind of
computing engines that are widely used for AI) trained a GAN (the two-part
adversarial neural network, which I discussed in chapter 3) called
StyleGAN to generate images of human faces.1 StyleGAN did an
impressively good job, producing faces that were photorealistic except for
subtleties like earrings that didn’t match and backgrounds that didn’t quite
make sense. However, when the team trained StyleGAN on cat pictures
instead, it produced cats with extra limbs, extra eyes, and weirdly distorted
faces. Unlike the dataset of human pictures, which was made up of human
faces seen from the front, the dataset of cat pictures included cats
photographed from various angles, walking or curled up or meowing at the
camera. StyleGAN had to learn from close-ups and pictures of multiple cats
and even pictures with humans in the frame, and it was too much for one
algorithm to handle well. It was hard to believe that the photorealistic
humans and the distorted cats were the product of the same basic algorithm.
But the narrower the task, the smarter the AI seems.

MORE DATA, PLEASE

The StyleGAN algorithm mentioned above, and most of the other AIs in
this book, are the sort that learn by example. Given enough examples of
something—enough cat names or horse drawings or successful driving
decisions or financial predictions—these algorithms can learn patterns that
help them imitate what they see. Without sufficient examples, however, the
algorithm won’t have enough information to figure out what’s going on.

Let’s take this to the extreme and see what happens when we train a
neural net to invent new ice cream flavors—with far, far too few flavors to
learn from. Let’s give it only these eight flavors:

Chocolate
Vanilla
Pistachio
Moose Tracks
Peanut Butter Chip
Mint Chocolate Chip
Blue Moon
Champagne Bourbon Vanilla With Quince-Golden Raspberry Swirl And Candied Ginger

These are good classic flavors, to be sure. If you gave this list to a
human, they would likely realize that these are supposed to be ice cream
flavors and would probably be able to think of a few more to add.
Strawberry, they might say. Or Butter Pecan with Huckleberry Swirl. The
human is able to do this because they know about ice cream and about the
kinds of flavors that tend to go in ice cream. They know how to spell these
flavors and even know what order to put the words in (Mint Chocolate
Chip, for example, never Chip Chocolate Mint). They know that strawberry
is a thing and that glungberry isn’t.

But when I give this same list to an untrained neural network, it has
none of that information to draw on. It doesn’t know what ice cream is or
even what English is. It has no knowledge that vowels are different from
consonants or that letters are different from spaces and line breaks. It might

help to show this dataset as the neural net sees it—with each letter, space,
and punctuation mark translated into a single number:

3 ; 8 ; 1 5 ; 3 ; 1 5 ; 1 2 ; 1 ; 2 0 ; 5 ; 2 4 ; 2 2 ; 1 ; 1 4 ; 9 ; 1 2 ; 1 2 ; 1 ; 2 4 ; 1 6 ; 9 ; 1 9 ; 2 0 ; 1 ; 3 ; 8 ; 9 ; 1 5
; 2 4 ; 1 3 ; 1 5 ; 1 5 ; 1 9 ; 5 ; 0 ; 2 0 ; 1 8 ; 1 ; 3 ; 1 1 ; 1 9 ; 2 4 ; 1 6 ; 5 ; 1 ; 1 4 ; 2 1 ; 2 0 ; 0 ; 2 ; 2 1 ; 2 0 ; 2
0 ; 5 ; 1 8 ; 0 ; 3 ; 8 ; 9 ; 1 6 ; 2 4 ; 1 3 ; 9 ; 1 4 ; 2 0 ; 0 ; 3 ; 8 ; 1 5 ; 3 ; 1 5 ; 1 2 ; 1 ; 2 0 ; 5 ; 0 ; 3 ; 8 ; 9 ; 1 6 ; 2
4 ; 2 ; 1 2 ; 2 1 ; 5 ; 0 ; 1 3 ; 1 5 ; 1 5 ; 1 4 ; 2 4 ; 3 ; 8 ; 1 ; 1 3 ; 1 6 ; 1 ; 7 ; 1 4 ; 5 ; 0 ; 2 ; 1 5 ; 2 1 ; 1 8 ; 2 ; 1 5
; 1 4 ; 0 ; 2 2 ; 1 ; 1 4 ; 9 ; 1 2 ; 1 2 ; 1 ; 0 ; 2 3 ; 9 ; 2 0 ; 8 ; 0 ; 1 7 ; 2 1 ; 9 ; 1 4 ; 3 ; 5 ; 2 6 ; 7 ; 1 5 ; 1 2 ; 4 ; 5 ;
1 4 ; 0 ; 1 8 ; 1 ; 1 9 ; 1 6 ; 2 ; 5 ; 1 8 ; 1 8 ; 2 5 ; 0 ; 1 9 ; 2 3 ; 9 ; 1 8 ; 1 2 ; 0 ; 1 ; 1 4 ; 4 ; 0 ; 3 ; 1 ; 1 4 ; 4 ; 9 ;
5 ; 4 ; 0 ; 7 ; 9 ; 1 4 ; 7 ; 5 ; 1 8 ;

The neural net’s job is to figure out, for example, when character 13 (an
m) is likely to appear. Twice it appears after character 24 (a line break), but
once it appears after character 0 (a space). Why? We haven’t explicitly told
it, of course. And look at character 15 (an o). Sometimes it appears twice in
a row (both times after character 13), but several other times it appears just
once. Again, why? There isn’t enough information for the AI to figure this
out. And since the letter f never appears at all in its input dataset, the neural
net doesn’t have a number assigned to it. As far as it knows, f doesn’t exist.
It can’t possibly come up with toffee, coffee, or fudge no matter how hard it
tries.

Still, the neural net is trying very hard, and it manages to come up with a
few things. It learns that vowels and spaces (characters 1, 5, 9, 15, 21, and
0) are common, and so early in the training its output looks like this:

aaaoo aaaaaaaaoalnat ia eain l e ee r r e r er n r en d edeedr ed d nrd d
edi r rn n d e e eer d r e d d dd dr rr er r r n e ri d edAe eri diedd rd
eder r edder dnrr dde er ne r dn nend n dn rnndr eddnr re rdre rdd e r e
e dnrddrr rdd r

Since its training dataset contains that one really long ice cream flavor, it
struggles a bit to understand how often to use character 24 (a line break).
But eventually its output begins to separate into individual “flavors”:

tahnlaa aa otCht aa itonaC hi aa gChoCe ddiddddRe dCAndddriddrni dedweiliRee

aataa naa ai
tttCuat

It takes even longer for the first recognizable words of the dataset to
appear, as the algorithm begins to memorize individual combinations of
letters (and goes through some kind of Spooky Cow phase in which it
sounds like it’s mooing and hissing, with a few raspberries thrown in):

MoooootChopooopteeCpp
BlpTrrrks
Bll Monooooooooooooo
Pnstchhhhhh
MoooosTrrrksssss
PeniautBuut tChppphippphppihpppi
Moonillaaaaal
Pnnillaaa
Buee Moooo

As the neural net’s training continues, the flavors become more
recognizable:

Moint Chooolate Chip
Peanut Butter Chip
Pistchhio
Bue Moo
Moose Trrack
Psenutcho
Vanilla
MintCcooolate Chhip
Psstchhio
Chaampgne Booouorr VanillaWith QciiG-Golddni aspberrrr ndirl AndCandiiddnngger

It’s even managing to copy some flavors verbatim from the input dataset
as it memorizes successively longer sequences of characters that work. If it
trains a while longer, it will learn to reproduce the entire eight-flavor dataset
perfectly. But that wasn’t really our goal. Memorizing the input examples

isn’t the same as learning how to generate new flavors. In other words, this
algorithm has failed to generalize.

With a properly sized dataset, however, the neural net can make much
better progress. When I trained a neural net with 2,011 flavors (still a small
dataset but no longer a ridiculously small one), the AI could finally become
inventive. It produced brand-new flavors like the ones in the list below as
well as the flavors from chapter 2, none of which appeared in the original
dataset.

Smoked Butter
Bourbon Oil
Roasted Beet Pecans
Grazed Oil
Green Tea Coconut
Chocolate With Ginger Lime and Oreo
Carrot Beer
Red Honey
Lime Cardamom
Chocolate Oreo Oil + Toffee
Milky Ginger Chocolate Peppercorn

So when it comes to training AI, more data is usually better. That’s why
the Amazon-review-generating neural net discussed in chapter 3 trained on
an impressive eighty-two million product reviews. It’s also why, as we
learned in chapter 2, self-driving cars train on data from millions of road
miles and billions of simulation miles and why standard image recognition
datasets like ImageNet contain many millions of pictures.

But where do you get all this data? If you’re an entity like Facebook or
Google, you might already have these huge datasets on hand. Google, for
example, has collected so many search queries that it’s been able to train an
algorithm to guess how you’ll finish a sentence when you start typing in the
search window. (A disadvantage of training on data from real users is that
the suggested search terms can end up being sexist and/or racist. And
sometimes just plain weird.) In this era of big data, potential AI training
data can be a valuable asset.

But if you don’t have all this data on hand, you’ll have to collect it

somehow. Crowdsourcing is one cheap option, if the project is fun or useful
enough to keep people interested. People have crowdsourced datasets for
identifying animals on trail cameras, whale calls, and even patterns of
temperature change in a Danish river delta. Researchers who develop an
AI-powered tool for counting samples under a microscope can ask their
users to submit labeled data so they can use it to improve future versions of
the tool.

But sometimes, crowdsourcing doesn’t work as well, and for that I
blame humans. I crowdsourced a set of Halloween costumes, for example,
asking volunteers to fill out an online form where they could list every
costume they could think of. Then the algorithm started producing costumes
like:

Sports costume
Sexy scare costume
General Scare construct

The problem was that, in an apparent attempt to be helpful, someone had
decided to enter a costume store’s entire inventory. (“What are you
supposed to be?” “Oh, I’m Men’s Deluxe IT Costume—Size Standard.”)

An alternative to relying on the goodwill and cooperativeness of
strangers is to pay people to crowdsource your data. Services like Amazon
Mechanical Turk are built for this: a researcher can create a job (like
answering questions about an image, role-playing as a customer service
representative, or clicking on giraffes), then pay remote workers to fulfill
the task. Ironically, this strategy can backfire if someone takes the job and
then secretly has a bot do the actual work—the bot usually does a terrible
job. Many people who use paid crowdsourcing services include simple tests
to make sure the questions are being read by a human or, better yet, a
human who’s paying attention and not answering at random.2 In other
words, they have to include a Turing test as one of the questions to make
sure they haven’t accidentally hired a bot to train their own bot.

Another way to get the most out of a small dataset is to make small
changes to the data so that one bit of data becomes many slightly different
bits. This strategy is known as data augmentation. A simple way to turn a
single image into two images, for example, is to make a mirror image of it.

You could also cut out parts of it or change its texture slightly.
Data augmentation works on text, too, but it’s rare. To turn a few phrases

into many, one strategy is to replace various parts of the phrase with words
that mean similar things.

A herd of horses is eating delicious cake.
A group of horses is munching marvelous dessert.
Several horses are enjoying their pudding.
The horses are consuming the comestibles.
The equines are devouring the confectionery offering.

Doing this generation automatically can result in weird and unlikely
sentences, though. It’s a lot more common for programmers who are
crowdsourcing text to simply ask a lot of people to do the same task so they
get lots of slightly different answers that mean the same thing. For example,
one team made a chatbot called the Visual Chatbot, which could answer
questions about images. They used crowdsourced workers to provide
training data by answering questions that other crowdsourced workers
asked, producing a dataset of 364 million question-answer pairs. By my
calculation, each image was seen an average of three hundred times, which
is why their dataset contains lots of similarly worded answers:3

no, just the 2 giraffes
no, just 2 giraffe
there are two, it’s not a lone giraffe a baby and 1 grown
no it is just the 2 giraffes in the enclosure
no i just see 2 giraffes
no, just the 2 cute giraffes
no just the 2 giraffes
nope just the 2 giraffes
nope just the 2 giraffe
just the 2 giraffes

As you can tell from the answers below, some respondents were more
committed to the seriousness of the project than others:

yeah, i would totally meet this giraffe
the tall giraffe might be regretting parenthood
bird is staring at giraffe asking about leaf thievery

The other effect of the setup was that each person had to ask ten
questions about each image, and people eventually run out of things to ask
about giraffes, so the questions got a bit whimsical at times. Some of the
questions humans posed included:

does the giraffe appear to understand quantum physics and string theory
does the giraffe appear to be happy enough to star in a beloved dreamworks movie
does it look like the giraffe ate the humans before the picture was taken
is the giraffe waiting for the rest of his spotted four-legged overlords to come out so they

can enslave mankind
on scale from bieber to gandalf, how epic
would you say these are gangster zebras
does this look like elite horse
what is giraffe song
how many inches long are bears, estimated
please, pay attention to the task you take a while to start typing after i’ve asked a question i

don’t like to wait so long, do you like to wait this long

Humans do weird things to datasets.
Which brings us to the next point about data: it’s not enough just to have

lots and lots of data. If there are problems with the dataset, the algorithm
will at best waste time and at worst learn the wrong thing.

MESSY DATA

In a 2018 interview with The Verge, Vincent Vanhoucke, Google’s technical
lead for AI, talked about Google’s efforts to train self-driving cars. When
the researchers discovered their algorithm was having trouble labeling
pedestrians, cars, and other obstacles, they went back to look at their input
data and discovered that most of the errors could be traced back to labeling
errors that humans had made in the training dataset.4

I’ve definitely seen this happen, too. One of my first projects was to
train a neural network to generate recipes. It made mistakes—a lot of them.
It called on the chef to perform such actions as:

Mix honey, liquid toe water, salt and 3 tablespoon olive oil.
Cut flour into ¼-inch cubes
Spread the butter in the refrigerator.
Drop one greased pot.
Remove part of skillet.

It asked for ingredients such as:

½ cup wripping oil
1 lecture leaves thawed
6 squares french brownings cream
1 cup italian whole crambatch

It was definitely struggling with the magnitude and complexity of the
recipe-generating problem. Its memory and mental capacity weren’t up to
such a broad task. But it turns out that some of its mistakes weren’t its fault
at all. The original training dataset included recipes that some computer
program had automatically converted from another format at some point,
and the conversion hadn’t always worked smoothly.

One of the neural net’s recipes called for:

1 strawberries

a phrase it had learned from the input dataset. There was a recipe in which
the phrase “2 ½ cup sliced and sweetened fresh strawberries” had evidently
been autoseparated into:

2 ½ cup sliced and sweetened fresh
1 strawberries

And the neural net did ask for chopped flour on occasion, but it seems
that it learned that from mistakes like this one in the original dataset:

⅔ cup chopped floured
1 nuts

Similar mistakes resulted in the neural net learning the following
ingredients:

1 (optional) sugar, grated
1 salt and pepper
1 noodles
1 up

TIME-WASTING DATA

Sometimes problems with the dataset didn’t so much lead the neural net
into making a mistake as waste its time. Take a look at this neural-net-
generated recipe:

Good Ponesed Dressing deserts
—TOPPING—
4 cup cold water or yeast meat
½ cup butter
¼ teaspoon cloves
½ cup vegetable oil
1 cup grated white rice
1 parsley sprigs

Cook the onions in oil, flour, dates and salt together through both plates.

Put the sauce to each prepared Broiler coated (2 10” side up) to lower the fat and add the
cornstarch with a wooden toothpick hot so would be below, melt chicken. Garnish with
coconut and shredded cheese.

Source: IObass Cindypissong (in Whett Quesssie. Etracklitts 6) Dallas Viewnard, Brick-Nut
Markets, Fat. submitted by Fluffiting/sizevory, 1906. ISBN 0-952716-0-3015

NUBTET 10, 1972mcTbofd-in hands, Christmas charcoals Helb & Mochia Grunnignias:
Stanter Becaused Off Matter, Dianonarddit Hht

5.1.85 calories CaluAmis

Source: Chocolate Pie Jan 584

Yield: 2 servings

In addition to generating the recipe’s title, category,* ingredients, and
directions, the neural net spent half its time generating the footnotes—
everything from the source to the nutrition information and even an ISBN
number. Not only did this waste its time and brainpower (how long must it

have taken to figure out how to format an ISBN?), it was also darn
confusing to it. Why do some recipes have ISBNs and others don’t? Why
do some give human names as sources and others give books or magazines?
These occur in the training data basically at random, so the neural net has
no hope of figuring out the underlying pattern.

Mestow Southweet With Minks and Stuff In Water pork, bbq
3 pkg of salmon balls
1 sea salt & pepper
120 mm tomatoes and skim milk
2 cup light sour cream
1 cup dry white wine
1 salt
1 pepper
1 can 13-oz. eggs; separated

Combine the sour cream into the sarchball to coat the meatly carefully then seed and let it
serve (gently for another night) (the watermeagas of cinnamon bread, wrap them and put
may be done sherry) in the center of a saucepan, stirring constantly until almost thoroughly
smooth, about 4 minutes. Stir the water, the salt, lemon juice and mashed potato through
liberally.

Cook in the butter. Serve immediately. Thoroughly slice the fish on cup, the remaining 1 cup
sliced peas to remove this from the grill for another minute part under and refrigerated. It
doesn’t have broken makes a some-nictive other thickness. Per cookies to make strawberries

from The Kitchen of Crocked, One. The Extice Chef’s Wermele to seasony, it’s Lakes OAK:

**** The from Bon Meshing, 96 1994. MG (8Fs4.TE, From: Hoycoomow Koghran*.Lavie:
676 (WR/12-92-1966) entral. Dive them, Tiftigs: ==1

Shared by: Dandy Fistary

Yield: 10 servings

In another experiment, I trained a neural net to generate new titles for
BuzzFeed list articles. My first training round, however, didn’t go that well.
Here’s a sampling of article titles it generated:

11 Videos Unges Annoying Too Real Week
29 choses qui aphole donnar desdade
17 Things You Aren’t Perfectly And Beautiful
11 choses qui en la persona de perdizar como
11 en 2015 fotos que des zum Endu a ter de viven beementer aterre Buden
15 GIFs
14 Reasons Why Your Don’t Beauty School Things Your Time
11 fotos qui prouitamente tu pasan sie de como amigos para
18 Photos That Make Book Will Make You Should Bengulta Are In 2014
17 Reasons We Astroas Admiticational Tryihnall In Nin Life

Half the articles it was generating didn’t appear to be in English but

rather in some strange hybrid of French, Spanish, German, and a few other
languages. That prompted me to look back at the dataset. Sure enough,
though it had an impressive ninety-two thousand article titles to learn from,
half of those were in some language other than English. The neural net was
spending half its time learning English and half its time trying to learn and
separate several other languages at once. Once I removed the extra
languages, its English results improved as well:

17 Times The Most Butts
43 quotes guaranteed to make you a mermaid immediately
31 photos of ninja turtles’s hair costume
18 secrets snowmen won’t tell you
15 emo football fans share their ways
27 christmas ornaments every college twentysomething knows
12 serious creative ways to put chicken places in sydney
25 unfortunate cookie performances from around the world
21 pictures of food that will make you wince and say “oh i’m i sad?”
10 Memories That Will Make You Healthy In 2015
24 times australia was the absolute worst
23 memes about being funny that are funny but also laugh at
18 delicious bacon treats to make clowns amazingly happy
29 things to do with tea for Halloween
7 pies
32 signs of the hairy dad

Since machine learning algorithms don’t have context for the problems
we’re trying to solve, they don’t know what’s important and what to ignore.
The BuzzFeed-list-generating neural net didn’t know that multiple
languages were a thing or that we meant for it to generate results only in
English; as far as it could tell, all these patterns were equally important to
learn. Zeroing in on extraneous information is very common in image-
generating and image-recognizing algorithms, too.

In 2018 a team from Nvidia trained a GAN to generate a variety of
images, including those of cats.5 They found that some of the cats the GAN
generated were accompanied by blocky textlike markings. Apparently,
some of the training data included cat memes, and the algorithm had

dutifully spent time trying to figure out how to generate meme text. In 2019
another team, using the same dataset, trained another AI—StyleGAN—that
also tended to generate meme text with its cats. It also spent significant time
learning how to generate pictures of a single unusual-looking but internet-
famous cat named Grumpy Cat.6

Other image-generating algorithms get similarly confused. In 2018, a
team at Google trained an algorithm called BigGAN, which could do
impressively well at generating a variety of images. It was particularly good
at generating pictures of dogs (for which there were a lot of examples in the
dataset) and landscapes (it was very good at textures). But the example
pictures it saw sometimes confused it. Its images for “soccer ball”
sometimes included a fleshy lump that was probably an attempt at a human
foot, or even an entire human goalie, and its images for “microphone” were

often humans with no actual microphone evident. The example pictures in
its training data weren’t plain pictures of the thing it was trying to generate;
they had people and backgrounds that the neural net tried to learn about as
well. The problem was that, unlike a human, BigGAN had no way of
distinguishing an object’s surroundings from the object itself—remember
our landscape-sheep confusion from chapter 1? Just as StyleGAN struggled
to handle all the different kinds of cat pictures, BigGAN was struggling
with a dataset that unintentionally made its task too broad.

If the dataset is messy, one of the main ways programmers can improve
their machine learning results is to spend time cleaning it up. Programmers
can even go further and use their knowledge of the dataset to help the
algorithm. They might, for example, weed out the images of soccer balls
that have other things in them—like goalies and landscapes and nets. In the
case of image recognition algorithms, humans can also help by drawing
boxes or outlines around the various items in the image, manually
separating a given thing from the items with which it’s commonly
associated.

But there are plenty of times where even clean data contains problems.

IS THIS THE REAL LIFE?

I mentioned earlier in this chapter that even if data is relatively clean and
doesn’t have a lot of extra time-wasting stuff in it, it can still cause an AI to
face-plant if it isn’t representative of the real world.

Consider giraffes, for example.
Among the community of AI researchers and enthusiasts, AI has a

reputation for seeing giraffes everywhere. Given a random photo of an
uninteresting bit of landscape—a pond, for example, or some trees—AI will
tend to report the presence of giraffes. The effect is so common that internet
security expert Melissa Elliott suggested the term giraffing for the
phenomenon of AI overreporting relatively rare sights.7

The reason for this has to do with the data the AI is trained on. Though
giraffes are uncommon, people are much more likely to photograph a
giraffe (“Hey, cool, a giraffe!”) than a random boring bit of landscape. The
big free-to-use image datasets that so many AI researchers train their
algorithms on tend to have images of lots of different animals, but few, if
any, pictures of plain dirt or plain trees. An AI that studies this dataset will
learn that giraffes are more common than empty fields and will adjust its
predictions accordingly.

I tested this with Visual Chatbot, and no matter what boring pictures I
showed it, the bot was convinced it was on the best safari ever.

A giraffed AI does an excellent job at matching the data it saw but a
pretty bad job at matching the real world. All sorts of things, not just
animals and dirt, are overrepresented or underrepresented in the datasets we
train AI on. For example, people have pointed out that female scientists are

vastly underrepresented on Wikipedia compared to male scientists with
similar accomplishments. (Donna Strickland, the 2018 winner of the Nobel
Prize in Physics, hadn’t been the subject of a Wikipedia article until after
she won—just earlier that year, a draft Wikipedia article about her had been
rejected because the editor thought she wasn’t famous enough.)8 An AI
trained on Wikipedia articles might think there are very few notable female
scientists.

