

[image: Image 1]

[image: Image 2]

The easiest way to become a

software developer

How to get your first programming job,

even if you are a self-taught coder

Fiodar Sazanavets

This book is for sale at http://leanpub.com/the-easiest-way-to-

become-a-software-developer

This version was published on 2023-01-01

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

© 2023 Fiodar Sazanavets

Tweet This Book!

Please help Fiodar Sazanavets by spreading the word about this book on Twitter!

The suggested tweet for this book is:

How to get your first job in software development, even if you are

a self-taught programmer.

The suggested hashtag for this book is #softwaredevelopment.

Find out what other people are saying about the book by clicking on this link to search for this hashtag on Twitter:

#softwaredevelopment

Contents

1. Becoming a Software Developer is Easier Than You Think 1

How I became a software developer

2

How can you become a software developer too

5

The goal of this book .

7

A word of caution .

8

2. Why Software Developers are Paid Well

9

Three factors that determine your salary

9

Software is needed .

10

Software geeks are usually good at what they do

10

Software developers can’t be easily replaced

11

What if your salary is low despite these factors?

12

3. The Dark Side of Software Development Career

13

1. You’ll often be working in total silence

13

2. You’ll be working in a loud and distracting environment 14

3. You need to have a good ability to concentrate

14

4. A lot of work is repetitive and boring

15

5. You will be working with annoyingly “religious” co-

workers .

15

6. You will need to be able to take criticism well

16

7. You will have to constantly keep updating your knowl-

edge .

17

8. You will need to have good negotiation skills to earn well 18

9. You may be inconvenienced by toxic salespeople

19

CONTENTS

10. If you are after a really big buck, forget about personal

time .

19

4. Pragmatic Reasons to Start a Software Development

Career .

21

1. Salaries are greater than the market average

21

2. Regular and significant pay rises

22

3. You can be fully self-taught

23

4. The demand for software developers is higher than ever 24

5. The demand for software developers is unlikely to ever

go down .

25

6. There are many programming niches to choose from .

26

7. Changing jobs frequently is widely accepted as a norm

26

8. You can work remotely

27

9. Many employers offer flexible hours

27

10. If a prolonged lockdown ever happens, you are less

likely to lose your job

28

5. What Programming Language to Learn First

30

C++ or Python? .

31

There is no empirical data that says C++ is better

32

My own experience with C++ and other languages

33

The real reason why people tell you to learn C++ first . .

34

Why Python is much better for a beginner

34

Wrapping up .

36

6. Why You Don’t Need Maths to Become a Programmer

37

Some niche programming fields do require advanced maths 40

Even low-level computing hardware is based on logic

rather than maths .

43

Wrapping up .

44

7. Why Practicing Algorithmic Problems Will Enhance

Your Programming Career

45

Knowledge of algorithms isn’t always required

45

CONTENTS

1. Most algorithms are already implemented by core

libraries .

46

2. Some niches don’t even have problems solvable by

algorithms .

47

What is so useful about algorithms

48

Big tech would always asses your knowledge of algorithms 50

Wrapping up .

51

8. How to Get Your First Job as a Self-Taught Programmer 53

Common misconceptions about self-taught developers . .

54

The most reliable method of getting your first program-

ming job .

56

My own story recap .

58

Similar stories of other software developers

60

Wrapping up .

62

9. What to Study to Become a Web Developer

63

Front-end technologies .

65

Database languages .

67

Server-side languages and frameworks

67

Which server-side technology to pick

69

10. What to Study to Become a Mobile App Developer . .

71

XML .

72

Back-end programming language

72

Platform-specific API .

73

Cross-platform framework

73

Practice by developing your own apps

74

11. What to Study for Roles in Cybersecurity

76

Learn some basics of web development

77

Learn how to use traffic-sniffing tools

77

URL manipulation .

78

Cross-site scripting .

80

SQL injections .

81

Don’t neglect social engineering

82

CONTENTS

Where to go from here .

83

12. Developing the Right Mindset: Why You Need to

Think Like a Hacker .

84

The convention exploitation of security

85

This is how revolutionary technologies are built

86

Hack your career like a pro

87

Life hacks help with much more than just the career . . .

89

Wrapping up .

91

13. Things to Watch out for When Working With Recruiters 92

1. Some consultants are not afraid to lie when it’s profitable 92

2. Beware of the bait vacancies

93

3. When a recruiter says that your asking salary is unreal-

istically higher than the market rate, it is not always

the case .