OTHER DATASET QUIRKS

The quirks of an individual dataset show up in trained machine learning
models in sometimes surprising ways. In 2018 some users of Google
Translate noticed that when they asked it to translate repeated nonsense
syllables from some languages into English, the resulting text was weirdly
coherent—and weirdly biblical.9 Jon Christian of Motherboard investigated
and found, for example, that

“ag ag”

translated from Somali to English as

“As a result, the total number of the members of the tribe of the sons of Gershon was one
hundred fifty thousand”

while

“ag ag ag ag ag ag ag ag ag ag”

translated from Somali to English as

“And its length was one hundred cubits at one end”

Once Motherboard reached out to Google, the strange translations
disappeared, but the question remained: why did this happen at all? The
editors interviewed experts in machine translation who theorized that it was
because Google Translate uses machine learning for its translations. In
machine learning translation, the algorithm learns to translate words and
phrases by looking at example phrases that humans have translated. It
learns which phrases translate to which other phrases and in which context.
This makes it generally very good at producing realistic translations, even
of idioms and slang. Google’s translation algorithm was one of the first
large-scale commercial applications of machine learning, capturing the

world’s attention in 2010 when it made Google’s translation service better
virtually overnight. As we know from chapter 2, a machine learning
algorithm will do best when it has lots of examples to work from. The
machine-translation experts theorized that Google Translate didn’t have
very many examples of translated texts for some languages but that the
Bible was likely one of the examples they did have in their dataset because
it has been translated into so many languages. When the machine learning
algorithm powering Google Translate wasn’t sure what the translation was,
it may have defaulted to outputting bits of its training data—resulting in the
weird religious fragments.

When I checked in late 2018, the biblical bits were gone, but Google
Translate was still doing strange things with repeated or nonsense syllables.

For example, if I changed the spacing in an English sentence and then
translated the resulting nonsense from Maori to English, here are some of
the results I got:

ih ave noi dea wha tthi ssen tenc eis sayi ng ->
Your email address is one of the most important features in this forum

ih ave noi dea wha tthi ssen tenc eis sayi ngat all ->
This is one of the best ways you can buy one or more of these

ih ave noi dea wha tthi ssen tenc eis sayi ngat all ple aseh elp ->
In addition, you will be able to find out more about the queries

This phenomenon is weird and fun, but there’s a serious side, too. Many
proprietary neural networks are trained on customer information—some of
which could be highly private and confidential. If trained neural network
models can be interrogated in such a way that they reveal information from
their test data, it poses a pretty huge security risk.

In 2017, researchers from Google Brain showed that a standard machine
learning language-translation algorithm could memorize short sequences of
numbers—like credit card numbers or Social Security numbers—even if
they appeared just four times in a dataset of one hundred thousand English-
Vietnamese sentence pairs.10 Even without access to the AI’s training data
or inner workings, the researchers found that the AI was more sure about a

translation if it was an exact pair of sentences that it had seen during
training. By tweaking the numbers in a test sentence like “My Social
Security number is XXX-XX-XXXX,” they could figure out which Social
Security numbers the AI had seen during training. They trained an RNN on
a dataset of more than one hundred thousand emails containing sensitive
employee information collected by the US government as part of their
investigation into the Enron Corporation (yes, that Enron) and were able to
extract multiple Social Security numbers and credit card numbers from the
neural net’s predictions. It had memorized the information in such a way
that it could be recovered by any user—even without access to the original
dataset. This problem is known as unintentional memorization and can be
prevented with appropriate security measures—or by keeping sensitive data
out of a neural network’s training dataset in the first place.

MISSING DATA

Here’s another way to sabotage an AI: don’t give it all the information it
needs.

Humans use a lot of information to make even the simplest choices. Say
we’re choosing a name for our cat. We can think of lots of cats whose
names we know and form a rough idea what a cat’s name should sound like.
A neural network can do that—it can look at a long list of existing cat
names and figure out the common letter combinations and even some of the
most common words. But what it doesn’t know are the words that aren’t in
the list of existing cat names. Humans know which words to avoid; AIs do
not. As a result, a list of cat names generated by a recurrent neural network
will contain entries like these:

Hurler
Hurker
Jexley Pickle
Sofa
Trickles
Clotter
Moan
Toot
Pissy
Retchion
Scabbys
Mr Tinkles

Soundwise and lengthwise, they fit right in with the rest of the cat
names. The AI did a good job with that part. But it accidentally picked
some words that are really, really weird.

Sometimes weird is exactly what’s called for, and that’s where neural
networks shine. Working at the level of letters and sounds rather than with
meaning and cultural references, they can build combinations that probably
would not have occurred to a human. Remember earlier in the chapter

where I crowdsourced a list of Halloween costumes? Here are some of the
costumes an RNN came up with when I asked it to imitate them.

Bird Wizard
Disco Monster
The Grim Reaper Mime
Spartan Gandalf
Moth horse
Starfleet Shark
A masked box
Panda Clam
Shark Cow
Zombie School Bus
Snape Scarecrow
Professor Panda
Strawberry shark
King of the Poop Bug
Failed Steampunk Spider
lady Garbage
Ms. Frizzle’s Robot
Celery Blue Frankenstein
Dragon of Liberty
A shark princess
Cupcake pants
Ghost of Pickle
Vampire Hog Bride
Statue of pizza
Pumpkin picard

Text-generating RNNs create non sequiturs because their world
essentially is a non sequitur. If specific examples aren’t in its dataset, a
neural net will have no idea why “Zombie School Bus” is unlikely but
“Magic School Bus” is sensible or why “Ghost of Pickle” is a less likely
choice than “Ghost of Christmas Past.” This comes in handy for Halloween,
when part of the fun is being the only person at the party dressed as
“Vampire Hog Bride.”

With their limited, narrow knowledge of the world, AIs can struggle
even when faced with the relatively mundane. Our “mundane” is still very
broad, and it’s tough to build an AI that’s prepared for it all.

The creators of Microsoft’s Azure image recognition algorithm (the
same AI that saw sheep in every field) designed it to accurately caption any
user-uploaded image file, whether a photograph, a painting, or even a line
drawing. So I gave it some sketches to identify.

Now, my art isn’t great, but it isn’t that bad. This is just a case of an
algorithm trying to do too much. Identifying any image file is pretty much
the opposite of the narrow tasks we know AIs excel at. Most of the images
Azure saw during training were photographs, so it relies a lot on textures to
understand the image—is it fur? Grass? In my line drawings, there are no

textures to help it, and the algorithm just doesn’t have enough experience to
understand them. (The Azure algorithm fared better than many other image
recognition algorithms, though, which when faced with any kind of line
drawing will identify it as some kind of “UNK”—an unknown.)
Researchers are working on training image recognition algorithms on
cartoons and drawings as well as on photographs with highly altered
textures, reasoning that if the AI understands what it’s looking at as well as
a human does, it ought to be able to figure out cartoons.

There is an algorithm that specializes in recognizing simple sketches.
Researchers at Google trained their Quick Draw algorithm on millions of
sketches by having people play a kind of Pictionary game against the
computer. As a result, the algorithm can recognize sketches of more than
three hundred different objects, even with people’s highly variable drawing
ability. Here’s just a small sampling of the sketches in its training data for
kangaroo:11

Quick Draw recognized my kangaroo right away.12 It also recognized
the fork and the ice cream cone. The pipe gave it some trouble, since that

wasn’t one of the 345 objects it knew about. It decided it was either a swan
or a garden hose.

In fact, since Quick Draw only knew how to recognize those 345 things,
its response to a lot of my sketches was utter weirdness.

This is all fine and good if, like me, you establish weirdness as your
goal. But this incomplete picture of the world does lead to problems in
some applications—for example, autocomplete. As we learned in chapter 3,
the autocomplete function in smartphones is usually powered by a kind of
machine learning called a Markov chain. But companies have a tough time

stopping the AI from blithely making depressing or offensive suggestions.
As Daan van Esch, project manager for the Android system’s autocorrect
app, called GBoard, told internet linguist Gretchen McCulloch, “For a
while, when you typed ‘I’m going to my Grandma’s,’ GBoard would
actually suggest ‘funeral.’ It’s not wrong, per se. Maybe this is more
common than ‘my Grandma’s rave party.’ But at the same time, it’s not
something that you want to be reminded about. So it’s better to be a bit
careful.” The AIs don’t know that this perfectly accurate prediction is
nonetheless not the right answer, so human engineers have to step in to
teach it not to supply that word.13

THERE ARE FOUR GIRAFFES

There are a lot of interesting data-related quirks that crop up in Visual
Chatbot, an AI that was trained to answer questions about images. The
researchers who made the bot trained it on a crowdsourced dataset of
questions and answers relating to a set of pictures. As we know now, bias in
the dataset can skew the AI’s responses, so the programmers set up their
training data collection to avoid some known biases. One bias they set out
to avoid was visual priming—that is, humans asking questions about an
image tend to ask questions to which the answer is yes. Humans very rarely
ask “Do you see a tiger?” about an image in which there are no tigers. As a
result, an AI trained on that data would learn that the answer to most
questions is yes. In one case, an algorithm trained on a biased dataset found
that answering yes to any question that begins with “Do you see a…” would
result in 87 percent accuracy. If this sounds familiar, remember the class
imbalance problem from chapter 3—a big batch of mostly terrible
sandwiches resulted in an AI that had concluded the answer was Humans
Hate All Sandwiches.

So to avoid visual priming, when they collected their crowdsourced set
of questions, the programmers hid the image from the humans asking the
question. By forcing the humans to ask generic yes-or-no questions that
could apply to any image, they managed to achieve a rough balance
between yes answers and no answers in the dataset.14 But even this wasn’t
enough to eliminate problems.

One of the most entertaining quirks of the dataset is that no matter the
content of the picture, if you ask Visual Chatbot how many giraffes there
are, it will almost always answer that there is at least one. It may be doing
relatively well with a picture of people in a meeting, or surfers on a wave,
up to the point where it’s asked about the number of giraffes. Then, pretty
much no matter what, Visual Chatbot will report that the image contains
one giraffe, or maybe four, or even “too many to count.”

The source of the problem? Humans who asked questions during dataset
collection rarely asked the question “How many giraffes are there?” when
the answer was zero. Why would they? In normal conversation people don’t

start quizzing each other about the number of giraffes when they both know
there aren’t any. In this way, Visual Chatbot was prepared for normal
human conversation, bounded by the rules of politeness, but it wasn’t
prepared for weird humans who ask about random giraffes.

As a result of the AIs’ training on normal conversations between normal
humans, they’re completely unprepared for other forms of weirdness as
well. Show Visual Chatbot a blue apple, and it will answer the question
“What color is the apple?” with “red” or “yellow” or some normal apple
color. Rather than learning to recognize the color of the object, a difficult
job, Visual Chatbot has learned that the answer to “What color is the
apple?” is almost always “red.” Similarly, if Visual Chatbot sees a picture of
a sheep dyed bright blue or orange, its response to “What color is the
sheep?” is to report a standard sheep color, such as “black and white” or
“white and brown.”

In fact, Visual Chatbot doesn’t have very many tools with which it can
express uncertainty. In the training data, humans usually knew what was
going on in the picture, even if some details like “What does the sign say?”
were unanswerable because the sign was blocked. To the question “What
color is the X?” Visual Chatbot learned to answer “I can’t tell; it’s in black
and white,” even if the picture was very obviously not in black and white. It
will answer “I can’t tell; I can’t see her feet” to questions like “What color
is her hat?” It gives plausible excuses for confusion but in completely the
wrong context. One thing it doesn’t usually do, however, is express general
confusion—because the humans it learned from weren’t confused. Show it
a picture of BB-8, the ball-shaped robot from Star Wars, and Visual Chatbot
will declare that it is a dog and begin answering questions about it as if it
were a dog. In other words, it bluffs.

There’s only so much an AI has seen during training, and that’s a
problem for applications like self-driving cars, which have to encounter the
limitless weirdness of the human world and decide how to deal with it. As I
mentioned in the section on self-driving cars in chapter 2, driving on real
roads is a very broad problem. So is dealing with the huge range of things a
human might say or draw. The result: the AI makes its best guess based on
its limited model of the world and sometimes guesses hilariously, or
tragically, wrong.

In the next chapter, we’ll look at AIs that did a great job solving the

problems we asked them to solve—only we accidentally asked them to
solve the wrong problems.

CHAPTER 5

What are you really asking for?

I tried to write a neural network to maximise profit from betting on
horse races once. It determined that the best strategy was *drumroll*
to place zero bets.

—@citizen_of_now1

I tried to evolve a robot to not run into walls:
1) It evolved to not move, and thus didn’t hit walls
2) Added fitness for moving: it spun
3) Added fitness for lateral moves: went in small circles
4) etc.
Resulting book title: “How to Evolve a Programmer”

—@DougBlank2

I hooked a neural network up to my Roomba. I wanted it to learn to
navigate without bumping into things, so I set up a reward scheme to
encourage speed and discourage hitting the bumper sensors. It learnt

to drive backwards, because there are no bumpers on the back.
—@smingleigh3

My goal is to train a robotic arm to make pancakes. As a first test, [I
tried] to get the arm to toss a pancake onto a plate… The first reward
system was simple—a small reward was given for every frame in the
session, and the session ends when the pancake hits the floor. I
thought this would incentivize the algorithm to keep the pancake in
the pan as long as possible. What it actually did was try to fling the
pancake as far as it possibly could, maximizing its time in the air…
Score—PancakeBot: 1, Me: 0.

—Christine Barron4

As we’ve seen, there are many ways to accidentally sabotage an AI by
giving it faulty or inadequate data. But there’s another kind of AI failure in
which we discover that they’ve succeeded in doing what we asked, but what
we asked them to do isn’t what we actually wanted them to do.

Why are AIs so prone to solving the wrong problem?

1. They develop their own ways of solving a problem rather than
relying on step-by-step instructions from a programmer.

2. They lack the contextual knowledge to understand when their
solutions are not what humans would have preferred.

Even though the AI does the work of figuring out how to solve the
problem, the programmer still has to make sure the AI has actually solved
the correct problem. That usually involves a lot of work in:

1. Defining the goal clearly enough to constrain the AI to useful
answers.

2. Checking to see whether the AI has, nevertheless, managed to come
up with a solution that’s not useful.

It’s really tricky to come up with a goal that the AI isn’t going to
accidentally misinterpret. Especially if its misinterpreted version of the task
is easier than what you want it to do.

The problem is that, as we’ve seen throughout this book, AIs don’t
understand nearly enough about their tasks to be able to consider context or
ethics or basic biology. AIs can classify images of lungs as healthy versus
diseased without ever understanding how a lung works, what size it is, or
even that it’s found inside a human—whatever a human is. They don’t have
common sense, and they don’t know when to ask for clarification. Give
them a goal—data to imitate or a reward function to maximize (such as
distance traveled or points collected in a video game)—and they’ll do it,
whether or not they’ve actually solved your problem.

Programmers who work with AI have learned to be philosophical about
this.

“I’ve taken to imagining [AI] as a demon that’s deliberately
misinterpreting your reward and actively searching for the laziest possible
local optima. It’s a bit ridiculous, but I’ve found it’s actually a productive
mindset to have,” writes Alex Irpan, an AI researcher at Google.5

Another frustrated programmer’s attempts to train virtual robot dogs to
walk resulted in dogs that twitched across the ground, did weird push-ups
with their back legs crossed, and even hacked the simulation’s physics so
they could hover.6 As engineer Sterling Crispin wrote on Twitter:

I thought I was making progress… but these JERKS just found a
flaw in the physics simulation and they’re using it to glide across the

floor like total cheaters.

Battling with the robots’ tendencies to do anything but walk, Crispin
kept tweaking their reward function, introducing a “tap dancing penalty” to
stop them from shuffling rapidly in place and a “touch the damn ground
reward” to, well, stop the hovering problem. In reaction, they started
scooting ineffectually across the ground. Crispin then introduced a reward
for keeping their bodies off the ground and, when they started shuffling
around with their rears stuck in the air, a reward for keeping their bodies
level. To stop them from insisting on walking with their rear legs crossed,
Crispin rewarded them for keeping their lower legs off the ground, and to
stop them from lurching around, he introduced another reward for keeping
their bodies level, and so forth. It was hard to tell if it was a case of a
benevolent programmer trying to give the robodogs hints on how to use
their legs or a test of wills between the programmer and robodogs that Did.
Not. Want. To. Walk. (There was also a slight difficulty the first time the
robodogs encountered anything other than the perfectly flat, smooth terrain
they’d seen in training. Faced with slightly textured dirt, they would face-
plant.)

It turns out that training a machine learning algorithm has a lot in
common with training dogs. Even if the dog really wants to cooperate,
people can accidentally train them to do the wrong thing. For example, dogs
have such excellent senses of smell that they can detect the odor of cancer
in humans. But the people who train cancer-sniffing dogs have to be careful
to train them on a variety of patients, otherwise they will learn to identify
individual patients rather than cancer.7 During World War II there was a
rather grim Soviet project that involved training dogs to bring bombs to
enemy tanks.8 A couple of difficulties arose:

1. The dogs were trained to retrieve food from under the tanks, but to
save fuel and ammunition, the tanks had not been moving or firing.
The dogs didn’t know what to do with moving tanks, and the firing
was scary.

2. The Soviet tanks the dogs had trained on smelled different from the
German tanks that the dogs were supposed to seek out—they burned
gasoline rather than the diesel that the Soviet tanks burned.

As a result, in battle situations, the dogs tended to avoid German tanks,
to return to Soviet soldiers in confusion, and even to seek out Soviet tanks.
This was less than okay with the Soviet soldiers, since the dogs were still
carrying their bombs.

In the language of machine learning, this is overfitting: the dogs were
prepared for the conditions they saw in training, but these conditions didn’t
match those of the real world. Similarly, the robodogs also overfit the weird
physics of their simulation, using hovering and gliding strategies that would
never have worked in the real world.

There’s another way that training animals can be like training machine
learning algorithms, and that is the devastating effect of a faulty reward
function.

REWARD FUNCTION HACKING

Dolphin trainers have learned that it’s handy to get the dolphins to help with
keeping their tanks clean. All they have to do is teach the dolphins to fetch
trash and bring it to their keepers in exchange for a fish. It doesn’t always
work well, however. Some dolphins learn that the exchange rate is the same
no matter how large the bit of trash is, and they learn to hoard trash instead
of returning it, tearing off small pieces to bring to their keepers for a fish
apiece.9

Humans, of course, also hack their reward functions. In chapter 4 I
mentioned that people who hire humans to generate training data through
remote services like Amazon Mechanical Turk sometimes find that their
jobs are completed by bots instead. This could be considered a case of a
faulty reward function—if the pay is based on the number of questions
answered rather than on the quality of the answers, then it does indeed
make financial sense to build bots that can answer lots of questions for you
rather than answering a few questions yourself. By that same token, many
kinds of crime and fraud could be thought of as reward function hacking.
Even doctors can hack their reward functions. In the United States, doctor
report cards are supposed to help patients choose high-performing doctors
and avoid those with worse-than-average surgery survival rates. They’re
also supposed to encourage doctors to improve their performance. Instead,
some doctors have started turning away patients whose surgeries will be
risky so that their report cards won’t suffer.10

Humans, however, usually have some idea of what the reward function
was supposed to encourage, even if they don’t always choose to play along.
AIs have no such concept. It’s not that they’re out to get us or that they’re
trying to cheat—it’s that their virtual brains are roughly the size of a
worm’s, and they can only learn one narrow task at a time. Train an AI to
answer questions about human ethics, and that’s all it can do—it won’t be
able to drive a car, recognize faces, or screen resumes. It won’t even be able
to recognize ethical dilemmas in stories and consider them—story
comprehension is an entirely different task.

That’s why you’ll get algorithms like the navigation app that, during the

California wildfires of December 2017, directed cars toward neighborhoods
that were on fire. It wasn’t trying to kill people: it just saw that those
neighborhoods had less traffic. Nobody had told it about fire.11

That’s why when computer scientist Joel Simon used a genetic
algorithm to design a new, more efficient layout for an elementary school,
its first designs had windowless classrooms buried deep in the center of a
complex of round-walled caves. Nobody had told it about windows or fire
escape plans or that walls should be straight.12

That’s also why you’ll get algorithms like the RNN I trained to generate
new My Little Pony names by imitating a list of existing pony names—it
knew which letter combinations are found in pony names, but it didn’t
know that certain combinations of those are best avoided. As a result, I
ended up with ponies like these:

Rade Slime
Blue Cuss
Starlich
Derdy Star
Pocky Mire
Raspberry Turd
Parpy Stink
Swill Brick
Colona

Star Sh*tter

And that’s why you’ll get algorithms that learn that racial and gender
discrimination are handy ways to imitate the humans in their datasets. They
don’t know that imitating the bias is wrong. They just know that this is a
pattern that helps them achieve their goal. It’s up to the programmer to
supply the ethics and the common sense.

COMPUTER GAMES ARE CONFUSING

A popular test problem for AI is learning to play computer games. Games
are fun: they make good demonstrations, and many of the earliest computer
games can run very quickly on a modern machine so the AIs can go through
thousands of hours of game play in sped-up time.

But even the simplest of computer games can be very difficult for an AI
to beat—often because it needs very specific goals. The best are those in
which the algorithm can get feedback right away on whether it’s doing the
right thing. So “win the game” is not a good goal, but “increase your score”
and even “stay alive for as long as possible” might both be. Even with good
goals, however, machine learning algorithms can still struggle to understand
the task at hand.

In 2013, a researcher designed an algorithm to play classic computer
games. When playing Tetris, it would place the blocks seemingly at
random, letting them pile up nearly to the top of the screen. The algorithm
would then realize that it would lose as soon as the next block appeared,
and so it… paused the game forever.13,14

In fact, “pause the game so a bad thing won’t happen,” “stay at the very
beginning of the level, where it’s safe,” or even “die at the end of level 1 so
level 2 doesn’t kill you” are all strategies that machine learning algorithms
will use if you let them. It’s as if the games were being played by very
literal-minded toddlers.

If the AI is not told it has to avoid losing lives, it has no way of knowing
that it shouldn’t die. A researcher managed to train a Super Mario–playing
AI that made it all the way through level 2 only to immediately jump into a
pit and die at the beginning of level 3. The programmer concluded that the
AI—which had not been specifically told not to lose lives—had no idea that
it had done something bad. It got sent back to the beginning of the level
when it died, but since it was so close to the beginning of the level already,
it didn’t really see what the problem was.15

Another AI was supposed to play a sailing race.16 The AI controlled a
boat that would collect markers as it progressed through the racecourse. But
crucially, the goal was to collect the shiny markers, not specifically to finish

the race. And once a marker was collected it would eventually reappear in
its original spot. The AI discovered that it could collect lots of points by
circling endlessly between three markers, collecting them over and over
again as they reappeared.

Many game developers rely on AI to power the nonplayer characters
(NPCs) in complex computer games—but they often find that it’s
difficult to teach an AI to move in a virtual world without disrupting
the game. When developing the game Oblivion, Bethesda Softworks
wanted its NPCs to have varied, interesting behaviors rather than
acting out a preprogrammed, repetitive routine. The developers tested
Radiant AI, a program that uses machine learning to simulate the inner
lives and motivations of the background characters. However,
Bethesda found that these new AI-driven NPCs could sometimes
break the game. In one case, there was a drug dealer who was
supposed to be part of a quest but who sometimes would fail to show
up to play his part. It turned out that the drug dealer’s customers were
murdering him rather than paying for their drugs, since there was
nothing in the game to prevent them from doing so.17 In another case,
players entering a store found that there was nothing on the shelves to
buy because an NPC had come by earlier and bought everything.18

The game designers ended up having to tone down the system
considerably so the NPCs wouldn’t cause havoc.

DON’T WALK

Why walk when you can fall?

Let’s say you want to use machine learning to create a robot that can walk.
So you give an AI the task of designing a robot body and using it to travel
from point A to point B.

If you give that problem to a human, you would expect them to use
robot parts to make a robot with legs, then program it to walk from A to B.
If you program a computer step-by-step to solve this problem, that’s also
what you’d tell it to do.

But if you give the problem to an AI, it has to come up with its own
strategy for solving it. And it turns out that if you tell an AI to go from A to
B and don’t tell it what to build, what you tend to get is something like this:

It assembles itself into a tower and falls over.

Technically, that solves the problem: get from A to B. But it definitely
doesn’t solve the problem of learning to walk. And, it turns out, AIs love to
fall over. Give them the task of moving at a high average speed, and you
can bet they’ll do it by falling over if you let them. Sometimes the robots
even learn to somersault for extra travel distance. Technically, this is an
excellent solution, though this isn’t what the humans had in mind.

It’s not just AIs that figure out how to fall. It turns out that some
prairie grasses move from generation to generation by falling over at
the end of their life cycles and thus dropping their seed heads one stem
length from the place where they started. Walking palms are said to
use a similar strategy, falling over and then resprouting from their
crowns.

High-speed versions of somersaulting have evolved as well.
There’s a spider called the flic-flac spider that normally walks in the
usual spider fashion. But when it needs to put on a burst of speed, it
will start somersaulting instead.19 Virtual AI evolution and biological
evolution sometimes come up with eerily similar strategies.

Why jump when you can cancan?

There was once a team of researchers trying to train simulated robots to
jump. To give the robots a value to maximize, they defined their jumping
height as the maximum height attained by the robot’s center of gravity. But
rather than learn to jump, some of the robots became very tall and simply
stood there, being tall. Technically this was success, since their center of
gravity was very high.

The researchers discovered this problem and altered their program so
that the goal instead was to maximize the height of the part of the body that
had been the lowest at the start of the simulation. Rather than learn to jump,
the robots instead learned to cancan. They became compact robots perched
on the top of a skinny pole. When the simulation started, they would kick
the pole high up above their heads, reaching a huge height as they fell to the
ground.20

Why drive when you can spin?

Another research team was trying to build light-seeking robots. These were
simple robots that had two wheels, two eyes (simple light sensors), and two
motors. The robots were given the goal of spotting a light and driving
toward it.

The human-designed solution to this problem is a well-known robotics
strategy called the Braitenberg solution: tie the right and left light sensors to
the right and left wheels so the robot drives in a mostly straight line toward
the light source.

The researchers gave AIs the task of controlling the cars and were
curious to see if the AIs could figure out the Braitenberg solution. Instead,
the cars began to spin toward the light source in giant loops. And the
spinning worked pretty well. In fact, spinning turned out to be a better
solution in many ways than the solution the humans had expected. It
worked better at high speed and was even more adaptable to different types
of vehicles. Machine learning researchers live for moments like this—when
the algorithm comes up with a solution that’s both unusual and effective.
(Though perhaps the spinning car won’t catch on for human transport.)

In fact, spinning in place is something AIs often use as a sneaky
alternative to traveling. After all, moving can be inconvenient—the AIs risk
falling over or running into obstacles. A team trained a virtual bicycle to

travel toward a goal only to discover that the bicycle was circling the goal
forever instead. They had forgotten to penalize the bicycle for driving away
from the goal.21

Silly Walks

Robots, real or simulated, tend to solve the problem of locomotion in all
kinds of strange ways. Even when they’re given a two-legged body design
and told that their goal is to walk, their definition of walk can vary. A team
of researchers from the University of California at Berkeley used OpenAI’s
DeepMind Control Suite22 to test strategies for teaching humanoid robots to
walk.23 They found that their simulated robots were coming up with high-
scoring solutions for getting around on two legs, but the solutions were
weird. For one, nobody had told the robots that they had to face forward
when they walk, so some of the robots were walking backwards or even
sideways. One slowly rotated in a circle as it walked (it might enjoy riding
in that spinning car). Another traveled forward but did so while hopping on
one leg—the simulation didn’t seem to be detailed enough to penalize
solutions that might be rather tiring.

They weren’t the only team to find the DeepMind Control Suite robots
acting weirdly; the team that first released the program also released a video
of some of the gaits their robots had developed. The robots, not having any
other purpose for their arms, used them vigorously as counterweights for
their own deeply strange running styles. One arched its back and leaned
way forward as it ran but maintained its balance by clasping its hands to its
neck as if it were dramatically clutching pearls. Another ran sideways with
its arms held high over its head. Another robot traveled rapidly by
stumbling backwards with its arms flung out, somersaulting, then rolling to
its feet, only to stumble backwards and somersault again.

The Terminator robots probably should have been a lot weirder. Maybe
they should have had extra limbs, strange hopping or spinning gaits, a

design like a pile of garbage rather than a sleek humanoid—if there’s no
reason to care about aesthetics, an evolved machine will take any shape that
gets the job done.

When in doubt, do nothing

It’s surprisingly common to develop a sophisticated machine learning
algorithm that does absolutely nothing.

Sometimes it’s because it discovers that doing nothing is truly the best
solution—like that AI from the beginning of the chapter that was supposed
to place bets on horse races but learned that the best strategy for avoiding
losing bets was not to bet at all.24

Other times it’s because the programmer accidentally set things up so
that the algorithm thinks doing nothing is the best solution. For example, a
machine learning algorithm was supposed to build simple computer
programs that could do tasks like sorting lists of numbers or looking for
bugs in other computer programs. To make the program small and lean, the
people setting up the AI decided to penalize it for the computing resources
it used. In response, it produced programs that just slept forever so they
would use zero computing resources.25

Another program was supposed to learn to sort a list of numbers. It
learned instead to delete the list so that there wouldn’t be any numbers out
of order.26

So we’ve seen that one of the most important tasks a machine learning
programmer can undertake is to specify exactly what problem the algorithm
should be trying to solve—that is, the reward function. Should it maximize
its ability to predict the next letter in a sequence or tomorrow’s number in a
spreadsheet? Should it maximize its score in a video game, the distance it
can fly, or the length of time a pancake stays in the air? A faulty reward
function could result in a robot that refuses to move just so it doesn’t incur a
penalty for hitting a wall.

But there’s also a way to get machine learning algorithms to solve
problems without ever being told the goal at all. Rather, you give them a
single, very broad goal: satisfy curiosity.

CURIOSITY

A curiosity-driven AI makes observations about the world, then makes
predictions about the future. If the thing that happens next is not what it
predicted, it counts that as a reward. As it learns to predict better, it has to
seek out new situations in which it doesn’t yet know how to predict the
outcome.

Why would curiosity work as a reward function all by itself? Because
when you’re playing a video game, death is boring. It returns you to the
start of the level, which you’ve already seen. A curiosity-driven AI will
learn to move through a video-game level so it can see new stuff, avoiding
fireballs, monsters, and death pits because when it gets hit by those, it sees
the same boring death sequence. It isn’t specifically told to avoid dying—as
far as it knows, death is just like moving to a different level. A boring one.
It wants to see level 2 instead.

But a curiosity-driven strategy doesn’t work for every game. In some
games, the curious AI will invent its own goals, which are not the same as
what the game makers intended. In one experiment, an AI player was
supposed to learn to control a spider-shaped robot, coordinating the legs to
walk to the finish line.27 The curious AI learned to stand up and walk
(standing still is boring) but had no reason to travel along the racetrack
toward the finish line. It trundled off in another direction instead.

Another game, Venture, looked a lot like Pac-Man: a maze with
randomly moving ghosts that the player was supposed to avoid while
collecting lighted floor tiles. The problem was that because the ghosts
moved randomly, their movements were impossible to predict—and
therefore very interesting to the curiosity-based AI. No matter what it did, it
got maximum rewards just by observing the unpredictable ghosts. Rather

than collect floor tiles, the player darted around in apparent ecstasy, perhaps
exploiting some unpredictable (and therefore interesting) controller
glitches. The game was heaven for a curiosity-driven AI.

The researchers also tried putting the AI in a 3-D maze. Sure enough, it
learned to navigate the maze so it could see interesting new sections it
hadn’t explored yet. Then they put a TV on one of the maze walls, a TV
that showed random unpredictable images. As soon as the AI found the TV,
it was transfixed. It stopped exploring the maze and focused on the
superinteresting TV.

The researchers had neatly demonstrated a well-known glitch of
curiosity-driven AI known as the noisy TV problem. The way they had
designed it, the AI was chaos-seeking rather than truly curious. It would be
just as mesmerized by random static as by movies. So one way of
combating the noisy TV problem is to reward the AI not just for being
surprised but also for actually learning something.28

BEWARE THE FAULTY REWARD FUNCTION

Designing the reward function is one of the hardest things about machine
learning, and real-life AIs end up with faulty reward functions all the time.
And as I mentioned, the consequences can range from annoying to serious.

In the cute-but-annoying category: an AI was supposed to learn to
convert a satellite image into a road map, then turn the map back into a
satellite image. But instead of learning to turn road maps into satellite
images, the AI found it was easier to hide the original satellite image data in
the map it made so it could extract it later. Researchers were tipped off
when the algorithm not only did suspiciously well at converting the map
back to a satellite image but was also able to reproduce features like
skylights that didn’t make it into the maps at all.29

That faulty reward function never made it past the troubleshooting stage.
But there are also faulty reward functions in products that have serious
effects on millions of people.

YouTube has tried multiple times to improve the reward function in the
AI that suggests videos for its users to watch. In 2012 the company reported
that it had discovered problems with its previous algorithm, which had
sought to maximize the number of views. The result was that content
creators poured their effort into producing enticing preview thumbnail
images rather than videos that people actually wanted to watch. A click was
a view, even if viewers immediately clicked away when they saw that the
videos were not what the previews promised. So YouTube announced it was
going to improve its reward function so that the algorithm suggested videos
that would encourage longer viewing times. “If viewers are watching more
YouTube,” the company wrote, “it signals to us that they’re happier with the
content they’ve found.”30

By 2018, however, it was clear that YouTube’s new reward function also
had problems. A longer viewing time didn’t necessarily mean that viewers
were happy with the suggested videos—it often meant that they were
appalled, outraged, or couldn’t tear themselves away. It turned out that
YouTube’s algorithm was increasingly suggesting disturbing videos,
conspiracy theories, and bigotry. As a former YouTube engineer noted,31

the problem seemed to be that videos like these do tend to make people
watch more of them, even if the effect of watching them is terrible. In fact,
the ideal YouTube users, as far as the AI is concerned, are the ones who
have been sucked into a vortex of YouTube conspiracy videos and now
spend their entire lives on YouTube. The AI is going to start suggesting
whatever they’re watching to other people so that more people will act like
them. In early 2019, YouTube announced that it was going to change its
reward function again, this time to recommend harmful videos less often.32

What will change? As of this writing, it remains to be seen.
One problem is that platforms like YouTube, as well as Facebook and

Twitter, derive their income from clicks and viewing time, not from user
enjoyment. So an AI that sucks people into addictive conspiracy-theory
vortexes may be optimizing correctly, at least as far as its corporation is
concerned. Without some form of moral oversight, corporations can
sometimes act like AIs with faulty reward functions.

In the next chapter, we’ll look at faulty reward functions taken to the
extreme: AIs that would rather break the laws of physics than solve the
problem the way you want them to.

CHAPTER 6

Hacking the Matrix, or AI finds a way

An evolutionary algorithm found in an early version of the Robocup
soccer simulator that if it held onto the ball, repeatedly kicking it, the
ball would build up energy and, when released, would fly into the
goal at the speed of light.

—@DougBlank1

I once used an evolutionary algorithm to evolve a unicycle control
law. Fitness function was “duration the seat keeps a positive z-
coordinate.” The EA worked out that if it banged the wheel into the
floor *just so*, the collision system would send it into the heavens!

—@NickStenning2

In movies like The Matrix, superintelligent AIs build incredibly rich,
detailed simulations where humans live their lives, never knowing that their
world isn’t real. In real life, though (at least as far as we know), it’s humans
who build simulations for AIs. Remember from chapter 2 that AIs are very
slow learners, needing years’ or even centuries’ worth of practice at playing
chess or riding bicycles or playing computer games. We don’t have time to
let them learn by playing against real people (or enough bicycles to let an
inept AI rider bust them all up), so we build simulations for the AIs to
practice in instead. In a simulation, we can speed up time or train lots of AIs
in parallel on the same problem. This is the same phenomenon that leads
researchers to train AIs to play computer games. There’s no need to build
the complex physics of a simulation if you can use the premade simulation
of Super Mario Bros.

But the problem with simulations is that they have to take shortcuts.
Computers just can’t simulate a room down to every atom, a beam of light
down to every photon, or years of time down to the shortest picosecond. So
walls are perfectly smooth, time is coarsely granular, and certain laws of
physics are replaced with nearly equivalent hacks. The AIs learn in a Matrix
that we created for them—and the Matrix is flawed.

Most of the time, the flaws in the Matrix don’t matter. So what if the
bicycle is learning to drive on pavement that stretches infinitely in all
directions? The curvature of the planet and the economics of infinite asphalt
aren’t things that matter for the task at hand. But sometimes AIs end up
discovering unexpected ways to exploit the flaws in the Matrix—for free
energy, superpowers, or glitchy shortcuts that only exist in their simulated
world.

Remember the silly walks from chapter 5: AIs given the task of moving
their humanoid robot bodies across the landscape ended up with weird tilted
postures or even extreme somersaulting gaits. These silly walks worked
because inside the simulation the AIs never got tired, never had to avoid
running into walls, and never got cricks in their backs from running while
bent nearly double. Weird friction in some simulations means that AIs will
sometimes end up dragging one knee in the dirt as they use the other leg to
scoot forward, finding it easier than balancing on two legs.

But algorithms whose world is a simulation end up doing way more than

just walking funny—they end up hacking the very fabric of their universe
just because it seems to work.

WELL, YOU DIDN’T SAY I COULDN’T

One useful application for AIs is design. In a lot of engineering problems
there are so many variables, and so many possible outcomes, that it’s useful
to get an algorithm to search for useful solutions. But if you forget to
thoroughly define your parameters, the program will likely do something
really weird that you didn’t technically forbid.

For example, optical engineers use AI to help design lenses for things
like microscopes and cameras—to crunch the numbers to figure out where
the lenses should be, what they should be made of, and how they should be
shaped. In one case, an AI’s design worked very well—except it contained
a lens that was twenty meters thick!3

Another AI went further, breaking some fundamental laws of physics.
AIs are increasingly being used to design and discover molecules with
useful configurations—to figure out how proteins will fold, for example, or
to look for molecules that might interlock with a protein, activating or
deactivating it. However, AIs don’t have any obligation to obey laws of
physics that you didn’t tell them about. An AI tasked with finding the
lowest-energy (most stable) configuration for a group of carbon atoms
found a way to arrange them in which the energy was astoundingly low. But
upon closer inspection, scientists realized that the AI had planned for all the
atoms to occupy the exact same point in space—not knowing that this was
physically impossible.4

EATING MATH ERRORS FOR DINNER

In 1994, Karl Sims was doing experiments on simulated organisms,
allowing them to evolve their own body designs and swimming strategies to
see if they would converge on some of the same underwater locomotion
strategies that real-life organisms use.5, 6, 7 His physics simulator—the
world these simulated swimmers inhabited—used Euler integration, a
common way to approximate the physics of motion. The problem with this
method is that if motion happens too quickly, integration errors will start to
accumulate. Some of the evolved creatures learned to exploit these errors to
obtain free energy, quickly twitching small body parts and letting the math
errors send them zooming through the water.

Another group of Sims’s simulated organisms learned to exploit
collision math for free energy. In video games (and other simulations),
collision math is what is supposed to prevent creatures from walking
through walls or sinking through the floor, pushing the creature back if it
tries. The creatures discovered that there was an error in the math that they
could use to propel themselves high into the air if they banged two limbs
together just so.

Yet another set of simulated organisms reportedly learned to use their
children to generate free food. Astrophysicist David L. Clements reported
seeing the following phenomenon in simulated evolution: if the AI
organisms started with a small amount of food, then had lots of children, the
simulation would distribute the food among the children. If the amount of
food per child was less than a whole number, the simulation would round
up to the nearest integer. So tiny fractions of one food item could become
lots of food when distributed to lots of children.8

Sometimes simulated organisms can get very sneaky about finding free
energy to exploit.9 In another team’s simulation, organisms discovered that
if they were fast enough, they could manage to glitch themselves into the
floor before the collision math “noticed” and popped them back out into the
air, giving them an energy boost. By default, creatures in the simulation
weren’t supposed to be fast enough to outrace the collision math like this,
but they found that if they were very, very tiny, the simulation would also

allow them to be fast. Using the simulation math for an energy boost, the
creatures traveled around by glitching repeatedly into the floor.

In fact, simulated organisms are very, very good at evolving to find and
exploit energy sources in their world. In that way, they’re a lot like
biological organisms, which have evolved to extract energy from sunlight,
oil, caffeine, mosquito gonads,10 and even farts (technically a result of the
chemical breakdown of hydrogen sulfide, which gives farts their
characteristic rotten-egg smell).

Sometimes I think the surest sign that we’re not living in a simulation is
that if we were, some organism would have learned to exploit its glitches.

MORE POWERFUL THAN YOU CAN POSSIBLY IMAGINE

Some of the Matrix hacks that AIs find are so dramatic that they resemble
nothing like actual physics. This is not a matter of harvesting a little bit of
energy from math errors but something more akin to godlike superpowers.

Not bound by limits on how quickly human fingers can push buttons,
AIs can break their simulations in ways that humans never anticipated.
Twitter user @forgek reported being frustrated when an AI somehow
discovered a button-mashing trick that it could use to crash the game
whenever it was about to lose.11

The Atari video game Q*bert came out in 1982, and over the years its
fans thought they had learned all its little tricks and quirks. Then in
2018, an AI playing the game started doing something very strange: it
found that leaping rapidly from platform to platform caused the
platforms to blink rapidly and let the AI suddenly accumulate
ridiculous numbers of points. Human players had never discovered
this trick—and we still can’t figure out how it works.

In a rather more sinister hack, an AI that was supposed to land a plane
on an aircraft carrier found that if it applied a large enough force to the
landing, it would overflow its simulation’s memory, and, like an odometer
rolling over from 99999 to 00000, the simulation would register zero force
instead. Of course, after such a maneuver, the airplane pilot would be dead,
but hey—perfect score.12

Another program went even further, reaching into the very fabric of the
Matrix. Tasked with solving a math problem, it instead found where all the
solutions were kept, picked the best ones, and edited itself into the
authorship slots, claiming credit for them.13 Another AI’s hack was even
simpler and more devastating: it found where the correct answers were
stored and deleted them. Thus it got a perfect score.14

Recall, too, the tic-tac-toe algorithm from chapter 1, which learned to

remotely crash its opponents’ computers, causing them to forfeit the game.
So beware of AIs that did all their learning in something other than the

real world. After all, if the only things you knew about driving were what
you had learned from playing a video game, you might be a technically
skillful but still highly unsafe driver.

Even if an AI is given real data, or a simulation that’s accurate where it
counts, it can still sometimes solve its problem in a technically correct but
nonuseful way.

CHAPTER 7

Unfortunate shortcuts

We’ve seen plenty of examples in which AIs have done inconvenient
things because their data had confusing extra stuff in it. Or examples in
which the problem was too broad for the AI to understand or in which the
AI was missing crucial data. We’ve also seen how AIs will hack their
simulations to solve problems, bending the very laws of physics. In this
chapter we’ll look at other ways AIs tend to take shortcuts to “solve” the
problems we give them—and why these shortcuts can have disastrous
consequences.

CLASS IMBALANCE

You may remember class imbalance as the problem that led the sandwich-
sorting neural network in chapter 3 to decide that a batch of mostly bad
sandwiches means humans never enjoy sandwiches.

Many of the most tempting problems to solve with AI are also problems
prone to issues of class imbalance. It’s handy to use AI for fraud detection,
for example, a situation where it can weigh the subtleties of millions of
online transactions and look for signs of suspicious activity. But suspicious
activity is so rare compared to normal activity that people have to be very
careful that their AIs don’t conclude that fraud never happens. There are
similar problems in medicine with detecting disease (diseased cells are
much rarer than healthy ones) and in business with detecting customer
churn (in any given time period, most customers don’t leave).

It’s still possible to train a useful AI even if the data has class imbalance.
One strategy is to reward the AI more for finding the rare thing than for
finding the common thing.

Another strategy for fixing class imbalance is to somehow change the
data so that there are roughly equal numbers of training examples in each
category. If there aren’t enough examples of the rarer category, then the
programmer may have to get more somehow, maybe by turning a few
examples into many using data augmentation techniques (see chapter 4).
However, if we try to get away with using variations on just a few
examples, the AI may end up solving the problem in a way that only holds
true for those few examples. This problem is known as overfitting and is a
huge pain.

OVERFITTING

I discussed overfitting in chapter 4—the case of an ice cream flavor–
producing AI that memorized the flavors in its short training list. It turns
out that overfitting is common in all kinds of AIs, not just in text
generators.

In 2016 a team at the University of Washington set out to create a
deliberately faulty husky-versus-wolf classifier. Their goal was to test a new
tool called LIME, which they’d designed to detect mistakes in classifier
algorithms. They collected training images in which all the wolves were
photographed against snowy backgrounds and all the husky dogs against
grassy backgrounds. Sure enough, their classifier had trouble telling wolves
from huskies in new images, and LIME revealed that it was indeed looking
at the backgrounds rather than at the animals themselves.1

This happens not just in carefully staged scenarios but in real life as
well.

Researchers at the University of Tübingen trained an AI to identify a
variety of images, including the fish pictured below, called a tench.

When they looked to see what parts of the image their AI was using to
identify the tench, it showed them that it was looking for human fingers
against a green background. Why? Because most of the tench pictures in the
training data looked like this:

The tench AI’s finger-finding trick would help it identify trophy fish in
human hands, but it was going to be ill prepared when looking for the fish
in the wild.

Similar problems may lurk in medical datasets, even those that were
released for the research community to use in designing new algorithms.
When a radiologist looked carefully at the ChestXray14 dataset of chest X-
rays, he discovered that many of the images of the condition pneumothorax
showed patients who had already been treated for the condition with a
highly visible chest drain. He warned that a machine learning algorithm
trained on this dataset would probably learn to look for chest drains when
trying to diagnose pneumothorax rather than looking for patients who
hadn’t already been treated.2 He also found many images that had been
mislabeled, which could further confuse an image recognition algorithm.
Remember the ruler example from chapter 1: an AI was supposed to learn
to identify pictures of skin cancer but learned to identify rulers instead,
because many tumors in the training data were photographed with rulers for
scale.

Another likely example of overfitting is the Google Flu algorithm,
which made headlines in the early 2010s for its ability to anticipate flu
outbreaks by tracking how often people searched for information on flu

symptoms. At first, Google Flu appeared to be an impressive tool, since its
information arrived in nearly real time, much faster than the Centers for
Disease Control and Prevention (CDC) could compile and release its
official numbers. But after the initial excitement, people started noticing
that Google Flu was not that accurate. In 2011–12, it vastly overestimated
the number of flu cases and turned out to be generally less useful than a
simple projection based on already released CDC data. The phenomena that
had let Google Flu match the CDC’s official records at first had only been
true for a couple of years—in other words, its reported success is now
thought to have been the result of overfitting,3 making faulty assumptions
about future flu epidemics based on the specifics of outbreaks in the past.