94

4. When recruiters can negotiate higher pay, they almost

certainly will .

94

5. This does not apply to internal recruiters

95

6. When you have applied for a position directly, don’t let

the recruiter know

95

7. Don’t tell the details of the other positions you have

applied for .

96

8. Recruiters can sue you for making direct applications

on the back of theirs

96

9. Don’t provide references until you are happy to accept

the offer .

97

10. Making your resume searchable online is both a help

and a hindrance .

98

14. Epilogue and Where to Go From Here

99

1. Becoming a Software

Developer is Easier Than

You Think

Everyone knows that a software developer is one of the best-paid professions. However, the most prevalent assumptions are that entering this career is a long and complicated process and that most people are just not cut out for this type of job.

Many people believe that you will need to have a degree in computer science and be really good at maths just to get your foot through the door. But what if I told you that you don’t necessarily need any of these to start your career in software?

I have been a software developer for over a decade and I neither have a degree in computer science nor I am particularly good with maths. I have learned how to code on a job and I still use a calculator to solve relatively simple multiplication and division problems. Over the years, I have met enough software developers whose career progression was similar to mine, so my experience is certainly not unique.

While it is true that software development may not be for everyone (mainly for the reason of preference rather than ability), it is one of the least bureaucratic career options out there. Therefore, if computational technology is something that excites you, read on.

I will tell you how I entered the career and how you can do it too.

Of course, if you already have a degree in computer science or studying toward it, getting the first programming job would be easier for you than for someone who doesn’t have such a degree.

But even if you don’t have a degree, becoming a software developer

1. Becoming a Software Developer is Easier Than You Think 2

is still relatively easy.

How I became a software developer

Although I never did a degree related to computer programming, I have completed a Bachelor’s degree and a Master’s degree. My Bachelor’s degree was in Environmental Biology and my Master’s degree was in Environmental Informatics. Even though the latter sounds like it is related to computers, it had nothing to do with software development. Instead, it was mainly about using specialist software in the context of environmental science. So, my formal education did not prepare me for a career as a software developer and this wasn’t something I was planning to pursue.

When I completed my university education, I managed to secure a job in the environmental engineering industry, exactly as I wanted at the time. My goal was to use my skills to the best of my ability to contribute to what’s good for humankind.

Money wasn’t my number one priority at the time. However, as a professional with a Master’s degree performing an in-demand job, I did expect to be paid reasonably well.

My initial pay was low. However, this didn’t bother me too much at the time. After all, I was doing a graduate scheme where I was learning the actual skills required by the industry and not just gathering theoretical knowledge, as I have been doing in my university for 4 years before that. Higher pay was meant to come later. At least, this is what my assumption was.

My job was mainly about using software to construct flood prediction models. The year was 2012 and this was the year when the whole of Great Britain got severely flooded. The software that we were using was highly accurate. If you input as much data as possible into it and calibrate it against the actual historic flood events, you would be able to predict how useful various types of

1. Becoming a Software Developer is Easier Than You Think 3

flood defenses would be and what would be the best locations for those. It was a relatively cheap and effective way of establishing what needed to be built before relevant authorities would commit to building something.

While I was learning how to operate flood modeling software and studying various hydraulic equations, I started learning a programming language called VBA (Visual Basic for Application).

I didn’t do it because I had an intention of becoming a software developer. I was using tedious and repetitive tasks in Excel quite a lot and VBA was the language built into Excel to automate many of the routine boring tasks.

Later, I found that there was a more professional version of the language called VB.NET and I started to liaise with software developers from our company to build extensions to various software packages we were using. I just found coding to be interesting.

So, I was at a crossroads. I could specialize as either a hydraulic modeler or a software developer. Both choices would require an equal amount of effort to master.

At first, I was thinking that being a hydraulic modeler would be a better choice. I wanted to do something unique and be involved in something that genuinely helps people. However, there was one important factor that made me reconsider my choice.

At the time, my salary was lower than that of a warehouse operator.

This prevented me from having the life I wanted. My social life wasn’t great, because I just couldn’t afford to go out with friends as often as I would have liked to while being too ashamed to admit it. Having holidays was something I had to completely forget about. Even though I could afford to buy basics, I knew that if an unexpected expense would materialize, I would struggle quite a lot.

The problem was that my income situation wasn’t due to me being a graduate trainee. At that point, I knew plenty of hydraulic modelers with several years of experience and none of them was in a financial situation much better than my own.