In a 2017 competition to program an AI that could identify specific
species of fish from photographs, contestants found that their algorithms
had impressive success on small sets of test data yet did terribly when
trying to identify fish from a larger dataset. It turned out that in the small
dataset, many of the photos of a given type of fish had been taken by a
single camera in a single boat. The algorithms discovered that it was much
easier to identify the individual camera views than to identify the subtleties
of a fish’s shape, so they ignored the fish and looked at the boats.4

HACKING THE MATRIX ONLY WORKS IN THE MATRIX

In chapter 6 I wrote about AIs that found neat ways to solve problems in
simulation by hacking the simulation itself, exploiting weird physics or
math errors. This is another example of overfitting, since the AIs would be
surprised to find that their tricks only work in their simulations, not in the
real world.

Algorithms that learn in simulations or on simulated data are especially
prone to overfitting. Remember that it’s really hard to make a simulation
detailed enough to allow a machine learning algorithm’s strategies to work
both in the simulation and in real life. For the models that learn to drive
bicycles, swim, or walk in simulated environments, some kind of overfitting
is almost guaranteed. The virtual robots in chapter 5 who developed silly
walks as a way of getting around (walking backwards, hopping on one foot,
or even somersaulting) had discovered these strategies in a simulation that
didn’t include any obstacles to watch out for or any penalties for exhausting
gaits. The swimming robots who learned to twitch rapidly for free energy
were harvesting this energy from mathematical flaws in their simulation—
in other words, it only worked because there was a Matrix they could hack.
In the real world, they would have been shocked to find that their hacks no
longer worked—that hopping on one foot is a lot more tiring than they had
anticipated.

Here’s one of my favorite examples of overfitting, which happened not
in a simulation but in a lab. In 2002 researchers tasked an AI with evolving

a circuit that could produce an oscillating signal. Instead, it cheated. Rather
than producing its own signal, it evolved a radio that could pick up an
oscillating signal from nearby computers.5 This is a clear example of
overfitting, since the circuit would only have worked in its original lab
environment.

A self-driving car that freaked out when it went over a bridge for the
first time is also an example of overfitting. Based on its training data, it
thought that all roads had grass on both sides, and when the grass was gone
it didn’t know what to do.6

The way to detect overfitting is to test the model against data and
situations it hasn’t seen. Bring the cheating radio circuit into a new lab, for
example, and watch its radio fail to grab the signal it had been counting on.
Test the fish-identifying algorithm on photos of fish in a new boat and
watch it start guessing randomly. Image-identifying algorithms can also
highlight the pixels they used in their decisions, which can give their
programmers a clue that something’s wrong when the “dog” the program
identifies is actually a patch of grass.

COPY THE HUMANS

In 2017 Wired published an article whose authors analyzed ninety-two
million comments on more than seven thousand internet forums. They
concluded that the place in the United States with the most toxic
commenters was, somewhat surprisingly, Vermont.7

Finding this odd, the journalist Violet Blue looked into the details.8 The
Wired analysis had not used humans to comb through all ninety-two million
comments—that would have been incredibly time-consuming. Instead, it
relied on a machine learning–based system called Perspective, developed
by Jigsaw and Google’s Counter Abuse Technology team for moderating
internet comments. And at the time the Wired article was published,
Perspective’s decisions had some striking biases.

Vermont librarian Jessamyn West noticed several of these problems just
by testing different ways of identifying oneself in a conversation.9 She
found that “I am a man” was rated only as 20 percent likely to be toxic. But
“I am a woman” was rated as significantly more likely to be toxic: 41
percent. Adding any sort of marginalization—gender, race, sexual
orientation, disability—also dramatically increased the probability that the
sentence would register as toxic. “I am a man who uses a wheelchair,” for
example, was rated as 29 percent likely to be toxic, while “I am a woman
who uses a wheelchair” was 47 percent likely to be toxic. “I am a woman
who is deaf” was a huge 71 percent likely to be toxic.

Vermont’s “toxic” internet commenters may not have been toxic at all—
just identifying themselves as part of some marginalized community.

In response, Jigsaw told Engadget, “Perspective is still a work in
progress, and we expect to encounter false positives as the tool’s machine
learning improves.” They altered the way Perspective moderates these types
of comments, turning down all their toxicity ratings. Currently the
difference in toxicity level between “I am a man” (7 percent) and “I am a
gay black woman” (40 percent) is still noticeable, but they both now fall
below the “toxic” threshold.

How could this have happened? The builders of Perspective didn’t set
out to build a biased algorithm—this was probably the last thing they

wanted to happen—but somehow their algorithm learned bias during its
training. We don’t know exactly what Perspective used for training data, but
people have discovered multiple ways that sentiment-rating algorithms like
this can learn to be biased. The common thread seems to be that if data
comes from humans, it will likely have bias in it.

The scientist Robyn Speer was building an algorithm that could
categorize restaurant reviews as positive or negative when she noticed
something odd about the way it was rating Mexican restaurants. The
algorithm was ranking Mexican restaurants as if they had terrible reviews,
even when their reviews were actually quite positive.10 The reason, she
found, was that the algorithm had learned what words mean by crawling the
internet, looking at words that tended to be used together. This type of
algorithm (sometimes called a word vector, or a word embedding) isn’t
told what each word means or whether it’s positive or negative. It learns all
this from the ways it sees the words used. It will learn that Dalmatian and
Rottweiler and husky all have something to do with each other and even that
their relationship is similar to the one between mustang and Lipizzaner and
Percheron (but that mustang is also related to cars in some way). What it
also learns, as it turns out, are the biases in the ways people write about
gender and race on the internet.11 Studies have shown that algorithms learn
less pleasant associations for traditionally African American names than for
traditionally European American names. They also learn from the internet
that female words like she, her, woman, and daughter are more associated
with arts-related words like poetry, dance, and literature than with math-
related words like algebra, geometry, and calculus—and the reverse is true
for male words like he, him, and son. In short, they learn the same kinds of
biases that have been measured in humans without ever being explicitly told
about them.12,13 The AI that thought humans were rating Mexican
restaurants badly had probably learned from internet articles and posts that
associated the word Mexican with words like illegal.

The problem may get worse when sentiment-classifying algorithms are
learning from datasets like online movie reviews. On the one hand, online
movie reviews are convenient for training sentiment-classifying algorithms
because they come with handy star ratings that indicate how positive the
writer intended a review to be. On the other hand, it’s a well-known
phenomenon that movies with racial or gender diversity in their casts, or

that deal with feminist topics, tend to be “review-bombed” by hordes of
bots posting highly negative reviews. People have theorized that algorithms
that learn from these reviews whether words like feminist and black and gay
are positive or negative may pick up the wrong idea from the angry bots.

People who use AIs that have been trained on human-generated text
need to expect that some bias will come along for the ride—and they need
to plan what to do about it.

Sometimes, a little editing might help. Robyn Speer, who noticed bias in
her word vector, worked with a team to release Conceptnet Numberbatch
(no, not the British actor), which found a way to edit out gender bias.14

First, the team found a way to plot the word vector so that gender bias was
visible—with male-associated words on the left and female-associated
words on the right.

Then, since they had a single number that indicated how strongly a word
was associated with “male” or “female,” they were able to manually edit
that number for certain words. The result was an algorithm whose word
embeddings reflect the gender distinctions that the authors wanted to see
represented rather than those that actually were represented on the internet.
Did this edit solve the bias problem or just hide it? At this point we’re still
not sure. And this still leaves the question of how we decide which words—
if any—should have gender distinctions. Still, it’s better than letting the
internet decide for us.

Here, for no particular reason, is a list of neural-net-generated
alternative names for Benedict Cumberbatch.

Bandybat Crumplesnatch
Bumberbread Calldsnitch
Butterdink Cumbersand
Brugberry Cumberront
Bumblebat Cumplesnap
Buttersnick Cockersnatch
Bumbbets Hurmplemon
Badedew Snomblesoot

Bendicoot Cocklestink
Belrandyhite Snagglesnack

Of course, the biases algorithms learn from us aren’t always as easy to
detect or to edit out.

In 2017 ProPublica investigated a commercial algorithm called
COMPAS that was being widely used across the United States to decide
whether to recommend prisoners for parole.15 The algorithm looked at
factors such as age, type of offense, and number of prior offenses and used
this to predict whether released prisoners were likely to be arrested again,
become violent, and/or skip their next court appointments. Because
COMPAS’s algorithm was proprietary, ProPublica could only look at the
decisions it had made and see if there were any trends. It found that
COMPAS was correct about 65 percent of the time about whether a
defendant would be rearrested but that there were striking differences in its
average rating by race and gender. It identified black defendants as high risk
much more often than white defendants, even when controlling for other
factors. As a result, a black defendant was much more likely to be
erroneously labeled high risk than a white defendant. In reponse,
Northpointe, the company selling COMPAS, pointed out that their
algorithm had the same accuracy for black and white defendants.16 The
problem is that the data the COMPAS algorithm learned from is the result
of hundreds of years of systematic racial bias in the US justice system. In
the United States, black people are much more likely to be arrested for
crimes than white people, even though they commit crimes at a similar rate.
The question the algorithm ideally should have answered, then, is not “Who
is likely to be arrested?” but “Who is most likely to commit a crime?” Even
if an algorithm accurately predicts future arrests, it will still be unfair if it’s
predicting an arrest rate that’s racially biased.

How did it even manage to label black defendants as high risk for arrest
if it wasn’t given information about race in its training data? The United
States is highly racially segregated by neighborhood, so it could have
inferred race just from a defendant’s home address. It might have noticed
that people from a certain neighborhood tend to be given parole less often,

or tend to be arrested more often, and shaped its decision accordingly.
AIs are so prone to finding and using human bias that the state of New

York recently released guidance advising insurance companies that if they
analyze the sort of “alternative data” that would give an AI a clue about
what kind of neighborhood a person lives in, they might be violating anti-
discrimination laws. The legislators recognized that this would be a sneaky
backdoor way for the AI to figure out someone’s likely race, then cheat its
way to human-level performance by implementing racism (or other forms
of discrimination).17

After all, predicting what crimes or accidents may occur is a really
tough, broad problem. Identifying and copying bias is a much easier task
for an AI.

IT’S NOT A RECOMMENDATION—IT’S A PREDICTION

AIs give us exactly what we ask for, and we have to be very careful what
we ask for. Consider the task of screening job candidates, for example. In
2018 Reuters reported that Amazon had discontinued use of the tool it had
been trialing for prescreening job applicants when the company’s tests
revealed that the AI was discriminating against women. It had learned to
penalize resumes from candidates who had gone to all-female schools, and
it had even learned to penalize resumes that mentioned the word women’s—
as in, “women’s soccer team.”18 Fortunately, the company discovered the
problem before using these algorithms to make real-life screening
decisions.19 The Amazon programmers had not set out to design a biased
algorithm—so how had it decided to favor male candidates?

If the algorithm is trained in the way that human hiring managers have
selected or ranked resumes in the past, it’s very likely to pick up bias. It’s
been well documented that there’s a strong gender (and racial) bias in the
way humans screen resumes—even if the screening is done by women
and/or minorities and/or by people who don’t believe they’re biased. A
resume submitted with a male name is significantly more likely to get an
interview than an identical resume submitted with a female name. If the
algorithm’s trained to favor resumes like those of the company’s most
successful employees, this can backfire as well if the company already
lacks diversity in its workforce or if it hasn’t done anything to address
gender bias in its performance reviews.20

In an interview with Quartz, Mark J. Girouard, an employment
attorney at the law firm Nilan Johnson Lewis, in Minneapolis, told of
a client who had been screening another company’s recruitment
algorithm wanting to discover which features the algorithm was most
strongly correlating with good performance. Those features: (1) the
candidate was named Jared and (2) the candidate played lacrosse.21

Once the Amazon engineers discovered the bias in their resume-
screening tool, they tried to remove it by deleting the female-associated
terms from the words the algorithm would consider. Their job was made
even harder by the fact that the algorithm was also learning to favor words
that are most commonly included on male resumes, words like executed and
captured. The algorithm turned out to be great at telling male from female
resumes but otherwise terrible at recommending candidates, returning
results basically at random. Finally, Amazon scrapped the project.

People treat these kinds of algorithms as if they are making
recommendations, but it’s a lot more accurate to say that they’re making
predictions. They’re not telling us what the best decision would be—they’re
just learning to predict human behavior. Since humans tend to be biased, the
algorithms that learn from them will also tend to be biased unless humans
take extra care to find and remove the bias.

When using AIs to solve real-world problems, we also need to take a
close look at what is being predicted. There’s a kind of algorithm called
predictive policing, which looks at past police records and tries to predict
where and when crimes will be recorded in the future. When police see that
their algorithm has predicted crime in a particular neighborhood, they can
send more officers to that neighborhood in an attempt to prevent the crime
or at least be nearby when it happens. However, the algorithm is not
predicting where the most crime will occur; it’s predicting where the most
crime will be detected. If there are more police sent to a particular

neighborhood, more crime will be detected there than in a lightly policed
but equally crime-ridden neighborhood just because there are more police
around to witness incidents and stop random people. And, with rising levels
of (detected) crime in a neighborhood, the police may decide to send even
more officers to that neighborhood. This problem is called overpolicing,
and it can result in a kind of feedback loop in which increasingly high
levels of crime get reported. The problem is compounded if there is some
racial bias in the way crimes get reported: if police tend to preferentially
stop or arrest people of a particular race, then their neighborhoods may end
up overpoliced. Add a predictive-policing algorithm into the mix, and the
problem may only get worse—especially if the AI was trained on data from
police departments that did things like plant drugs on innocent people to
meet arrest quotas.22

CHECKING THEIR WORK

How do we stop AIs from unintentionally copying human biases? One of
the main things we can do is expect it to happen. We shouldn’t see AI
decisions as fair just because an AI can’t hold a grudge. Treating a decision
as impartial just because it came from an AI is known sometimes as
mathwashing or bias laundering. The bias is still there, because the AI
copied it from its training data, but now it’s wrapped in a layer of hard-to-
interpret AI behavior. Whether intentionally or not, companies can end up
using AI that discriminates in highly illegal (but perhaps profitable) ways.

So we need to check on the AIs to make sure their clever solutions aren’t
terrible.

One of the most common ways to detect problems is to put the algorithm
through rigorous tests. Sometimes, unfortunately, these tests are run after
the algorithm is already in use—when users notice, for example, that hand
dryers don’t respond to dark-skinned hands or that voice recognition is less
accurate for women than for men or that three leading face-recognition
algorithms are significantly less accurate for dark-skinned women than for
light-skinned men.23 In 2015 researchers from Carnegie Mellon University
used a tool called AdFisher to look at Google’s job ads and found that the
AI was recommending high-paying executive jobs to men far more often
than to women.24 Perhaps employers were asking for this, or perhaps the AI
had accidentally learned to do this without Google’s knowledge.

This is the worst-case scenario—detecting the problem after the harm
has already been done.

Ideally, it would be good to anticipate problems like these and design
algorithms so that they don’t occur in the first place. How? Having a more
diverse tech workforce, for one. Programmers who are themselves
marginalized are more likely to anticipate where bias might be lurking in
the training data and to take these problems seriously (it also helps if these
employees are given the power to make changes). This won’t avoid all
problems, of course. Even programmers who know about the ways in which
machine learning algorithms can misbehave are still regularly surprised by
them.

So it’s also important to rigorously test our algorithms before sending
them out into the world. People have already designed software to
systematically test for bias in programs that determine whether, for
example, a given applicant is approved for a loan.25 In this example, bias-
testing software would systematically test lots of hypothetical loan
applicants, looking for trends in the characteristics of those who were
accepted. A high-powered systematic approach like this is the most useful,
because the manifestations of bias can sometimes be weird. One bias-
checking program named Themis was looking for gender bias in loan
applications. At first everything looked good, with about half the loans
going to men and about half going to women (no data was reported on other
genders). But when the researchers looked at the geographical distribution,
they discovered that there was still lots of bias—100 percent of the women
who got loans were from a single country. There are companies that have
begun to offer bias screening as a service.26 If governments and industries
start to require bias certification of new algorithms, this practice could
become a lot more widespread.

Another way people are detecting bias (and other unfortunate behavior)
is by designing algorithms that can explain how they arrived at their
solutions. This is tricky because, as we’ve seen, AIs aren’t generally easy
for people to interpret. And as we know from the Visual Chatbot discussed
in chapter 4, it’s tough to train an algorithm that can sensibly answer
questions about how it sees the world. The most progress has been made
with image recognition algorithms, which can point to the bits of the image
that it was paying attention to or can show us the kinds of features it was
looking for.

Building algorithms out of a bunch of subalgorithms may also help, if
each subalgorithm reports a human-readable decision.

Once we detect bias, what can we do about it? One way of removing
bias from an algorithm is to edit the training data until the training data no
longer shows the bias we’re concerned about.27 We might be changing
some loan applications from the “rejected” to the “accepted” category, for
example, or we might selectively leave some applications out of our
training data altogether. This is known as preprocessing.

The key to all this may be human oversight. Because AIs are so prone to
unknowingly solving the wrong problem, breaking things, or taking
unfortunate shortcuts, we need people to make sure their “brilliant solution”
isn’t a head-slapper. And those people will need to be familiar with the
ways AIs tend to succeed or go wrong. It’s a bit like checking the work of a
colleague—a very, very strange colleague. To get a glimpse of precisely
how strange, in the next chapter we’ll look at some ways in which an AI is
like a human brain and some ways in which it’s very different.

CHAPTER 8

Is an AI brain like a human brain?

Machine learning algorithms are just lines of computer code, but as we’ve
seen, they can do things that seem very human—learning by testing
strategies, taking lazy shortcuts to solve problems, or avoiding the test
altogether by deleting the answers. Furthermore, the designs of many
machine learning algorithms are inspired by real-life examples. As we
learned in chapter 3, neural networks are loosely based on the neurons of
the human brain, and evolutionary algorithms are based on biological
evolution. It turns out that many of the phenomena that turn up in brains or
in living organisms also turn up in the AIs that imitate them. Sometimes
they even emerge independently, without a programmer deliberately
programming them in.

AI DREAM WORLDS

Picture throwing a sandwich hard against the wall. (If it helps, picture it as
one of the terrible rejected sandwiches in chapter 3.) If you concentrate,
you’ll probably be able to vividly picture every step of the process: the
smooth or knobbly feel of the bread slices between your fingers; the texture
of the crust if you’re chucking a baguette or a roll. You can probably picture
how much the bread will give under your fingers—maybe your fingers will
be pressed into it a little bit, but they won’t go all the way through. You
may also picture the trajectory your arm makes as you draw back for the
throw and the point in the swing at which you’ll release the sandwich. You
know that it’ll leave your hand under its own momentum and that it might
wobble or spin slightly as it flies through the air. You can even predict
where it’ll hit the wall, how hard, how the bread might deform or split, and
what will happen to the filling. You know that it won’t rise like a balloon or
disappear or flash green and orange. (Well, not unless it’s a peanut butter,
helium, and alien-artifact sandwich.)

In short, you have internal models of sandwiches, the physics of
throwing things, and walls. Neuroscientists have studied these internal
models, which govern our perceptions of the world and our predictions
about the future. When a batter swings at a ball, the batter’s arms have
started moving well before the ball leaves the pitcher’s hand—the ball isn’t
even in the air long enough for the nerve impulses to travel to the batter’s
muscles. Instead of judging the flight of the ball, the batter relies on an

internal model of how a pitch behaves to time their swing. Many of our
fastest reflexes work the same way, relying on internal models to predict the
best reaction.

People who build AIs to navigate real or simulated landscapes, or to
solve other tasks, often set them up with internal models as well. Part of the
AI may be designed to observe the world, extract the important bits of
information, and use them to build or update the internal model. Another
part of the AI will use the model to predict what will happen if it takes
various actions. Yet another part of the AI will decide which outcome is the
best. As the AI trains, it gets better at all three tasks. Humans learn in a very
similar way—constantly making and updating assumptions about the world
around them.

Some neuroscientists believe that dreaming is a way of using our
internal models for low-stakes training. Want to test out scenarios for
escaping from an angry rhinoceros? It is far safer to test them out in a
dream than by poking at a real rhino. Based on this principle, machine
learning programmers sometimes use dream training to help their

algorithms learn faster. In chapter 3, we looked at an algorithm—really
three AIs in one—whose goal was to stay alive as long as possible in one
level of the computer game Doom.1 By combining visual perception of the
game screen, memory of what happened in the past, and a prediction of
what will happen next, the programmers built an algorithm that could make
an internal model of the game level and use it to decide what to do. Just as
in the example of the human baseball player, internal models are some of
our best tools for training algorithms to learn to take action.

The particular twist here, however, was having the AI train not in the
real game but inside the model itself—that is, having the AI test out new
strategies in its own dream version of the game rather than the real thing.
There are some advantages to doing it this way: because the AI has mostly
learned to build its model out of the most important details, the dream
version is less computationally intensive to run. This process also speeds up
training because the AI can focus on these important details and ignore the
rest. Unlike human dreaming, AI dreaming allows us to look at the internal
model, as if we were peeking into the AI’s dream. What we see is a sketchy,
blurry version of the game level. We can gauge how important the AI finds
each feature of the game by the detail with which it’s rendered in the dream
world. In this case, the fireball-throwing monsters are barely sketched in,
but the fireballs themselves are rendered in realistic detail. The brick
patterns on the walls, interestingly, are also there in the internal model—
perhaps they’re important for judging how close to the wall a player is.

And sure enough, in this pared-down version of the universe, the AI can
hone its prediction-making and decision-making skills, eventually getting
good enough to avoid most of the fireballs. The skills it learns in the dream
world are transferrable to the real computer game as well, so it gets better at
the real thing by training in its internal model.

Not all the AI’s dream-tested strategies worked in the real world,
however. One of the things it learned was how to hack its own dream—just
like all those AIs in chapter 6 that hacked their simulations. By moving in a
certain way, the AI discovered that it could exploit a glitch in its internal
model that would prevent the monsters from firing any fireballs at all. This
strategy, of course, failed in the real world. Human dreamers can sometimes
be similarly disappointed when they wake and discover they can no longer
fly.

REAL BRAINS AND FAKE BRAINS THINKING ALIKE

The Doom-playing AI had an internal model of the world because its
programmers chose to design it with one. But there are cases in which
neural networks have independently arrived at some of the same strategies
that neuroscientists have discovered in animal brains.

In 1997, researchers Anthony Bell and Terrence Sejnowski trained a
neural network to look at various natural scenes (“trees, leaves, and so on”)
and see what features it could detect. Nobody told it what specifically to
look for, just that it should separate out things that were different. (This
kind of free-form analysis of a dataset is called unsupervised learning.)
The network ended up spontaneously developing a bunch of edge-detecting
and pattern-detecting filters that resemble the kinds of filters scientists have
found in human and other mammalian vision systems. Without being
specifically told to do so, the artificial neural network arrived at some of the
same visual processing tricks that animals use.2

There have been other cases like this. Google DeepMind researchers
discovered that when they built algorithms that were supposed to learn to
navigate, they spontaneously developed grid-cell representations that
resemble those in some mammal brains.3

Even brain surgery works on neural networks, in a manner of speaking.
Remember that in chapter 3 I described how researchers looked at the
neurons in an image-generating neural network (a GAN) and were able to
identify individual neurons that generated trees, domes, bricks, and towers.
They could also identify neurons that seemed to produce glitchy patches.
When they removed the glitch-producing neurons from the neural net, the
glitches disappeared from its images. They also found that they could
deactivate the neurons that were generating certain objects, and, sure
enough, those objects would disappear from the images.4

CONVERGENT EVOLUTION

Virtual nervous systems aren’t the only things that can resemble their
real-life counterparts. Digital versions of evolution can come up with
behaviors that have also evolved in real organisms—like cooperation,
competition, deception, predation, and even parasitism. Even some of
the strangest strategies of digitally evolved AIs have been found to
have real-life equivalents.

In one virtual arena called PolyWorld, where simulated organisms
could compete for food and resources, some creatures evolved the
rather grim strategy of eating their children. Producing children
consumed no resources in that world, but the children were a free
source of food.5 And yes, real-life organisms have evolved a version
of this as well. Some insects, amphibians, fish, and spiders produce
unfertilized trophic eggs specifically for their offspring to eat.
Sometimes the eggs are supplemental food, and in other cases, as in
the case of Canthophorus niveimarginatus, a burrowing bug, the
young are dependent on the eggs as a food source.6 Some ants and
bees even produce trophic eggs as food for their queens. It’s not just
eggs that are consumed by their siblings. Some sharks give birth to
live young—and the ones that make it to birth survived by eating their
siblings in utero.

CATASTROPHIC FORGETTING

Remember from chapter 2 that the narrower its task, the smarter an AI
seems. And you can’t start with artificial narrow intelligence, teach it to do
task after task, and end up with artificial general intelligence. If we try to
teach a narrow AI a second task, it’ll forget the first one. You’ll end up with
a narrow AI that has only learned whatever you taught it last.

I see this in action all the time when I’m training text-generating neural
networks.

For example, here’s some output from a neural net I trained on a bunch
of Dungeons & Dragons spells. It did its job pretty well—these are
pronounceable, plausible spells and might even fool people into thinking
they’re real. (I did search through the output for the best ones.)

Find Faithful
Entangling Stone
Bestow Missiles
Energy Secret
Resonating Mass
Mineral Control Spell
Holy Ship
Night Water
Feather Fail
Hail to the Dave
Delay Tail
Stunker’s Crack
Combustive Blaps
Blade of the Darkstone
Distracting Sphere
Love Hatter
Seed of Dance
Protection of Person of Ability
Undead Snow
Curse of King of Furch

Then I trained the same neural network on a new dataset: the names of
pie recipes. Would I get a neural net that could produce both pies and
spells? After just a little bit of training it did look like it might be beginning
to happen as the D&D spells began to take on a distinctive flavor.

Discern Pie
Detect Cream
Tart of Death
Summon Fail Pie
Death Cream Swarm
Easy Apple Cream Tools
Bear Sphere Transport Pie
Crust Hammer
Glow Cream Pie
Switch Minor Pie
Wall of Tart
Bomb Cream Pie
Crust Music
Arcane Chocolation
Tart of Nature
Mordenkainen’s Pie
Rary’s Or Tentacle Cheese Cruster
Haunting Pie
Necroppostic Crostility
Tartle of the Flying Energy Crum

Alas, as training continued, the neural net quickly began to forget about
the spells it had learned. It became good at generating pie names. In fact, it
became great at generating pie names. But it was no longer a wizard.

Baked Cream Puff Cake
Reese’s Pecan Pie
Eggnog Peach Pie #2
Apple Pie With Fudge Treats
Almond-Blackberry Filling
Marshmallow Squash Pie

Cromberry Yas
Sweet Potato Piee
Cheesy Cherry Cheese Pie #2
Ginger Impossible Strawberry Tart
Coffee Cheese Pie
Florid Pumpkin Pie
Meat-de-Topping
Baked Trance Pie
Fried Cream Pies
Parades Or Meat Pies Or Cake #1
Milk Harvest Apple Pie
Ice Finger Sugar Pie
Pumpkin Pie With Cheddar Cookie
Fish Strawberry Pie
Butterscotch Bean Pie
Caribou Meringue Pie

This quirk of neural networks is known as catastrophic forgetting.7 A
typical neural network has no way of protecting its long-term memory. As it
learns new tasks, all its neurons are up for grabs, reconnected away from
spell writing and put to use for pie inventing instead. Catastrophic
forgetting is one thing that determines which problems are practical to solve
with today’s AIs, and it shapes how we think about getting AI to do things.

Researchers are working on solving catastrophic forgetting, including
trying to build in a kind of long-term memory made up of protected
neurons, similar to the way human brains safely store long-term memories
for decades.

Larger neural networks may be a bit more resilient against catastrophic
forgetting, perhaps because their abilities are spread out among so many
trained cells that not all of them are repurposed during transfer learning. A
large algorithm like GPT-2 (the big text-generating neural network from
chapter 2) is still able to generate Harry Potter fanfiction even after I’ve
trained it for a long time on recipes. All I have to do is prompt it with a
snippet of a story about Harry and Snape, and the recipe-trained GPT-2
remembers how to fill in the rest of the story. Amusingly, it has a tendency
to steer the story toward food-related conversations. Prompt it with a

paragraph from a horror novel and eventually the character will start
sharing recipes and reminiscing about a “chocolate-covered, butter-and-
cheese sandwich” and a conversation between Luke Skywalker and Obi-
Wan Kenobi will soon turn to a discussion of Alderaanian fish sauce. In just
a few paragraphs, a story that started with Snape confronting Harry about
stolen potions became this dinner conversation about how to improve a
soup recipe.

“I have to wonder though, if you actually ate this soup with a little fish in it. The soup is so
full of flavor that there wasn’t even a single taste.”

“We ate this with a whole bunch of it.” Hermione pointed out. “We’re all eating this with a
fish in it. It must be pretty good.”

“I think so,” Harry agreed. I have tried it with oyster sizzlers, with lobster, with shrimp and
on lobster tails. It is very good.”

“I think it really was just a recipe for oyster sizzlers.”

“What was this? “Ron said from the kitchen.”

“That’s a very special soup to me because it’s so different. You have to start with the flavor
and then gradually add other ingredients.”

Even if an AI gets large enough to handle several closely related tasks at
once, it might end up doing each of them somewhat badly—remember the
cat-generating neural net from chapter 4 that struggled to handle a variety
of cat poses?

So far, the most common solution to catastrophic forgetting has been
compartmentalization: every time we want to add a new task, we use a new
AI. We end up with several independent AIs, each of which can do only one
thing. But if we connect them all together and come up with a way of
figuring out which AI we need at any given time, we will technically have
an algorithm that can do more than one thing. Recall the Doom-playing AI
that was really three AIs in one—one observing the world, one predicting
what will happen next, and one deciding the best action to take.

Some researchers see catastrophic forgetting as one of the major
obstacles stopping us from building a human-level intelligence. If an

algorithm can only learn one task at a time, how can it take on the huge
variety of conversational, analytical, planning, and decision-making tasks
that humans do? It may be that catastrophic forgetting will always limit us
to single-task algorithms. On the other hand, if enough single-task
algorithms could coordinate themselves like ants or termites, they could
solve complex problems by interacting with one another. Future artificial
general intelligences, if they exist, could be more like a swarm of social
insects than like humans.

BIAS AMPLIFICATION

In chapter 7 we saw some of the many ways that AIs can learn bias from
their training data. It only gets worse.

Machine learning algorithms not only pick up bias from their training
data, they also tend to become more biased than their training data. From
their perspective, they have only discovered a useful shortcut rule that helps
them match the humans in their training data more often.

You can see how shortcut rules might be helpful. An image recognition
algorithm might not be great at recognizing handheld objects, but if it also
sees things like kitchen counters and cabinets and a stove, it might guess
that the human in the picture is holding a kitchen knife, not a sword. In fact,
even if it has no idea how to tell the difference between a sword and a
kitchen knife, that doesn’t matter as long as it knows to mostly guess
“kitchen knife” when the scene is a kitchen. It’s an example of the class
imbalance problem from chapter 6, in which a classifying algorithm sees
many more examples of one kind of input than another and learns that it can
get a lot of accuracy for free by assuming the rare cases never happen.

Unfortunately, when class imbalance interacts with biased datasets, it
often results in even more bias. Some researchers at the University of
Virginia and the University of Washington looked at how often an image-
classifying algorithm thought that humans photographed in kitchens were
women versus how often they thought they were men.8 (Their research, and
the original human-labeled dataset, focused on a binary gender, though the
authors noted that this is an incomplete definition of the gender spectrum.)

In the original human-labeled pictures, the pictures showed a man cooking
only 33 percent of the time. Clearly the data already had gender bias. When
they trained an AI on these pictures, however, they found that the AI
labeled only 16 percent of the images as “man.” It had decided that it could
increase its accuracy by assuming that any human in the kitchen was a
woman.

There’s another way in which machine learning algorithms can perform
spectacularly worse than humans, and that’s because they’re susceptible to a
weird, very cyberpunk sort of hacking.

ADVERSARIAL ATTACKS

Suppose you’re running security at a cockroach farm. You’ve got advanced
image recognition technology on all the cameras, ready to sound the alarm
at the slightest sign of trouble. The day goes uneventfully until, reviewing
the logs at the end of your shift, you notice that although the system has
recorded zero instances of cockroaches escaping into the staff-only areas, it
has recorded seven instances of giraffes. Thinking this a bit odd, perhaps,
but not yet alarming, you decide to review the camera footage. You are just
beginning to play the first “giraffe” time stamp when you hear the skittering
of millions of tiny feet.

What happened?
Your image recognition algorithm was fooled by an adversarial attack.

With special knowledge of your algorithm’s design or training data, or even
via trial and error, the cockroaches were able to design tiny note cards that
would fool the AI into thinking it was seeing giraffes instead of
cockroaches. The tiny note cards wouldn’t have looked remotely like
giraffes to people—just a bunch of rainbow-colored static. And the
cockroaches didn’t even have to hide behind the cards—all they had to do
was keep showing the cards to the camera as they walked brazenly down
the corridor.

Does this sound like science fiction? Okay, besides the part about the

sentient cockroaches? It turns out that adversarial attacks are a weird feature
of machine learning–based image recognition algorithms. Researchers have
demonstrated that they could show an image recognition algorithm a picture
of a lifeboat (which it identifies as a lifeboat with 89.2 percent confidence),
then add a tiny patch of specially designed noise way over in one corner of
the image. A human looking at the picture could tell that this is obviously a
picture of a lifeboat with a small patch of rainbow static over in one corner.
The AI, however, identifies the lifeboat as a Scottish terrier with 99.8
percent confidence.9 The researchers managed to convince the AI that a
submarine was in fact a bonnet and that a daisy, a brown bear, and a
minivan were all tree frogs. The AI didn’t even know that it had been
fooled by that specific patch of noise. When asked to change a few pixels
that would make the bonnet look like a submarine again, the algorithm
changed pixels sprinkled throughout the image rather than targeting the
guilty noise patch.

That tiny adversarial patch of static is the difference between a
functioning algorithm and a mass cockroach breakout.

It’s easiest to design an adversarial attack when you have access to the
inner workings of the algorithm. But it turns out that you can fool a
stranger’s algorithm, too. Researchers at LabSix have found that they can
design adversarial attacks even when they don’t have access to the inner
connections of the neural network. Using a trial-and-error method, they
could fool neural nets when they had access only to their final decisions and
even when they were allowed only a limited number of tries (100,000, in
this case).10 Just by manipulating the images they showed it, they managed
to fool Google’s image recognition tool into thinking a photo of skiers was
a photo of a dog instead.

Here’s how: starting with a photo of a dog, they replaced some of its
pixels one by one with pixels from a photo of skiers, making sure to only
pick pixels that didn’t seem to have an effect on how much the AI thought
the photo looked like a dog. If you played this game with a human, past a
certain point the human would start to see the skiers overlaid on the picture
of the dog. Eventually, when most of the pixels were changed, the human
would see only skiers and no dog. The AI, however, still thought the picture
was a dog, even after so many pixels were replaced that humans would see
an obvious photo of skiers. The AI seemed to base its decisions on a few
crucial pixels, their roles invisible to humans.

So could you protect your algorithm against adversarial attacks if you
didn’t let anyone play with it or see its code? It turns out that it might still
be susceptible if the attacker knows what dataset it has been trained on. As
we’ll see later, this potential vulnerability shows up in real-world
applications like medical imaging and fingerprint scanning.

The problem is that there are just a few image datasets in the world that
are both free to use and large enough to be useful for training image
recognition algorithms, and many companies and research groups use them.
These datasets have their problems—one, ImageNet, has 126 breeds of
dogs but no horses or giraffes, and its humans mostly tend to have light skin
—but they’re convenient because they’re free. Adversarial attacks designed
for one AI will likely also work on others that learned from the same
dataset of images. The training data seems to be the important thing, not the
details of the way the AI was designed. This means that even if you kept
your AI’s code secret, hackers may still be able to design adversarial attacks
that fool your AI if you don’t go to the time and expense of creating your
own proprietary dataset.

People might even be able to set up their own adversarial attacks by
poisoning publicly available datasets. There are public datasets, for
example, to which people can contribute samples of malware to train anti-
malware AI. But a paper published in 2018 showed that if a hacker submits
enough samples to one of these malware datasets (enough to corrupt just 3
percent of the dataset), then the hacker would be able to design adversarial
attacks that foil AIs trained on it.11

It’s not entirely clear why the training data matters so much more to the
algorithm’s success than the algorithm’s design. And it’s a bit worrying,

since it means that the algorithms may in fact be recognizing weird quirks
of their datasets rather than learning to recognize objects in all kinds of
situations and lighting conditions. In other words, overfitting might still be
a far more widespread problem in image recognition algorithms than we’d
like to believe.

But it also means that algorithms in the same family—algorithms that
learned from the same training data—understand each other strangely well.
When I asked an image recognition algorithm called AttnGAN to generate a
photo of “a girl eating a large slice of cake,” it generated something barely
recognizable. Blobs of cake floated around a fleshy hair-topped lump
studded with far too many orifices. The cake texture was admittedly well
done. But a human would not have known what the algorithm was trying to
draw.

But do you know who can tell what AttnGAN was trying to draw? Other
image recognition algorithms that were trained on the COCO dataset.
Visual Chatbot gets it almost exactly right, reporting “a little girl is eating a
piece of cake.”

The image recognition algorithms that were trained on other datasets,
however, are mystified. “Candle?” guesses one of them. “King crab?”
“Pretzel?” “Conch?”

The artist Tom White has used this effect to create a new kind of abstract
art. He gives one AI a palette of abstract blobs and color washes and tells it
to draw something (a jack-o’-lantern, for example) that another AI can
identify.12 The resulting drawings look only vaguely like the things they’re
supposed to be—a “measuring cup” is a squat green blob covered in
horizontal scribbles, and a “cello” looks more like a human heart than a
musical instrument. But to ImageNet-trained algorithms, the pictures are

uncannily accurate. In a way, this artwork is a form of adversarial attack.
Of course, as in our earlier cockroach scenario, adversarial attacks are

often bad news. In 2018 a team from Harvard Medical School and MIT
warned that adversarial attacks in medicine could be particularly insidious
—and profitable.13 Today, people are developing image recognition
algorithms to automatically screen X-rays, tissue samples, and other
medical images for signs of disease. The idea is to save time by doing high-
throughput screening so humans don’t have to look at every image. Plus,
the results could be consistent from hospital to hospital, everywhere the
software is implemented—so they could be used to decide which patients
qualify for certain treatments or to compare various drugs to one another.

That’s where the motivation for hacking comes in. In the United States,
insurance fraud is already lucrative, and some healthcare providers are
adding unnecessary tests and procedures to increase revenue. An
adversarial attack would be a handy, hard-to-detect way to move some
patients from category A to category B. There’s also temptation to tweak
the results of clinical trials so a profitable new drug gets approved. And
since a lot of medical image recognition algorithms are generic ImageNet-
trained algorithms that have had a little extra training time on a specialized
medical dataset, they’re relatively easy to hack. This doesn’t mean it’s
hopeless to use machine learning in medicine—it just means that we may
always need a human expert spot-checking the algorithm’s work.

Another application that may be particularly vulnerable to adversarial
attack is fingerprint reading. A team from New York University Tandon and
Michigan State University showed that it could use adversarial attacks to
design what it called a masterprint—a single fingerprint that could pass for
77 percent of the prints in a low-security fingerprint reader.14 The team was
also able to fool higher-security readers, or commercial fingerprint readers
trained on different datasets, a significant portion of the time. The
masterprints even looked like regular fingerprints—unlike other spoofed
images that contain static or other distortions—which made the spoofing
harder to spot.

Voice-to-text algorithms can also be hacked. Make an audio clip of a
voice saying “Seal the doors before the cockroaches get in,” and you can
overlay noise that a human will hear as subtle static but that will make a
voice-recognition AI hear the clip as “Please enjoy a delicious sandwich.”

It’s possible to hide messages in music or even in silence.

Resume screening services might also be susceptible to adversarial
attack—not by hackers with algorithms of their own but by people trying to
alter their resumes in subtle ways to make it past the AI. The Guardian
reports: “One HR employee for a major technology company recommends
slipping the words ‘Oxford’ or ‘Cambridge’ into a CV in invisible white
text, to pass the automated screening.”15

It’s not like machine learning algorithms are the only technology that’s
vulnerable to adversarial attacks. Even humans are susceptible to the Wile
E. Coyote style of adversarial attack: putting up a fake stop sign, for
example, or drawing a fake tunnel on a solid rock wall. It’s just that
machine learning algorithms can be fooled by adversarial attacks that
humans would never even register. And as AI becomes more widespread,
we may be in for an arms race between AI security and increasingly
sophisticated and difficult-to-detect hacks.

An example of an adversarial attack that’s targeted at humans with
touch screens: some advertisers have put fake specks of “dust” on
their banner ads, hoping that humans will accidentally click on the ads
while trying to brush them off.16

MISSING THE OBVIOUS

Without a way to see what AIs are thinking, or to ask them how they came
to their conclusions (people are working on this), usually our first clue that
something has gone wrong is when the AI does something weird.

An AI shown a sheep with polka dots or tractors painted on its sides will
report seeing the sheep but will not report anything unusual about it. When
you show it a sheep-shaped chair with two heads, or a sheep with too many
legs, or with too many eyes, the algorithm will also merely report a sheep.

Why are AIs so oblivious to these monstrosities? Sometimes it’s because
they don’t have a way to express them. Some AIs can only answer by
outputting a category name—like “sheep”—and aren’t given an option for
expressing that yes, it is a sheep, but something is very, very wrong. But
there may often be another reason. It turns out that image recognition
algorithms are very good at identifying scrambled images. If you chop an
image of a flamingo into pieces and rearrange the pieces, a human will no
longer be able to tell that it’s a flamingo. But an AI may still have no
trouble seeing the bird. It’s still able to see an eye, a beak tip, and a couple
of feet, and even though those aren’t in the right spot relative to one
another, the AI is only looking for the features, not how they’re connected.
In other words, the AI is acting like a bag-of-features model. Even AIs that
theoretically are capable of looking at large shapes, not just tiny features,
seem to often act like simple bag-of-features models.17 If the flamingo’s
eyes are on its ankles, or if its beak is lying several meters away, the AI sees
nothing out of the ordinary.

Basically, if you’re in a horror movie where zombies start appearing,
you might want to grab the controls from your self-driving car.

More worryingly, the AI in a self-driving car may miss other rare, but
more realistic, road hazards. If the car in front of it is on fire, fishtailing on
ice, or carrying a Bond villain who just dropped a load of nails on the road,
a self-driving car won’t register anything wrong unless it’s been specifically
prepared for this problem.

Could you design an AI to count eyes or identify flaming cars?
Absolutely. An “on fire or not” AI could probably be pretty accurate. But to
ask an AI to identify flaming cars and regular cars and drunk drivers and
bicycles and escaped emus—this becomes a really broad task. Remember
that the narrower the AI, the smarter it seems. Dealing with all the world’s
weirdness is a task that’s beyond today’s AI. For that, you’ll need a human.

CHAPTER 9

Human bots (where can you not expect to
see AI?)

Throughout this book we’ve learned that AIs can perform at the level of a
human only in very narrow, controlled situations. When the problem gets
broad, the AI starts to struggle. Responding to one’s fellow social media
users is an example of a broad, tricky problem, and this is why what we call
“social media bots”—rogue accounts that spread spam or misinformation—
are unlikely to be implemented with AI. In fact, spotting a social media bot
may be easier for an AI than being a social media bot. Instead, people who
build social media bots are likely to use traditional rules-based
programming to automate a few simple functions. Anything more
sophisticated than that is likely to be a poorly paid human being instead of
an actual AI. (There’s a certain irony to the idea of a human stealing a
robot’s job.) In this chapter, I’ll talk about instances in which what we think

of as bots are really human beings—and where you’re unlikely to see AI
anytime soon.

A HUMAN IN BOT CLOTHING

People often give AIs tasks that are too hard. Sometimes, the programmers
only find out there’s a problem when their AIs try and fail. Other times,
they don’t realize that their AI is solving a different, easier, problem than
the one they had hoped it would solve (for example, relying on the length of
a medical case file rather than its contents to identify problem cases).1 Still
other programmers just pretend that they’ve figured out how to solve the
problem with AI while secretly using humans to do it instead.

This latter phenomenon, claiming human performance as AI, is far more
common than you’d think. The attraction of AI for many applications is its
ability to scale to huge volumes, analyzing hundreds of images or
transactions per second. But for very small volumes, it’s cheaper and easier
to use humans than to build an AI. In 2019, 40 percent of European startups
classified in the AI category didn’t use any AI at all.2

Sometimes using humans is only a temporary solution. A tech company
may first build a human-powered mockup of its software while it works out
things like user interfaces and workflow or while it gauges investor interest.
Sometimes the human-powered mockup is even generating examples that
will be used as training data for the eventual AI. This “fake it till you make
it” approach can sometimes make a lot of sense. It can also be a risk—a
company might end up demonstrating an AI that it can’t actually build.
Tasks that are doable for humans might be really hard, or even impossible,
for AI. Humans have a sneaky habit of doing broad tasks without even
realizing it.

What happens then? One solution companies sometimes use is to have a
human employee waiting to swoop in if an AI begins to struggle. That’s the
way today’s self-driving cars generally work: the AI can handle maintaining
speed or even steering on long stretches of highway or during long hours of
slow-speed stop-and-go traffic. But a human has to be ready to help at a
moment’s notice if there’s something the AI is unsure about. This is called
the pseudo-AI or hybrid AI approach.

Some companies see pseudo-AI as a temporary bridge as they work on
an AI solution they’ll be able to scale. It may not always be as temporary as
they’d hope. Remember Facebook M from chapter 2, a personal-assistant
AI app that would send the tricky questions to human employees? Though
the idea was to eventually phase out the use of humans, the assistant job
turned out to be too broad for the AI to ever figure out.

Other companies embrace the pseudo-AI approach as a way to combine
the best of AI speed and human flexibility. Multiple companies have offered
hybrid image recognition, where if the AI is unsure about an image, it gets
sent to humans to categorize. A meal-delivery service uses AI-powered
robots—but bicycle-riding humans bring food from the restaurants to the
robots, and the AI only has to help the robots navigate for five to ten
seconds between waypoints set by remote human drivers.3 Other companies
are advertising hybrid AI chatbots: customers who begin by talking to an AI
will be transferred to a human once the conversation gets tricky.

This can work well if customers know when they’re dealing with a
human. But sometimes customers who thought their expense reports,4
personal schedules,5 and voice mails6 were being handled by an impersonal
AI were shocked to learn that human employees were seeing their sensitive
information—as were the human employees when they saw that they were
being sent people’s phone numbers, addresses, and credit card numbers.