1. Becoming a Software Developer is Easier Than You Think 4

Environment engineering is not a field that attracts huge amounts of money and many highly qualified and talented people were kept there by being subjected to constant guilt-tripping, even though staying in the industry wasn’t in the best interests for any of them.

Many publications and internal documents that we were encouraged to read subtly told us that if we would not working in this industry, we would be a part of the system that is destroying the environment.

Despite all of this, one day I realized that the people who benefit from my flood modeling work the most are homeowners. As I didn’t have any realistic chance of becoming a homeowner myself while I was still in the industry, I stopped having any doubts about my career choices. I firmly decided to take the path of a software developer and move to a different industry.

This was, by far, the best career choice I have ever made and I have never looked back. Since then, I have changed a number of jobs, because I now have options. I no longer even have to apply for jobs, as recruiters themselves send job offers to me. I no longer have any reason to complain about my finances and I do live in a house that I own.

As well as all of this, I find the job interesting and fulfilling. I still insist on working on those types of projects that make people’s lives genuinely easier, but I no longer have to sacrifice my well-being to do so.

Here is the fact about the software development career that I like the most. Because software is used everywhere, being a software developer enables you to do something good in any area of your choice. You can choose any industry and any domain. If you want to make an impact, you aren’t limited to just one narrow area, such as environmental science. You can help society in many different ways throughout your career. And you will still make a decent living while doing so.

1. Becoming a Software Developer is Easier Than You Think 5

How can you become a software

developer too

Although I didn’t specifically do a degree related to computer programming, I do have a degree nonetheless. However, if you don’t have one and are considering becoming a software developer, this should not put you off. I worked in several different companies as a software developer and I have met enough people who did the same kind of job and didn’t have any degree at all. In fact, according to various surveys*, around 30% of professional software developers are self-taught.

My degree is vaguely mentioned at the bottom of my CV and I never get asked about it during job interviews. The software industry is one of the least bureaucratic industries out there and being able to demonstrate programming skills is far more important than having a certificate with a qualification on it.

Getting an office job is a prerequisite for becoming a software developer without a specialized qualification. There are plenty of office jobs that don’t require any specific qualifications to enter.

Once I got my foot through the door, Excel automation is what has worked well for me as a starting point. Many office-based jobs use Excel and many of the tasks associated with Excel are boring and repetitive. Therefore, if this is what your job involves, you can make a start by learning VBA and getting some of those tedious tasks automated.

Once you become reasonably proficient at it, make sure that your co-workers and superiors know about these skills of yours. You can then start liaising with actual software developers and contribute to what they are doing. If you keep at it, you will gradually become one of them.

*https://www.analyticsinsight.net/why-95-of-self-taught-developers-change-their-

profession-soon

1. Becoming a Software Developer is Easier Than You Think 6

An alternative way that has worked for several people that I knew is to start volunteering for tasks that put you closer to the software-building process. For example, you can start getting regularly involved in manual software testing tasks. While doing so, you can start learning how to automate certain testing processes by writing scripts in actual programming languages or sitting down with developers to get familiar with how the software works from the inside.

There are also many courses that are endorsed by high-profile universities that you can take online in your own spare time with an official certificate being given at the end.

Some of such courses, like the ones available at Coursera, are available free of charge and you only have to pay if you will need the certificate at the end. However, even those certificates cost well less than actually going to a university. So, doing one of such courses is just like doing a real university module, but without having to pay outrageously high tuition fees.

Finally, there are several paid certification programs organized by vendors of particular technologies, such as Microsoft and Oracle.

Those certificates are well-recognized in the software industry and having one of those will give you a distinct advantage in your career.

However, those certificates are not for beginners. Before you can become a certified Oracle database developer, you need to have a good understanding of how relational databases work. Likewise, if you want to become a certified C# programmer, you need to know the basics of object-oriented programming. Whichever path you chose to become a software developer, there is a wealth of good online resources to guide you in the process.

1. Becoming a Software Developer is Easier Than You Think 7

The goal of this book

This book aims to separate the wheat from the chaff when it comes to building a career in software development. It focuses on only the most important topics related to software development career. Some of the topics described here are often completely overlooked by many software development mentors and career advisers, despite being very important.

In this book, we avoid as much technical jargon as possible. After all, it’s not a technical manual. It is written mainly in a non-technical easy-to-digest manner. However, as developing the right technical skills is essential to becoming a software developer, this book will point you to some of the best resources that will help you develop these skills, which include online articles, tutorials, and other books.