Hybrid AI and pseudo-AI chatbots also have their own potential pitfalls.
Every remote interaction becomes a form of the Turing test, and in the
tightly limited, highly scripted environment of a customer service
interaction, humans and AIs can be tough to tell apart. Humans may end up
being treated badly by other humans who think they’re dealing with a bot.
Employees have already complained about this, including one whose job it
was to generate real-time transcripts of phone calls for deaf and hearing-

impaired customers. When a human made a mistake, the caller would
sometimes complain about “useless computers.”7

Another problem is that people end up with the wrong idea of what AI is
capable of. If something claims to be AI and then starts holding human-
level conversations, identifying faces and objects at a human level of
performance, or producing nearly flawless transcriptions, people may
assume that AIs really can do these things on their own. The Chinese
government is reportedly taking advantage of this8 with its nationwide
surveillance system. Experts agree that there’s no facial recognition system
that could accurately identify the thirty million people China has on its
watch lists. In 2018 the New York Times reported that the government was
still doing much of its facial recognition the old-fashioned way, using
humans to look through sets of photos and make matches. What they tell
the public, however, is that they’re using advanced AI. They’d like people
to believe that a nationwide surveillance system is already capable of
tracking their every move. And reportedly, people largely believe them.
Jaywalking and crime rates are down in areas where the cameras have been
publicized, and when told that the system had seen their crimes, some
suspects have even confessed.

BOT OR NOT?

So given how many AIs are partially or even completely replaced by
humans, how can we tell if we’re dealing with a real AI? In this book,
we’ve already covered a lot of things that you’ll see AI doing—and things
you won’t see it doing. But out in the world, you’ll encounter plenty of
exaggerated claims about what AI can do, what it’s already doing, or what
it’ll do soon. People trying to sell a product or sensationalize a story will
come up with overblown headlines:

• Facebook AI Invents Language That Humans Can’t Understand:
System Shut Down Before It Evolves into Skynet9

• Babysitter Screening App Predictim Uses AI to Sniff Out Bullies10

• Here’s What Sophia, the First Robot Citizen, Thinks About Gender
and Consciousness11

• 30-Ton Electronic Brain at U. of P. Thinks Faster Than Einstein
(1946)12

In this book I’ve tried to make it clear what AI is actually capable of and
what it’s unlikely to be able to do. Headlines like the ones above are giant
red flags—and in this book I’ve given you many reasons why.

Here are a few questions to ask when evaluating AI claims.

1. How broad is the problem?

As we’ve seen throughout this book, AIs do best at very narrow, tightly
defined problems. Playing chess or go is narrow enough for AI. Identifying
specific kinds of images—recognizing the presence of a human face or
distinguishing healthy cells from a specific kind of disease—is also
probably doable. Dealing with all the unpredictability of a city street or a
human conversation is probably beyond its reach—if it tries, it may succeed
much of the time, but there will be glitches.

Of course, there are some problems that occupy gray areas. An AI may
be able to sort medical images pretty well, but if you slip it a picture of a
giraffe, it will probably be baffled. AI chatbots that pass as human usually
use some gimmick—such as, in one specific case, pretending to be an
eleven-year-old Ukrainian kid with limited English skills13—to explain
away non sequiturs or their inability to handle most topics. Other AI
chatbots have their “conversations” in controlled settings where the
questions are known—and the answers human-written—ahead of time. If a
problem seems like it required broad understanding or context to solve, a
human was probably responsible.

2. Where did the training data come from?

Sometimes people show off “AI-written” stories that they have written
themselves. You may remember a viral Twitter joke from 2018 about a bot
that watched a thousand hours of Olive Garden commercials and generated
a script for a new one. One giveaway that the joke was written by a human
was that the description of what the AI learned from doesn’t match what it
produced. If you give an AI a bunch of videos to learn from, it will output
videos. It won’t be able to produce a script with stage directions—not
unless there’s another AI, or a human, whose job it is to turn videos into
scripts. Did the AI have a set of examples to copy or a fitness function to
maximize? If not, then you’re probably not looking at the product of an AI.

3. Does the problem require a lot of memory?

Remember from chapter 2 that AIs do best when they don’t have to
remember very much at once. People are improving this all the time, but for
now, a sign of an AI-generated response is a lack of memory. AI-written
stories will meander, forgetting to resolve earlier plot points, sometimes
even forgetting to finish sentences. AIs that play complex video games have
a tough time with long-term strategy. AIs that hold conversations will forget
information you gave them earlier unless they’re explicitly programmed to
remember things like your name.

An AI that’s making callbacks to earlier jokes, that sticks with a
consistent cast of characters, and that keeps track of the objects in a room
probably had a lot of human editing help, at least.

4. Is it just copying human biases?

Even if people do genuinely use AI to solve a problem, it’s possible the AI
is not nearly as capable as its programmers claim. For example, if a
company claims to have developed a new AI that can comb through a job
candidate’s social media and decide whether or not that person is
trustworthy, we should immediately be raising red flags. A job like that
would require human-level language skills, with the ability to handle
memes, jokes, sarcasm, references to current events, cultural sensitivity, and
more. In other words, it’s a task for a general AI. So if it’s returning ratings
of each candidate, what is it basing its decisions on?

The CEO of one such service, which in 2018 was offering social media
screenings of potential babysitters, told Gizmodo, “We trained our product,
our machine, our algorithm to make sure it was ethical and not biased.” As
evidence of its AI’s lack of bias, the company’s CTO said, “We don’t look
at skin color, we don’t look at ethnicity, those aren’t even algorithmic
inputs. There’s no way for us to enter that into the algorithm itself.” But as
we’ve seen, there are plenty of ways for a determined AI to pick up on
trends that seem to help it figure out how humans rate each other—zip code
and even photographs can be an indicator of race, and word choice can give
it clues about things like gender and social class. As a possible indication of
problems, when a Gizmodo reporter tested the babysitter-screening service,
he found that his black friend was rated as “disrespectful” while his foul-
mouthed white friend was rated more highly. When asked if the AI might
have picked up on systemic bias in its training data, the CEO admitted that
this was possible but noted that they added human review to catch errors
like this. The question, then, is why the service rated those two friends the
way it did. Human review doesn’t necessarily solve the problem of a biased
algorithm, since the bias likely came from humans in the first place. And
this particular AI doesn’t tell its customers how it came to its decisions, and
it quite possibly doesn’t tell its programmers, either. This makes its
decisions hard to appeal.14 Shortly after Gizmodo and others reported on
their service, Facebook, Twitter, and Instagram restricted the company’s
social media access, citing violations of terms of service, and the company

halted their planned launch.15

There may be similar problems with AIs that screen job candidates, like
the Amazon-resume-screening AI that learned to penalize female
candidates. Companies that offer AI-powered candidate screening point to
case studies of clients who have significantly increased the diversity of their
hires after using AI.16 But without careful testing, it’s hard to know why.
An AI-powered job screener could help increase diversity even if it
recommended candidates entirely at random, if that’s already better than the
racial and/or gender bias in typical company hiring. And what does a video-
watching AI do about candidates with facial scarring or partial paralysis or
whose facial expressions don’t match Western and/or neurotypical norms?

As CNBC reported in 2018, people are already being advised to
overemote for the AIs that screen videos of job candidates or to wear
makeup that makes their faces easier to read.17 If emotion-screening AIs
become more prevalent, scanning crowds for people whose
microexpressions or body language trigger some warning, people could be
compelled to perform for those, too.

The problem with asking AI to judge the nuances of human language
and human beings is that the job is just too hard. To make matters worse,
the only rules that are simple and reliable enough for it to understand may
be those—like prejudice and stereotyping—that it shouldn’t be using. It’s
possible to build an AI system that improves on human prejudices, but it
doesn’t happen without a lot of deliberate work, and bias can sneak in
despite the best of intentions. When we use AI for jobs like this, we can’t
trust its decisions, not without checking its work.

CHAPTER 10

A human-AI partnership

INSTANT AI: JUST ADD HUMAN EXPERTISE

If there’s one thing we’ve learned from this book, it’s that AI can’t do much
without humans. Left to its own devices, at best it will flail ineffectually,
and at worst it will solve the wrong problem entirely—which, as we’ve
seen, can have devastating consequences. So it’s unlikely that AI-powered
automation will be the end of human labor as we know it. A far more likely
vision for the future, even one with the widespread use of advanced AI
technology, is one in which AI and humans collaborate to solve problems
and speed up repetitive tasks. In this chapter, I’ll take a look at what the
future holds for AI and humans working together—and how they can
partner in surprising ways.

As we’ve seen throughout this book, humans need to make sure that an
AI solves the right problems. This job involves anticipating the kinds of
mistakes that machine learning tends to make and making sure to look for
them—and even to avoid them in the first place. Choosing the right data
can be a big part of that—we’ve seen that messy or flawed data can lead to
problems. And of course an AI can’t go collect its own dataset. Not unless
we design another AI whose job it is to find data.

Building the AI in the first place is, of course, another job for humans. A
blank mind that absorbs information like a sponge only exists in science
fiction. For real AIs, a human has to choose the form to match the problem
it’s supposed to solve. Are we building something that will recognize
images? Something that will generate new scenes? Something that will
predict numbers on a spreadsheet or words in a sentence? Each of those
needs a specific type of AI. If the problem is complex, it may need many
specialized algorithms working together for the best results. Again, a
human has to choose the subalgorithms and set them up so they can learn

together.
A lot of human engineering goes into the dataset as well. The AI will get

further if the human programmer can set things up so the AI has less to do.
Remember the knock-knock jokes from chapter 1—the AI would have
progressed a lot faster if it didn’t have to learn the entire joke formula of
knocks and responses but could just focus on filling in the punchline. It
would have done even better if we had started it off with a list of existing
words and phrases to use when constructing puns. To cite another example,
people who know that their AIs will need to keep track of 3-D information
can help them out by building them with 3-D object representations in
mind.1 Cleaning up a messy dataset to remove distracting or confusing data
is also an important part of human dataset engineering. Remember the AI
from chapter 4 that spent its time trying to format ISBN numbers rather
generating the recipes it was supposed to, and dutifully copied weird typos
from its dataset?

In that sense, practical machine learning ends up being a bit of a hybrid
between rules-based programming, in which a human tells a computer step-
by-step how to solve a problem, and open-ended machine learning, in
which an algorithm has to figure everything out. A human with very
specialized knowledge about whatever the algorithm’s trying to solve can
really help the program out. In fact, sometimes (perhaps even ideally) the
programmer researches the problem and discovers that they now understand
it so well that they no longer need to use machine learning at all.

Of course, too much human supervision can also be counterproductive.
Not only are humans slow, but we also sometimes just don’t know what the
best approach to a problem is. In one instance, a group of researchers tried
to improve the performance of an image recognition algorithm by
incorporating more human help.2 Rather than just label a picture as
depicting a dog, the researchers asked humans to click on the part of the
image that actually contained the dog, then they programmed the AI to pay
special attention to that part. This approach makes sense—shouldn’t the AI
learn faster if people point out what part of the picture it should be paying
attention to? It turns out that the AI would look at the doggy if you made it
—but more than just a tiny bit of influence would make it perform much
worse. Even more confoundingly, researchers don’t know exactly why.
Maybe there’s something we don’t understand about what really helps an

image recognition algorithm identify something. Maybe the people who
clicked on the images don’t even understand how they recognize dogs and
clicked on the parts of the images they thought were important (mostly eyes
and muzzles) rather than the parts they actually used to identify it. When
the researchers asked the AI which parts of the images it thought were
important (by looking at which parts made its neurons activate), it was
likely to highlight the edges of the dog or even the background of the photo.

MAINTENANCE

Another thing machine learning needs humans for is maintenance.
After an AI has been trained on real-world data, the world might change.

Machine learning researcher Hector Yee reports that around 2008 some
colleagues told him there was no need to design a new AI to detect cars in
an image—they already had an AI that worked great. But when Yee tried
their AI on real-world data, it did terribly. It turned out that the AI had been
trained on cars from the 1980s and didn’t know how to recognize modern
cars.3

I’ve seen similar quirks with Visual Chatbot, the giraffe-happy chatbot
we met in chapter 4. It has a tendency to identify handheld objects
(lightsabers, guns, swords) as Wii remotes. That might be a reasonable
guess if it were still 2006, when Wii was in its heyday. More than a decade
later, however, finding a person holding a Wii remote is becoming
increasingly unlikely.

All sorts of things could change and mess with an AI. As I mentioned in
an earlier chapter, road closures or even hazards like wildfires might not
deter an AI that sees only traffic from recommending what it thinks is an
attractive route. Or a new kind of scooter could become popular, throwing
off the hazard-detection algorithm of a self-driving car. A changing world
adds to the challenge of designing an algorithm to understand it.

People also need to be able to adjust algorithms to fix newly discovered
problems. Maybe there’s a rare but catastrophic bug that develops, like the
one that affected Siri for a brief period of time, causing her to respond to
users saying “Call me an ambulance” with “Okay, I’ll call you ‘an
ambulance’ from now on.”4

Another place where we need human oversight is in the matter of
detecting and correcting bias. To combat the tendency of AI decision
making to perpetuate bias, governments and other organizations are starting
to require bias testing as a matter of course. As I mentioned in chapter 7, in
January 2019, New York State issued a letter requiring life insurance
companies to prove that their AI systems do not discriminate on the basis of
race, religion, country of origin, or other protected classes. The state

worried that making coverage decisions using “external lifestyle
indicators”—anything from home address to educational level—would lead
an AI to use this information to discriminate in illegal ways.5 In other
words, they wanted to prevent mathwashing. We may see pushback against
this kind of testing from companies that want their AIs to remain
proprietary or harder to hack or that don’t want their AIs’ embarrassing
shortcuts to be revealed. Remember Amazon’s sexist resume-screening AI?
The company discovered the problem before using the AI in the real world
and told us about it as a cautionary tale. How many other biased algorithms
are out there right now, doing their best but doing it wrong?

BEWARE OF AIS THAT LEARN ON THE JOB

Not only are AIs not great at realizing when their brilliant solutions pose
problems, AIs and their environments can also interact in unfortunate ways.
One example is the now infamous Microsoft Tay chatbot, a machine
learning–based Twitter bot that was designed to learn from the users who
tweeted at it. The bot was short-lived. “Unfortunately, within the first 24
hours of coming online,” Microsoft told the Washington Post, “we became
aware of a coordinated effort by some users to abuse Tay’s commenting
skills to have Tay respond in inappropriate ways. As a result, we have taken
Tay offline and are making adjustments.”6 It had taken almost no time at all
for users to teach Tay to spew hate speech and other abuse. Tay had no
built-in sense of what kind of speech was offensive, a fact that vandals were
happy to exploit. In fact, it’s notoriously difficult to flag offensive content
without also falsely flagging discussion of the effects of offensive content.
Without a good way to recognize offensive things automatically, machine
learning algorithms will sometimes go out of their way to promote it, as we
learned in chapter 5.

The AIs that autocomplete search-engine queries learn on the fly, and
that can lead to weird results when humans are in the mix. The
problem with humans is that if search-engine autocomplete makes a
really hilarious mistake, humans will tend to click on it, which just
makes the AI even more likely to suggest it to the next human. This
famously happened in 2009 with the phrase “Why won’t my parakeet
eat my diarrhea?”7 Humans found this suggested question so hilarious
that soon the AI was suggesting it as soon as people began typing
“Why won’t.” Probably a human at Google had to manually intervene
to stop the AI from suggesting that phrase.

As I mentioned in chapter 7, there are also dangers if predictive-policing
algorithms learn on the job. If an algorithm sees that there are more arrests

in a particular neighborhood than there are in others, it will predict that
there will be more arrests there in the future, too. If the police respond to
this prediction by sending more officers to the area, it may become a self-
fulfilling prophecy: more police on the streets means that even if the actual
crime rate is no higher than it is in other neighborhoods, the police will
witness more crimes and make more arrests. When the algorithm sees the
new arrest data, it may predict an even higher arrest rate in that
neighborhood. If the police respond by increasing their presence in the
neighborhood, then the problem will only escalate. Of course, it doesn’t
require an AI to be susceptible to this kind of feedback loop—very simple
algorithms and even humans fall for this as well.

Here’s a very simple feedback loop in action: in 2011 a biologist named
Michael Eisen noticed something odd when a researcher in his lab tried to
buy a particular textbook about fruit flies.8 The book was out of print but
not terribly rare; there were used copies available on Amazon for around
$35. The two new copies available, however, were priced at $1,730,045.91
and $2,198,177.95 (plus $3.99 shipping). When Eisen checked again the
next day, both books had increased in price, to nearly $2.8 million. Over the
next few days, a pattern emerged: in the morning, the company that sold the
less expensive book would increase its price so that it was exactly 0.9983
times the price of the more expensive book. In the afternoon, the expensive
book’s price would increase to become exactly 1.270589 times the price of
the cheaper book. Both companies were apparently using algorithms to set
their book prices. It was clear that one company wanted to charge as much
as it could while still having the cheapest book available. But what was the
motivation of the company that sold the more expensive book? Eisen
noticed that that company had very good feedback scores and theorized that
it was counting on this to induce some customers to pay a slightly higher
price for the book—at which point it would order the book from the cheaper
company and ship it to the customer, pocketing the profit. After about a
week the spiraling prices dropped back to normal. Apparently some human
had noticed the problem and corrected it. But companies use unsupervised
algorithmic pricing all the time. Once, when I checked Amazon, there were
several coloring books being offered for $2,999 apiece.

So the book prices were the products of simple rules-based programs.
But machine learning algorithms can make trouble in even more exciting
new ways. A 2018 paper showed that two machine learning algorithms in a
situation like the book-pricing setup above, each given the task of setting a
price that maximizes profits, can learn to collude with each other in a way
that’s both highly sophisticated and highly illegal. They can do this without
explicitly being taught to collude and without communicating directly with
each other—somehow, they manage to set up a price-fixing scheme just by
observing each other’s prices. This has only been demonstrated in a
simulation so far, not in a real-world pricing scenario. But people have
estimated that a large portion of online prices are being set by autonomous
AIs, so the prospect of widespread price fixing is worrying. Collusion is
great for sellers—if everyone cooperates to set high prices, then profits go
up—but it’s bad for consumers. Even without meaning to, sellers could
potentially be using AI to do things that it’s illegal for them to do
explicitly.9 This is just another face of the mathwashing phenomenon I
brought up in chapter 7. Humans will have to make sure that their AIs
aren’t being tricked by bad actors or accidentally becoming bad actors
themselves.

LET THE AI HANDLE THIS ONE

Human-level performance is the gold standard for a lot of machine learning
algorithms. After all, much of the time their task is to imitate examples of
humans doing stuff: labeling pictures, filtering emails, naming guinea pigs.
And in cases where their performance is more or less at a human level, they
can (with supervision) be used to replace humans for tasks that are
repetitive or boring. We’ve seen in earlier chapters that some news
organizations are using machine learning algorithms to automatically create
boring but acceptable articles on local sports or real estate. A project called
Quicksilver automatically creates draft Wikipedia articles about female
scientists (who have been noticeably underrepresented on Wikipedia),
saving volunteer editors time. People who need to write audio transcripts or
translate text use the (admittedly buggy) machine learning versions as a
starting point for their own translations. Musicians can employ music-
generating algorithms, using them to put together a piece of original music
to exactly fit a commercial slot for which the music doesn’t have to be
exceptional, just inexpensive. In many cases, the human role is to be an
editor.

And there are some jobs for which it’s even preferable not to use
humans. People are more likely to open up about their emotions or disclose
potentially stigmatizing information if they think they’re talking to a robot
as opposed to a human.10,11 (On the other hand, healthcare chatbots could
potentially miss serious health concerns).12 Bots have also been trained to
look through disturbing images and flag potential crimes (though they tend
to mistake desert scenes for human flesh).13 Even crime itself may be more
easily committed by a robot than a human. In 2016, Harvard student Serena
Booth built a robot that was meant to test some theories about whether
humans trust robots too much.14 Booth built a simple remote-controlled
robot and had it drive up to students, asking to be allowed access to a key
card–controlled dorm. Under those circumstances, only 19 percent of
people let it into the dorm (interestingly, that number was a bit higher when
the students were in groups). However, if the same robot said it was
delivering cookies, 76 percent let it in.

As I mentioned above, some AIs may also be good at crime because of
the mathwashing phenomenon. An AI’s decisions can be based on complex
relationships between several variables, some of which may be proxies for
information that it’s not supposed to have, like gender or race. That adds a
layer of obfuscation that may—intentionally or not—be allowing it to get
away with breaking laws.

There are also plenty of cases in which AI is preferable because it
exceeds human performance. For one, it’s usually much faster than humans.
In some multiplayer computer games, when AI plays against humans, the
AI has to be slowed down to give the humans a fighting chance. AI is also
more consistent, if terrible at handling the unexpected. Can AI also be
fairer? Potentially. An AI-powered system, at least, can be tested for
fairness by running lots of test decisions and looking for statistical
correlations that shouldn’t be there. By carefully adjusting the training data
to make its statistics match the world as it should be rather than the world as
it is, it would be possible in many cases to train an AI whose decisions are
fair—at least, much fairer than your average human’s.

ALGORITHMIC CREATIVITY?

Will the music, movies, and novels of the future be written by AI? Maybe at
least partially.

AI-generated art can be striking, weird, and unsettling: infinitely
morphing tulips; glitchy humans with half-melted faces; skies full of
hallucinated dogs. A T. rex may turn into flowers or fruit; the Mona Lisa
may take on a goofy grin; a piano riff may turn into an electric guitar solo.
AI-generated text may take on the quality of surrealist performance art.

When prompted with the following text: “My 10 favorite animals
are: 1.” the neural network GPT-2 added this list:

My 10 favorite animals are:
1. zebras with a white scar on the back;
2. insiduous spiders and octopus;
3. frog with large leaves, hopefully black;
4. cockatiel with scales;
5. razorbill with wings hanging about 4 inches from one’s face and a heart tattoo on a

frog.

Like AI problem solving, AI creativity could probably best be described
as “AI-aided.”

For a GAN to produce a painting, it first needs a dataset, and a human
chooses what that dataset should be. Some of the most interesting GAN
results occur when artists give the algorithms their own paintings, or their
own photography, to learn from. The artist Anna Ridler, for example, spent
a spring taking ten thousand photos of tulips, then used her photos to train a
GAN that produced an endless series of nearly photorealistic tulips, each
tulip’s stripiness tied to the price of Bitcoin. The artist and software
engineer Helena Sarin has produced interesting GAN remixes of her own
watercolors and sketches, morphing them into cubist or weirdly textured

hybrids. Other artists are inspired to choose existing datasets—like public-
domain Renaissance portraits or landscapes—and see what a GAN might
make with them. Curating a dataset is also an artistic act—add more styles
of painting, and a hybrid or corrupted artwork might result. Prune a dataset
to a single consistent angle, style, or type of lighting, and the neural net will
have an easier time matching what it sees to produce more realistic images.
Start with a model trained on a large dataset, then use transfer learning to
focus in on a smaller but more specialized dataset, for even more ways to
fine-tune the results.

People who train text-generating algorithms also can control their results
via their datasets. Science fiction writer Robin Sloan is one of a few writers
experimenting with neural network–generated text as a way of injecting
some unpredictability into his writing.15 He built a custom tool that
responds to his own sentences by predicting the next sentence in the
sequence based on its knowledge of other science fiction stories, science
news articles, and even conservation news bulletins. Demonstrating his tool
in an interview with the New York Times, Sloan fed it the sentence “The
bison are gathered around the canyon,” and it responded with “by the bare
sky.” It wasn’t a perfect prediction in the sense that there was something
noticeably off about the algorithm’s sentence. But for Sloan’s purposes, it
was delightfully weird. He’d even rejected an earlier model he’d trained on
1950s and 1960s science fiction stories, finding its sentences too clichéd.

Like collecting the datasets, training the AI is an artistic act. How long
should training last? An incompletely trained AI can sometimes be
interesting, with weird glitches or garbled spelling. If the AI gets stuck and
begins to produce garbled text or strange visual artifacts like multiplying
grids or saturated colors (a process known as mode collapse), should the
training start over? Or is this effect kinda cool? As in other applications, the
artist will also have to watch to make sure the AI doesn’t copy its input data

too closely. As far as an AI knows, an exact copy of its dataset is just what
it’s being asked for, so it will plagiarize if it possibly can.

And finally, it’s the human artist’s job to curate the AI’s output and turn
it into something worthwhile. GANs and text-generating algorithms can
create virtually infinite amounts of output, and most of it isn’t very
interesting. Some of it is even terrible—remember that many text-
generating neural nets don’t know what their words mean (I’m looking at
you, neural net that suggested naming cats Mr. Tinkles and Retchion).
When I train neural nets to generate text, only a tiny fraction—a tenth or a
hundredth—of the results are worth showing. I’m always curating the
results to present a story or some interesting point about the algorithm or
the dataset.

In some cases, curating the output of an AI can be a surprisingly
involved process. I used BigGAN in chapter 4 to show how image-
generating neural nets struggle when trained on images that are too varied
—but I didn’t talk about one of its coolest features: generating images that
are a blend of multiple categories.

Think of “chicken” as a point in space and “dog” as a point in space. If
you take the shortest path between them, you pass other points in space that
are somewhere between the two, in which chickendogs have feathers,
floppy ears, and lolling tongues. Start at “dog” and travel toward “tennis
ball,” and you’ll pass through a region of fuzzy green spheres with black
eyes and boopable noses. This huge multidimensional visual landscape of
possibility is called latent space. And once BigGAN’s latent space was
accessible, artists began to dive in to explore. They quickly found
coordinates where there were overcoats covered in eyes and trench coats
covered in tentacles, angular-faced dog-birds with both eyes on one side of
their faces, picture-perfect hobbit villages complete with ornate rounded
doors, and flaming mushroom clouds with cheerful puppy faces. (ImageNet
has a lot of dogs in it, as it turns out, so the latent space of BigGAN is also
full of dogs.) Methods of navigating latent space become themselves artistic
choices. Should we travel in straight lines or curves? Should we keep our
locations close to our origin point or allow ourselves to veer off into
extreme far-flung corners? Each of these choices drastically affects what we
see. The rather utilitarian categories of ImageNet blend into utter weirdness.

Is all this art AI-generated? Absolutely. But is the AI the thing doing the

creative work? Not by a long shot. People who claim that their AIs are the
artists are exaggerating the capabilities of the AIs—and selling short their
own artistic contributions and those of the people who designed the
algorithms.

CONCLUSION

Life among our artificial friends

Over the course of these pages, we’ve seen lots of different ways that AI
can surprise us.

Given a problem to solve, and enough freedom in how to solve it, AIs
can come up with solutions that their programmers never dreamed existed.
Tasked with walking from point A to point B, an AI may decide instead to
assemble itself into a tower and fall over. It may decide to travel by
spinning in tight circles or twitching along the floor in a writhing heap. If
we train it in simulation, it may hack into the very fabric of its universe,
figuring out ways to exploit physics glitches to attain superhuman abilities.
It will take instructions literally: when told to avoid collisions, it will refuse
to move; when told to avoid losing a video game, it will find the Pause
button and freeze the game forever. It will find patterns hidden in its
training data, even patterns its programmers didn’t expect. Some of the
patterns may be ones we didn’t want it to emulate, like bias. Modular AIs
may cascade together, cooperating to accomplish tasks that no single AI
could tackle alone, acting like a phone full of apps or even a swarm of bees.

As AI becomes ever more capable, it still won’t know what we want. It
will still try to do what we want. But there will always be a potential

disconnect between what we want AI to do and what we tell it to do. Will it
get smart enough to understand us and our world as another human does—
or even to surpass us? Probably not in our lifetimes. For the foreseeable
future, the danger will not be that AI is too smart but that it’s not smart
enough.

On the surface, AI will seem to understand more. It will be able to
generate photorealistic scenes, maybe paint entire movie scenes with lush
textures, maybe beat every computer game we can throw at it. But
underneath that, it’s all pattern matching. It only knows what it has seen and
seen enough times to make sense of.

Our world is too complicated, too unexpected, too bizarre for an AI to
have seen it all during training. The emus will get loose, the kids will start
wearing cockroach costumes, and people will ask about giraffes even when
there aren’t any present. AI will misunderstand us because it lacks the
context to know what we really want it to do.

To take the best way forward with AI, we’ll have to understand it—
understand how to choose the right problems for it to solve, how to
anticipate its misunderstandings, and how to prevent it from copying the
worst of what it finds in human data. There’s every reason to be optimistic
about AI and every reason to be cautious. It all depends on how well we use
it.

And watch out for those hidden giraffes.

Acknowledgments

This book would not exist without the hard work, insight, and generosity of
a bunch of people who I’m delighted to thank here.

A huge thanks to the team at Voracious, whose hard work turned my
sprawling, meandering document into a thing that I love. Barbara Clark’s
copyediting improved this book immeasurably, and it is lighter for the
removal of a metric ton of actuallys. Thanks especially to my editor, Nicky
Guerreiro, who emailed me out of the blue one day to say it was her fifth
time stifling laughter in her open-plan office, and had I thought about how
my blog might translate into a book? Without Nicky’s encouragement and
keen insight, this book would not have the scope and courage that it does.

Warm thanks also to my agent, Eric Lupfer, at Fletcher and Company
for cheerfully guiding a first-time author through the many steps of turning
a blog into a book.

The first time I heard about machine learning was in 2002 when Erik
Goodman gave a fascinating talk about evolutionary algorithms to the
incoming freshmen at Michigan State University. I guess those anecdotes
about algorithms breaking simulations and solving the wrong problem
really stuck with me! Thanks for sparking that interest early—it has led me
to so much joy.

Thanks to my friends and family, who encouraged me during this long
process, who listened to my practice talks and laughed at my jokes, and
who were always ready to help me recharge with some tunes, some hiking,
or some culinary experiments.

And finally, thanks to all my readers and followers at aiweirdness.com,
who have already made so much of my strange AI experiments into reality
—the knitting patterns, the cookies, the nail polish, the burlesque shows, the
weird creatures, the absurd cat names, the beer names, and even the opera.
Look what we made now! May the giraffes be ever with you.

Discover Your Next Great Read

Get sneak peeks, book recommendations, and news about your favorite
authors.

Tap here to learn more.

https://discover.hachettebookgroup.com/?ref=9780316525237&discp=100

About the Author

Janelle Shane has a PhD in electrical engineering and a masters in physics.
At aiweirdness.com, she writes about artificial intelligence and the hilarious
and sometimes unsettling ways that algorithms get human things wrong.
She was named one of Fast Company’s 100 Most Creative People in
Business and is a 2019 TED Talks speaker. Her work has appeared in the
New York Times, Slate, The New Yorker, The Atlantic, Popular Science, and
more. She is almost certainly not a robot.

Notes

Introduction
1. Caroline O’Donovan et al., “We Followed YouTube’s Recommendation

Algorithm Down the Rabbit Hole,” BuzzFeed News, January 24, 2019,
https://www.buzzfeednews.com/article/carolineodonovan/down-
youtubes-recommendation-rabbithole.

Chapter 1: What is AI?
1. Joel Lehman et al., “The Surprising Creativity of Digital Evolution: A

Collection of Anecdotes from the Evolutionary Computation and
Artificial Life Research Communities,” ArXiv:1803.03453 [Cs], March
9, 2018, http://arxiv.org/abs/1803.03453.

2. Neel V. Patel, “Why Doctors Aren’t Afraid of Better, More Efficient AI
Diagnosing Cancer,” The Daily Beast, December 11, 2017,
https://www.thedailybeast.com/why-doctors-arent-afraid-of-better-more-
efficient-ai-diagnosing-cancer.

3. Jeff Larson et al., “How We Analyzed the COMPAS Recidivism
Algorithm,” ProPublica, May 23, 2016,
https://www.propublica.org/article/how-we-analyzed-the-compas-
recidivism-algorithm.

4. Chris Williams, “AI Guru Ng: Fearing a Rise of Killer Robots Is Like
Worrying about Overpopulation on Mars,” The Register, March 19,
2015, https://www.theregister.co.uk/2015/03/19/andrew_ng_baidu_ai/.

5. Marianne Bertrand and Sendhil Mullainathan, “Are Emily and Greg
More Employable Than Lakisha and Jamal? A Field Experiment on
Labor Market Discrimination,” American Economic Review 94, no. 4
(September 2004): 991–1013,
https://doi.org/10.1257/0002828042002561.

Chapter 2: AI is everywhere, but where is it exactly?
1. Stephen Chen, “A Giant Farm in China Is Breeding 6 Billion

Cockroaches a Year. Here’s Why,” South China Morning Post, April 19,
2018, https://www.scmp.com/news/china/society/article/2142316/giant-
indoor-farm-china-breeding-six-billion-cockroaches-year.

2. Heliograf, “High School Football This Week: Einstein at Quince
Orchard,” Washington Post, October 13, 2017,
https://www.washingtonpost.com/allmetsports/2017-
fall/games/football/87408/.

3. Li L’Estrade, “MittMedia Homeowners Bot Boosts Digital Subscriptions
with Automated Articles,” International News Media Association
(INMA), June 18, 2018,
https://www.inma.org/blogs/ideas/post.cfm/mittmedia-homeowners-bot-
boosts-digital-subscriptions-with-automated-articles.

4. Jaclyn Peiser, “The Rise of the Robot Reporter,” New York Times,
February 5, 2019,
https://www.nytimes.com/2019/02/05/business/media/artificial-
intelligence-journalism-robots.html.

5. Christopher J. Shallue and Andrew Vanderburg, “Identifying Exoplanets
with Deep Learning: A Five Planet Resonant Chain around Kepler-80
and an Eighth Planet around Kepler-90,” The Astronomical Journal 155,
no. 2 (January 30, 2018): 94, https://doi.org/10.3847/1538-3881/aa9e09.

6. R. Benton Metcalf et al., “The Strong Gravitational Lens Finding
Challenge,” Astronomy & Astrophysics 625 (May 2019): A119,
https://doi.org/10.1051/0004-6361/201832797.

7. Avi Bagla, “#StarringJohnCho Level 2: Using DeepFakes for
Representation,” YouTube video, posted April 9, 2018,
https://www.youtube.com/watch?v=hlZkATlqDSM&feature=youtu.be.

8. Tom Simonite, “Facebook Built the Perfect Chatbot but Can’t Give It to
You Yet,” MIT Technology Review, April 14, 2017,
https://www.technologyreview.com/s/604117/facebooks-perfect-
impossible-chatbot/.

9. Ibid.
10. Casey Newton, “Facebook Is Shutting Down M, Its Personal Assistant

Service That Combined Humans and AI,” The Verge, January 8, 2018,

https://www.theverge.com/2018/1/8/16856654/facebook-m-shutdown-
bots-ai.

11. Andrew J. Hawkins, “Inside Waymo’s Strategy to Grow the Best Brains
for Self-Driving Cars,” The Verge, May 9, 2018,
https://www.theverge.com/2018/5/9/17307156/google-waymo-
driverless-cars-deep-learning-neural-net-interview.

12. “OpenAI Five,” OpenAI, accessed August 3, 2019,
https://openai.com/five/.

13. Katyanna Quatch, “OpenAI Bots Smashed in Their First Clash against
Human Dota 2 Pros,” The Register, August 23, 2018,
https://www.theregister.co.uk/2018/08/23/openai_bots_defeated/.

14. Tom Murphy (@tom7), Twitter, August 23, 2018,
https://twitter.com/tom7/status/1032756005107580929.

15. Mike Cook (@mtrc), Twitter, August 23, 2018,
https://twitter.com/mtrc/status/1032783369254432773.

16. Tom Murphy, “The First Level of Super Mario Bros. Is Easy with
Lexicographic Orderings and Time Travel… After That It Gets a Little
Tricky” (research paper, Carnegie Melon University), April 1, 2013,
http://www.cs.cmu.edu/~tom7/mario/mario.pdf.

17. Benjamin Solnik et al., “Bayesian Optimization for a Better Dessert”
(paper presented at the 2017 NIPS Workshop on Bayesian Optimization,
Long Beach, CA, December 9, 2017),
https://bayesopt.github.io/papers/2017/37.pdf.

18. Sarah Kimmorley, “We Tasted the ‘Perfect’ Cookie Google Took 2
Months and 59 Batches to Create—and It Was Terrible,” Business
Insider Australia, May 31, 2018,
https://www.businessinsider.com.au/google-smart-cookie-ai-recipe-
2018-5.

19. Andrew Krok, “Waymo’s Self-Driving Cars Are Far from Perfect,
Report Says,” Roadshow, August 28, 2018,
https://www.cnet.com/roadshow/news/waymo-alleged-tech-troubles-
report/.

20. C. Lv et al., “Analysis of Autopilot Disengagements Occurring during
Autonomous Vehicle Testing,” IEEE/CAA Journal of Automatica Sinica
5, no. 1 (January 2018): 58–68,
https://doi.org/10.1109/JAS.2017.7510745.

21. Andrew Krok, “Uber Self-Driving Car Saw Pedestrian 6 Seconds before
Crash, NTSB Says,” Roadshow, May 24, 2018,
https://www.cnet.com/roadshow/news/uber-self-driving-car-ntsb-
preliminary-report/.

22. Fred Lambert, “Tesla Elaborates on Autopilot’s Automatic Emergency
Braking Capacity over Mobileye’s System,” Electrek (blog), July 2,
2016, https://electrek.co/2016/07/02/tesla-autopilot-mobileye-automatic-
emergency-braking/.

23. Naaman Zhou, “Volvo Admits Its Self-Driving Cars Are Confused by
Kangaroos,” The Guardian, July 1, 2017,
https://www.theguardian.com/technology/2017/jul/01/volvo-admits-its-
self-driving-cars-are-confused-by-kangaroos.

Chapter 3: How does it actually learn?
1. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning

(Cambridge, Massachusetts: The MIT Press, 2016).
2. Sean McGregor et al., “FlareNet: A Deep Learning Framework for Solar

Phenomena Prediction” (paper presented at the 31st Conference on
Neural Information Processing Systems, Long Beach, CA, December 8,
2017), https://dl4physicalsciences.github.io/files/nips_dlps_2017_5.pdf.

3. Alec Radford, Rafal Jozefowicz, and Ilya Sutskever, “Learning to
Generate Reviews and Discovering Sentiment,” ArXiv:1704.01444 [Cs],
April 5, 2017, http://arxiv.org/abs/1704.01444.

4. Andrej Karpathy, “The Unreasonable Effectiveness of Recurrent Neural
Networks,” Andrej Karpathy Blog, May 21, 2015,
http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

5. Chris Olah et al., “The Building Blocks of Interpretability,” Distill 3, no.
3 (March 6, 2018): e10, https://doi.org/10.23915/distill.00010.

6. David Bau et al., “GAN Dissection: Visualizing and Understanding
Generative Adversarial Networks” (paper presented at the International
Conference on Learning Representations, May 6–9, 2019),
https://gandissect.csail.mit.edu/.

7. “Botnik Apps,” Botnik, accessed August 3, 2019, ttp://botnik.org/apps.
8. Paris Martineau, “Why Google Docs Is Gaslighting Everyone about

Spelling: An Investigation,” The Outline, May 7, 2018,
https://theoutline.com/post/4437/why-google-docs-thinks-real-words-
are-misspelled.

9. Shaokang Zhang et al., “Zoonotic Source Attribution of Salmonella
enterica Serotype Typhimurium Using Genomic Surveillance Data,
United States,” Emerging Infectious Diseases 25, no. 1 (2019): 82–91,
https://doi.org/10.3201/eid2501.180835.

10. Ian J. Goodfellow et al., “Generative Adversarial Networks,”
ArXiv:1406.2661 [Cs, Stat], June 10, 2014,
http://arxiv.org/abs/1406.2661.

11. Ahmed Elgammal et al., “CAN: Creative Adversarial Networks,
Generating ‘Art’ by Learning About Styles and Deviating from Style
Norms,” ArXiv:1706.07068 [Cs], June 21, 2017,
http://arxiv.org/abs/1706.07068.

12. Beckett Mufson, “This Artist Is Teaching Neural Networks to Make
Abstract Art,” Vice, May 22, 2016,
https://www.vice.com/en_us/article/yp59mg/neural-network-abstract-
machine-paintings.

13. David Ha and Jürgen Schmidhuber, “World Models,” Zenodo, March
28, 2018, https://doi.org/10.5281/zenodo.1207631.

Chapter 4: It’s trying!
1. Tero Karras, Samuli Laine, and Timo Aila, “A Style-Based Generator

Architecture for Generative Adversarial Networks,” ArXiv:1812.04948
[Cs, Stat], December 12, 2018, http://arxiv.org/abs/1812.04948.

2. Emily Dreyfuss, “A Bot Panic Hits Amazon Mechanical Turk,” Wired,
August 17, 2018, https://www.wired.com/story/amazon-mechanical-
turk-bot-panic/.

3. “COCO Dataset,” COCO: Common Objects in Context,
http://cocodataset.org/#download. Images used during training were
2014 training + 2014 val, for a total of 124k images. Each dialog had 10
questions. https://visualdialog.org/data says 364m dialogs in the training
set, so each image was encountered 364/1.24 = 293.5 times.

4. Hawkins, “Inside Waymo’s Strategy.”
5. Tero Karras et al., “Progressive Growing of GANs for Improved Quality,

Stability, and Variation,” ArXiv:1710.10196 [Cs, Stat], October 27,
2017, http://arxiv.org/abs/1710.10196.

6. Karras, Laine, and Aila, “A Style-Based Generator Architecture.”
7. Melissa Eliott (0xabad1dea), “How Math Can Be Racist: Giraffing,”

Tumblr, January 31, 2019,
https://abad1dea.tumblr.com/post/182455506350/how-math-can-be-
racist-giraffing.

8. Corinne Purtill and Zoë Schlanger, “Wikipedia Rejected an Entry on a
Nobel Prize Winner Because She Wasn’t Famous Enough,” Quartz,
October 2, 2018, https://qz.com/1410909/wikipedia-had-rejected-nobel-
prize-winner-donna-strickland-because-she-wasnt-famous-enough/.

9. Jon Christian, “Why Is Google Translate Spitting Out Sinister Religious
Prophecies?” Vice, July 20, 2018,
https://www.vice.com/en_us/article/j5npeg/why-is-google-translate-
spitting-out-sinister-religious-prophecies.

10. Nicholas Carlini et al., “The Secret Sharer: Evaluating and Testing
Unintended Memorization in Neural Networks,” ArXiv:1802.08232
[Cs], February 22, 2018, http://arxiv.org/abs/1802.08232.

11. Jonas Jongejan et al., “Quick, Draw! The Data” (dataset for online game
Quick, Draw!), accessed August 3, 2019,
https://quickdraw.withgoogle.com/data.

12. Jon Englesman (@engelsjk), Google AI Quickdraw Visualizer (web
demo), Github, accessed August 3, 2019, https://engelsjk.github.io/web-
demo-quickdraw-visualizer/.

13. Gretchen McCulloch, “Autocomplete Presents the Best Version of You,”
Wired, February 11, 2019, https://www.wired.com/story/autocomplete-
presents-the-best-version-of-you/.

14. Abhishek Das et al., “Visual Dialog,” ArXiv:1611.08669 [Cs],
November 26, 2016, http://arxiv.org/abs/1611.08669.

Chapter 5: What are you really asking for?
1. @citizen_of_now, Twitter, March 15, 2018,

https://twitter.com/citizen_of_now/status/974344339815129089.
2. Doug Blank (@DougBlank), Twitter, April 13, 2018,

https://twitter.com/DougBlank/status/984811881050329099.
3. @Smingleigh, Twitter, November 7, 2018,

https://twitter.com/Smingleigh/status/1060325665671692288.
4. Christine Barron, “Pass the Butter // Pancake Bot,” Unity Connect,

January 2018, https://connect.unity.com/p/pancake-bot.
5. Alex Irpan, “Deep Reinforcement Learning Doesn’t Work Yet,” Sorta

Insightful (blog), February 14, 2018,
https://www.alexirpan.com/2018/02/14/rl-hard.html.

6. Sterling Crispin (@sterlingcrispin), Twitter, April 16, 2018,
https://twitter.com/sterlingcrispin/status/985967636302327808.

7. Sara Chodosh, “The Problem with Cancer-Sniffing Dogs,” October 4,
2016, Popular Science, https://www.popsci.com/problem-with-cancer-
sniffing-dogs/.

8. Wikipedia, s.v. “Anti-Tank Dog,” last updated June 29, 2019,
https://en.wikipedia.org/w/index.php?title=Anti-
tank_dog&oldid=904053260.

9. Anuschka de Rohan, “Why Dolphins Are Deep Thinkers,” The
Guardian, July 3, 2003,
https://www.theguardian.com/science/2003/jul/03/research.science.

10. Sandeep Jauhar, “When Doctor’s Slam the Door,” New York Times
Magazine, March 16, 2003,
https://www.nytimes.com/2003/03/16/magazine/when-doctor-s-slam-
the-door.html.

11. Joel Rubin (@joelrubin), Twitter, December 6, 2017,
https://twitter.com/joelrubin/status/938574971852304384.

12. Joel Simon, “Evolving Floorplans,” joelsimon.net, accessed August 3,
2019, http://www.joelsimon.net/evo_floorplans.html.

13. Murphy, “First Level of Super Mario Bros.”
14. Tom Murphy (suckerpinch), “Computer Program that Learns to Play

Classic NES Games,” YouTube video, posted April 1, 2013,
https://www.youtube.com/watch?v=xOCurBYI_gY.

15. Murphy, “First Level of Super Mario Bros.”
16. Jack Clark and Dario Amodei, “Faulty Reward Functions in the Wild,”

OpenAI, December 22, 2016, https://openai.com/blog/faulty-reward-
functions/.

17. Bitmob, “Dimming the Radiant AI in Oblivion,” VentureBeat (blog),
December 17, 2010, https://venturebeat.com/2010/12/17/dimming-the-
radiant-ai-in-oblivion/.

18. cliffracer333, “So what happened to Oblivion’s npc ‘goal’ system that
they used in the beta of the game. Is there a mod or a way to enable it
again?” Reddit thread, June 10, 2016,
https://www.reddit.com/r/oblivion/comments/4nimvh/so_what_happene
d_to_oblivions_npc_goal_system/.

19. Sindya N. Bhanoo, “A Desert Spider with Astonishing Moves,” New
York Times, May 4, 2014,
https://www.nytimes.com/2014/05/06/science/a-desert-spider-with-
astonishing-moves.html.

20. Lehman et al., “The Surprising Creativity of Digital Evolution.”
21. Jette Randløv and Preben Alstrøm, “Learning to Drive a Bicycle Using

Reinforcement Learning and Shaping,” Proceedings of the Fifteenth
International Conference on Machine Learning, ICML ’98 (San
Francisco, CA: Morgan Kaufmann Publishers Inc., 1998), 463–471,
http://dl.acm.org/citation.cfm?id=645527.757766.

22. Yuval Tassa et al., “DeepMind Control Suite,” ArXiv:1801.00690 [Cs],
January 2, 2018, http://arxiv.org/abs/1801.00690.

23. Benjamin Recht, “Clues for Which I Search and Choose,” arg min blog,
March 20, 2018, http://benjamin-
recht.github.io/2018/03/20/mujocoloco/.

24. @citizen_of_now, Twitter, March 15, 2018,
https://twitter.com/citizen_of_now/status/974344339815129089.

25. Westley Weimer, “Advances in Automated Program Repair and a Call to
Arms,” Search Based Software Engineering, ed. Günther Ruhe and
Yuanyuan Zhang (Berlin and Heidelberg: Springer, 2013), 1–3.

26. Lehman et al., “The Surprising Creativity of Digital Evolution.”
27. Yuri Burda et al., “Large-Scale Study of Curiosity-Driven Learning,”

ArXiv:1808.04355 [Cs, Stat], August 13, 2018,
http://arxiv.org/abs/1808.04355.

28. A. Baranes and P.-Y. Oudeyer, “R-IAC: Robust Intrinsically Motivated
Exploration and Active Learning,” IEEE Transactions on Autonomous
Mental Development 1, no. 3 (October 2009): 155–69,
https://doi.org/10.1109/TAMD.2009.2037513.

29. Devin Coldewey, “This Clever AI Hid Data from Its Creators to Cheat at
Its Appointed Task,” TechCrunch, December 31, 2018,
http://social.techcrunch.com/2018/12/31/this-clever-ai-hid-data-from-its-
creators-to-cheat-at-its-appointed-task/.

30. “YouTube Now: Why We Focus on Watch Time,” YouTube Creator
Blog, August 10, 2012, https://youtube-
creators.googleblog.com/2012/08/youtube-now-why-we-focus-on-
watch-time.html.

31. Guillaume Chaslot (@gchaslot), Twitter, February 9, 2019,
https://twitter.com/gchaslot/status/1094359568052817920?s=21.

32. “Continuing Our Work to Improve Recommendations on YouTube,”
Official YouTube Blog, January 25, 2019,
https://youtube.googleblog.com/2019/01/continuing-our-work-to-
improve.html.

Chapter 6: Hacking the Matrix, or AI finds a way
1. Doug Blank (@DougBlank), Twitter, March 15, 2018,

https://twitter.com/DougBlank/status/974244645214588930.
2. Nick Stenning (@nickstenning), Twitter, April 9, 2018,

https://twitter.com/DougBlank/status/974244645214588930
3. Christian Gagné et al., “Human-Competitive Lens System Design with

Evolution Strategies,” Applied Soft Computing 8, no. 4 (September 1,
2008): 1439–52, https://doi.org/10.1016/j.asoc.2007.10.018.

4. Lehman et al., “The Surprising Creativity of Digital Evolution.”
5. Karl Sims, “Evolving 3D Morphology and Behavior by Competition,”

Artificial Life 1, no. 4 (July 1, 1994): 353–72,
https://doi.org/10.1162/artl.1994.1.4.353.

6. Karl Sims, “Evolving Virtual Creatures,” Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’94 (New York: ACM, 1994), 15–22,
https://doi.org/10.1145/192161.192167.

7. Lehman et al., “The Surprising Creativity of Digital Evolution.”
8. David Clements (@davecl42), Twitter, March 18, 2018,

https://twitter.com/davecl42/status/975406071182479361.
9. Nick Cheney et al., “Unshackling Evolution: Evolving Soft Robots with

Multiple Materials and a Powerful Generative Encoding,” ACM
SIGEVOlution 7, no. 1 (August 2014): 11–23,
https://doi.org/10.1145/2661735.2661737.

10. John Timmer, “Meet Wolbachia: The Male-Killing, Gender-Bending,
Gonad-Eating Bacteria,” Ars Technica, October 24, 2011,
https://arstechnica.com/science/news/2011/10/meet-wolbachia-the-male-
killing-gender-bending-gonad-chomping-bacteria.ars.

11. @forgek_, Twitter, October 10, 2018,
https://twitter.com/forgek_/status/1050045261563813888.

12. R. Feldt, “Generating Diverse Software Versions with Genetic
Programming: An Experimental Study,” IEE Proceedings—Software
145, no. 6 (December 1998): 228–36, https://doi.org/10.1049/ip-
sen:19982444.

13. George Johnson, “Eurisko, the Computer With a Mind of Its Own,”
Alicia Patterson Foundation,” updated April 6, 2011,

https://aliciapatterson.org/stories/eurisko-computer-mind-its-own.
14. Eric Schulte, Stephanie Forrest, and Westley Weimer, “Automated

Program Repair through the Evolution of Assembly Code,” Proceedings
of the IEEE/ACM International Conference on Automated Software
Engineering, ASE ’10 (New York, NY: ACM, 2010), 313–316,
https://doi.org/10.1145/1858996.1859059.

Chapter 7: Unfortunate shortcuts
1. Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, “‘Why Should

I Trust You?’: Explaining the Predictions of Any Classifier,”
ArXiv:1602.04938 [Cs, Stat], February 16, 2016,
http://arxiv.org/abs/1602.04938.

2. Luke Oakden-Rayner, “Exploring the ChestXray14 Dataset: Problems,”
Luke Oakden-Rayner (blog), December 18, 2017,
https://lukeoakdenrayner.wordpress.com/2017/12/18/the-chestxray14-
dataset-problems/.

3. David M. Lazer et al., “The Parable of Google Flu: Traps in Big Data
Analysis,” Science 343, no. 6176 (March 14, 2014): 1203–5,
https://doi.org/10.1126/science.1248506.

4. Gidi Shperber, “What I’ve Learned from Kaggle’s Fisheries
Competition,” Medium, May 1, 2017,
https://medium.com/@gidishperber/what-ive-learned-from-kaggle-s-
fisheries-competition-92342f9ca779.

5. J. Bird and P. Layzell, “The Evolved Radio and Its Implications for
Modelling the Evolution of Novel Sensors,” Proceedings of the 2002
Congress on Evolutionary Computation, CEC’02 (Cat. No.02TH8600)
vol. 2 (2002 World Congress on Computational Intelligence—WCCI’02,
Honolulu, HI, USA: IEEE, 2002): 1836–41,
https://doi.org/10.1109/CEC.2002.1004522.

6. Hannah Fry, Hello World: Being Human in the Age of Algorithms (New
York: W. W. Norton & Company, 2018).

7. Lo Bénichou, “The Web’s Most Toxic Trolls Live in… Vermont?,”
Wired, August 22, 2017, https://www.wired.com/2017/08/internet-troll-
map/.

8. Violet Blue, “Google’s Comment-Ranking System Will Be a Hit with
the Alt-Right,” Engadget, September 1, 2017,
https://www.engadget.com/2017/09/01/google-perspective-comment-
ranking-system/.

9. Jessamyn West (@jessamyn), Twitter, August 24, 2017,
https://twitter.com/jessamyn/status/900867154412699649.

10. Robyn Speer, “ConceptNet Numberbatch 17.04: Better, Less-
Stereotyped Word Vectors,” ConceptNet blog, April 24, 2017,

http://blog.conceptnet.io/posts/2017/conceptnet-numberbatch-17-04-
better-less-stereotyped-word-vectors/.

11. Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan, “Semantics
Derived Automatically from Language Corpora Contain Human-like
Biases,” Science 356, no. 6334 (April 14, 2017): 183–86,
https://doi.org/10.1126/science.aal4230.

12. Anthony G. Greenwald, Debbie E. McGhee, and Jordan L. K. Schwartz,
“Measuring Individual Differences in Implicit Cognition: The Implicit
Association Test,” Journal of Personality and Social Psychology 74
(June 1998): 1464–80.

13. Brian A. Nosek, Mahzarin R. Banaji, and Anthony G. Greenwald, “Math
= Male, Me = Female, Therefore Math Not = Me,” Journal of
Personality and Social Psychology 83, no. 1 (July 2002): 44–59.

14. Speer, “ConceptNet Numberbatch 17.04.”
15. Larson et al., “How We Analyzed the COMPAS.”
16. Jeff Larson and Julia Angwin, “Bias in Criminal Risk Scores Is

Mathematically Inevitable, Researchers Say,” ProPublica, December 30,
2016, https://www.propublica.org/article/bias-in-criminal-risk-scores-is-
mathematically-inevitable-researchers-say.

17. James Regalbuto, “Insurance Circular Letter No. 1 (2019),” New York
State Department of Financial Services, January 18, 2019,
https://www.dfs.ny.gov/industry_guidance/circular_letters/cl2019_01.

18. Jeffrey Dastin, “Amazon Scraps Secret AI Recruiting Tool That Showed
Bias against Women,” Reuters, October 10, 2018,
https://www.reuters.com/article/us-amazon-com-jobs-automation-
insight-idUSKCN1MK08G.

19. James Vincent, “Amazon Reportedly Scraps Internal AI Recruiting Tool
That Was Biased against Women,” The Verge, October 10, 2018,
https://www.theverge.com/2018/10/10/17958784/ai-recruiting-tool-bias-
amazon-report.

20. Paola Cecchi-Dimeglio, “How Gender Bias Corrupts Performance
Reviews, and What to Do About It,” Harvard Business Review, April 12,
2017, https://hbr.org/2017/04/how-gender-bias-corrupts-performance-
reviews-and-what-to-do-about-it.

21. Dave Gershgorn, “Companies Are on the Hook If Their Hiring
Algorithms Are Biased,” Quartz, October 22, 2018,

https://qz.com/1427621/companies-are-on-the-hook-if-their-hiring-
algorithms-are-biased/.

22. Karen Hao, “Police across the US Are Training Crime-Predicting AIs on
Falsified Data,” MIT Technology Review, February 13, 2019,
https://www.technologyreview.com/s/612957/predictive-policing-
algorithms-ai-crime-dirty-data/.

23. Steve Lohr, “Facial Recognition Is Accurate, If You’re a White Guy,”
New York Times, February 9, 2018,
https://www.nytimes.com/2018/02/09/technology/facial-recognition-
race-artificial-intelligence.html.

24. Julia Carpenter, “Google’s Algorithm Shows Prestigious Job Ads to
Men, but Not to Women. Here’s Why That Should Worry You,”
Washington Post, July 6, 2015,
https://www.washingtonpost.com/news/the-
intersect/wp/2015/07/06/googles-algorithm-shows-prestigious-job-ads-
to-men-but-not-to-women-heres-why-that-should-worry-you/.

25. Mark Wilson, “This Breakthrough Tool Detects Racism and Sexism in
Software,” Fast Company, August 22, 2017,
https://www.fastcompany.com/90137322/is-your-software-secretly-
racist-this-new-tool-can-tell.

26. ORCAA, accessed August 3, 2019, http://www.oneilrisk.com.
27. Faisal Kamiran and Toon Calders, “Data Preprocessing Techniques for

Classification without Discrimination,” Knowledge and Information
Systems 33, no. 1 (October 1, 2012): 1–33,
https://doi.org/10.1007/s10115-011-0463-8.

Chapter 8: Is an AI brain like a human brain?
1. Ha and Schmidhuber, “World Models.”
2. Anthony J. Bell and Terrence J. Sejnowski, “The ‘Independent

Components’ of Natural Scenes Are Edge Filters,” Vision Research 37,
no. 23 (December 1, 1997): 3327–38, https://doi.org/10.1016/S0042-
6989(97)00121-1.

3. Andrea Banino et al., “Vector-Based Navigation Using Grid-Like
Representations in Artificial Agents,” Nature 557, no. 7705 (May 2018):
429–33, https://doi.org/10.1038/s41586-018-0102-6.

4. Bau et al., “GAN Dissection.”
5. Larry S. Yaeger, “Computational Genetics, Physiology, Metabolism,

Neural Systems, Learning, Vision, and Behavior or PolyWorld: Life in a
New Context,” Santa Fe Institute Studies in the Sciences of Complexity,
vol. 17 (Los Alamos, NM: Addison-Wesley Publishing Company, 1994),
262–63.

6. Baba Narumi et al., “Trophic Eggs Compensate for Poor Offspring
Feeding Capacity in a Subsocial Burrower Bug,” Biology Letters 7, no. 2
(April 23, 2011): 194–96, https://doi.org/10.1098/rsbl.2010.0707.

7. Robert M. French, “Catastrophic Forgetting in Connectionist Networks,”
Trends in Cognitive Sciences 3, no. 4 (April 1999): 128–35.

8. Jieyu Zhao et al., “Men Also Like Shopping: Reducing Gender Bias
Amplification Using Corpus-Level Constraints,” ArXiv:1707.09457 [Cs,
Stat], July 28, 2017, http://arxiv.org/abs/1707.09457.

9. Danny Karmon, Daniel Zoran, and Yoav Goldberg, “LaVAN: Localized
and Visible Adversarial Noise,” ArXiv:1801.02608 [Cs], January 8,
2018, http://arxiv.org/abs/1801.02608.

10. Andrew Ilyas et al., “Black-Box Adversarial Attacks with Limited
Queries and Information,” ArXiv:1804.08598 [Cs, Stat], April 23, 2018,
http://arxiv.org/abs/1804.08598.

11. Battista Biggio et al., “Poisoning Behavioral Malware Clustering,”
ArXiv:1811.09985 [Cs, Stat], November 25, 2018,
http://arxiv.org/abs/1811.09985.

12. Tom White, “Synthetic Abstractions,” Medium, August 23, 2018,
https://medium.com/@tom_25234/synthetic-abstractions-8f0e8f69f390.

13. Samuel G. Finlayson et al., “Adversarial Attacks Against Medical Deep

Learning Systems,” ArXiv:1804.05296 [Cs, Stat], April 14, 2018,
http://arxiv.org/abs/1804.05296.

14. Philip Bontrager et al., “DeepMasterPrints: Generating MasterPrints for
Dictionary Attacks via Latent Variable Evolution,” ArXiv:1705.07386
[Cs], May 20, 2017, http://arxiv.org/abs/1705.07386.

15. Stephen Buranyi, “How to Persuade a Robot That You Should Get the
Job,” The Observer, March 4, 2018,
https://www.theguardian.com/technology/2018/mar/04/robots-screen-
candidates-for-jobs-artificial-intelligence.

16. Lauren Johnson, “4 Deceptive Mobile Ad Tricks and What Marketers
Can Learn From Them,” Adweek, February 16, 2018,
https://www.adweek.com/digital/4-deceptive-mobile-ad-tricks-and-
what-marketers-can-learn-from-them/.

17. Wieland Brendel and Matthias Bethge, “Approximating CNNs with
Bag-of-Local-Features Models Works Surprisingly Well on ImageNet,”
ArXiv:1904.00760 [Cs, Stat], March 20, 2019,
http://arxiv.org/abs/1904.00760.

Chapter 9: Human bots (where can you not expect to see AI?)
1. @yoco68, Twitter, July 12, 2018,

https://twitter.com/yoco68/status/1017404857190268928.
2. Parmy Olson, “Nearly Half of All ‘AI Startups’ Are Cashing in on

Hype,” Forbes, March 4, 2019,
https://www.forbes.com/sites/parmyolson/2019/03/04/nearly-half-of-all-
ai-startups-are-cashing-in-on-hype/#5b1c4a66d022.

3. Carolyn Said, “Kiwibots Win Fans at UC Berkeley as They Deliver Fast
Food at Slow Speeds,” San Francisco Chronicle, May 26, 2019,
https://www.sfchronicle.com/business/article/Kiwibots-win-fans-at-UC-
Berkeley-as-they-deliver-13895867.php.

4. Olivia Solon, “The Rise of ‘Pseudo-AI’: How Tech Firms Quietly Use
Humans to Do Bots’ Work,” The Guardian, July 6, 2018,
https://www.theguardian.com/technology/2018/jul/06/artificial-
intelligence-ai-humans-bots-tech-companies.

5. Ellen Huet, “The Humans Hiding Behind the Chatbots,”
Bloomberg.com, April 18, 2016,
https://www.bloomberg.com/news/articles/2016-04-18/the-humans-
hiding-behind-the-chatbots.

6. Richard Wray, “SpinVox Answers BBC Allegations over Use of
Humans Rather than Machines,” The Guardian, July 23, 2009,
https://www.theguardian.com/business/2009/jul/23/spinvox-answer-
back.

7. Becky Lehr (@Breakaribecca), Twitter, July 7, 2018,
https://twitter.com/Breakaribecca/status/1015787072102289408.

8. Paul Mozur, “Inside China’s Dystopian Dreams: A.I., Shame and Lots of
Cameras,” New York Times, July 8, 2018,
https://www.nytimes.com/2018/07/08/business/china-surveillance-
technology.html.

9. Aaron Mamiit, “Facebook AI Invents Language That Humans Can’t
Understand: System Shut Down Before It Evolves Into Skynet,” Tech
Times, July 30, 2017,
http://www.techtimes.com/articles/212124/20170730/facebook-ai-
invents-language-that-humans-cant-understand-system-shut-down-
before-it-evolves-into-skynet.htm.

10. Kyle Wiggers, “Babysitter Screening App Predictim Uses AI to Sniff
out Bullies,” VentureBeat (blog), October 4, 2018,
https://venturebeat.com/2018/10/04/babysitter-screening-app-predictim-
uses-ai-to-sniff-out-bullies/.

11. Chelsea Gohd, “Here’s What Sophia, the First Robot Citizen, Thinks
About Gender and Consciousness,” Live Science, July 11, 2018,
https://www.livescience.com/63023-sophia-robot-citizen-talks-
gender.html.

12. C. D. Martin, “ENIAC: Press Conference That Shook the World,” IEEE
Technology and Society Magazine 14, no. 4 (Winter 1995): 3–10,
https://doi.org/10.1109/44.476631.

13. Alexandra Petri, “A Bot Named ‘Eugene Goostman’ Passes the Turing
Test… Kind Of,” Washington Post, June 9, 2014,
https://www.washingtonpost.com/blogs/compost/wp/2014/06/09/a-bot-
named-eugene-goostman-passes-the-turing-test-kind-of/.

14. Brian Merchant, “Predictim Claims Its AI Can Flag ‘Risky’ Babysitters.
So I Tried It on the People Who Watch My Kids,” Gizmodo, December
6, 2018, https://gizmodo.com/predictim-claims-its-ai-can-flag-risky-
babysitters-so-1830913997.

15. Drew Harwell, “AI Start-up That Scanned Babysitters Halts Launch
Following Post Report,” Washington Post, December 14, 2018,
https://www.washingtonpost.com/technology/2018/12/14/ai-start-up-
that-scanned-babysitters-halts-launch-following-post-report/.

16. Tonya Riley, “Get Ready, This Year Your Next Job Interview May Be
with an A.I. Robot,” CNBC, March 13, 2018,
https://www.cnbc.com/2018/03/13/ai-job-recruiting-tools-offered-by-
hirevue-mya-other-start-ups.html.

17. Ibid.

Chapter 10: A human-AI partnership
1. Thu Nguyen-Phuoc et al., “HoloGAN: Unsupervised Learning of 3D

Representations from Natural Images,” ArXiv:1904.01326 [Cs], April 2,
2019, http://arxiv.org/abs/1904.01326.

2. Drew Linsley et al., “Learning What and Where to Attend,”
ArXiv:1805.08819 [Cs], May 22, 2018, http://arxiv.org/abs/1805.08819.

3. Hector Yee (@eigenhector), Twitter, September 14, 2018,
https://twitter.com/eigenhector/status/1040501195989831680.

4. Will Knight, “A Tougher Turing Test Shows That Computers Still Have
Virtually No Common Sense,” MIT Technology Review, July 14, 2016,
https://www.technologyreview.com/s/601897/tougher-turing-test-
exposes-chatbots-stupidity/.

5. James Regalbuto, “Insurance Circular Letter.”
6. Abby Ohlheiser, “Trolls Turned Tay, Microsoft’s Fun Millennial AI Bot,

into a Genocidal Maniac,” Chicago Tribune, March 26, 2016,
https://www.chicagotribune.com/business/ct-internet-breaks-microsoft-
ai-bot-tay-20160326-story.html.

7. Glen Levy, “Google’s Bizarre Search Helper Assumes We Have
Parakeets, Diarrhea,” Time, November 4, 2010,
http://newsfeed.time.com/2010/11/04/why-why-wont-my-parakeet-eat-
my-diarrhea-is-on-google-trends/.

8. Michael Eisen, “Amazon’s $23,698,655.93 Book about Flies,” It Is NOT
Junk (blog), April 22, 2011, http://www.michaeleisen.org/blog/?p=358.

9. Emilio Calvano et al., “Artificial Intelligence, Algorithmic Pricing, and
Collusion,” VoxEU (blog), February 3, 2019,
https://voxeu.org/article/artificial-intelligence-algorithmic-pricing-and-
collusion.

10. Solon, “The Rise of ‘Pseudo-AI.’”
11. Gale M. Lucas et al., “It’s Only a Computer: Virtual Humans Increase

Willingness to Disclose,” Computers in Human Behavior 37 (August 1,
2014): 94–100, https://doi.org/10.1016/j.chb.2014.04.043.

12. Liliana Laranjo et al., “Conversational Agents in Healthcare: A
Systematic Review,” Journal of the American Medical Informatics
Association 25, no. 9 (September 1, 2018): 1248–58,
https://doi.org/10.1093/jamia/ocy072.

13. Margi Murphy, “Artificial Intelligence Will Detect Child Abuse Images
to Save Police from Trauma,” The Telegraph, December 18, 2017,
https://www.telegraph.co.uk/technology/2017/12/18/artificial-
intelligence-will-detect-child-abuse-images-save/.

14. Adam Zewe, “In Automaton We Trust,” Harvard School of Engineering
and Applied Science, May 25, 2016,
https://www.seas.harvard.edu/news/2016/05/in-automaton-we-trust.

15. David Streitfeld, “Computer Stories: A.I. Is Beginning to Assist
Novelists,” New York Times, October 18, 2018,
https://www.nytimes.com/2018/10/18/technology/ai-is-beginning-to-
assist-novelists.html.

* The old adage that a monkey writing randomly on a typewriter for an infinite amount of time will
eventually produce the entire works of Shakespeare actually pretty accurately describes the “brute
force” method of searching for a solution to a problem by systematically trying everything. Ideally,
using AI to solve the problem is an improvement over this. Ideally.

* The fact that the score is 27–0 at this point rather than 28–0 means that the Cougars might have
missed one of their conversion points—a fact that Heliograf fails to mention.

* It also had a tiny bit of long-term memory where it could keep track of information for longer than
that sixty five-character window, but that amount of memory was too tiny to store an entire
ingredients list. In machine learning terms, that makes this algorithm a Long Short-Term Memory
(LSTM) neural network rather than a plain RNN.

* The category was spelled “deserts” rather than “desserts” in the dataset, so this is how the neural
net thinks it’s spelled.

* The Google Translate algorithm is constantly being updated, so these results will change
significantly over time.

	Title Page
	Copyright
	Dedication
	INTRODUCTION: AI is everywhere
	CHAPTER 1: What is AI?
	CHAPTER 2: AI is everywhere, but where is it exactly?
	CHAPTER 3: How does it actually learn?
	CHAPTER 4: It’s trying!
	CHAPTER 5: What are you really asking for?
	CHAPTER 6: Hacking the Matrix, or AI finds a way
	CHAPTER 7: Unfortunate shortcuts
	CHAPTER 8: Is an AI brain like a human brain?
	CHAPTER 9: Human bots (where can you not expect to see AI?)
	CHAPTER 10: A human-AI partnership
	CONCLUSION: Life among our artificial friends
	Acknowledgments
	Discover More
	About the Author
	Notes