This book still tells you what skills you need to develop and how to decide which specific skills to learn. We won’t delve deep into how to develop those skills. There are plenty of other resources that already do an amazing job at that, which will be provided. But this book will still give you an overall idea of which direction you need to go to.

But beyond hard technical skills, this book covers a lot of topics that are equally as important for a successful software development career. And almost none of these topics are taught in computer science class. The book will help you to decide whether programming is the right type of career for you. It will tell you how to deal with recruiters, which would form a major part of your career. It will tell you which technical skills are the most important for a software developer to learn, so you can focus on them.

I had a successful software development career. But I had to figure many things out by trial and error. While on my journey, I had to waste a lot of time engaging in activities that didn’t end up being helpful at all. It also took me a while to figure out the importance

1. Becoming a Software Developer is Easier Than You Think 8

of some things that I have been overlooking because nobody told me to pay attention to these things. Therefore I wrote this book to make your career journey smoother than mine, so you don’t have to figure it all out on your own.

This book also pulls no punches. I explain things as they really are industry. Some of these things may not be pleasant to read about.

But it’s useful to know about them in advance rather than being blindsided by them as they happen.

What this book won’t do, however, is show what technology to learn for every software development niche. There are just too many niches and too many technologies to cover in one book. We will cover some popular niches with a low barrier to entry, such as web development and mobile app development. But even if you want to work in a niche that isn’t covered in the book, the book should still equip you with enough knowledge to figure out what to learn.

A word of caution

Although software development is a great and rewarding career, it is certainly not for everyone. What helped me personally is a great enthusiasm for technology from an early age.

If technology is not something you are particularly excited about, then working in the sector will be extremely stressful and you will only grow resentful over time. I saw this happening to people.

You will also have to dedicate a lot of time to the process. Even though you don’t necessarily need a formal qualification, you will still need to dedicate sizable chunks of your spare time to studying how to code, especially at the very beginning.

2. Why Software

Developers are Paid Well

Reports on the news about people being dissatisfied with their salaries became very frequent. There are many professions that have been gradually declining in value for various reasons. The increasing adoption of automation and new technologies is one such reason.

However, there are some professions where salaries have histor-ically been high and showing no sign of change in pattern. A software engineer is one such profession. Many people resent this and believe that it is unfair; however, there are perfectly rational reasons that justify higher-than-average salaries in the software industry.

Three factors that determine your

salary

The most popular explanation for variation in salaries between different professions is the law of supply and demand. Although accurate, this explanation is way too vague and isn’t very helpful for those who want to know how they can earn more without having to undertake a detailed market analysis.

Fortunately, there is a much more useful gauging tool, which is represented by the following principle:

Your salary depends on the need for what you do, your ability to do it, and how difficult it is to replace you.

2. Why Software Developers are Paid Well 10

This principles is so simple, yet it explains sufficiently well how the job market in the free market economy works.

Software is needed

Software is everywhere these days. Even your TVs and washing machines have it. This makes software developers a pretty valuable commodity.

However, this factor alone does not explain the high salaries of software engineers, as there are many jobs that are high in demand where people are paid not much above the legal minimum wage.

So, this brings us to the second point.

Software geeks are usually good at

what they do

Most of the people who move into the software engineering industry are geeky computer enthusiasts who have spent their childhood playing video games and having fun with various gadgets, so they genuinely enjoy their work. As well as this, many of them can compete with Sheldon Cooper from Big Bang Theory in terms of inflated ego, but in a good way. For them, it is absolutely essential that they get recognized for good quality of work, so they strive to be the best. Whatever their motivation is, there aren’t that many software developers that suck at what they do.

However, even this factor combined with the previous one doesn’t justify their high salaries. Occasionally, you can meet a janitor who goes the extra mile in her job. Yet, she still isn’t paid well. This takes us to the final key factor.

2. Why Software Developers are Paid Well 11

Software developers can’t be easily

replaced

The paradox is that anyone has access to all the tools needed to become a software engineer. The web is saturated with free tutorials covering every variation of software technology for people of all ability levels. And the industry has a minimal level of bureaucracy, as most often employers are interested in whether you can code, rather than seeing a piece of paper proving that you have acquired a particular software-related qualification.

I have seen many examples of successful self-taught developers, myself included. I studied biology at university, which is as far from software development as you can possibly imagine. And I have met self-taught developers who did physics, geography, or even history instead of computer science.

However, getting onto the career ladder is not that simple. Even though all information about software development is at people’s fingertips, developing your skills will be next to impossible if you aren’t interested in the subject or can’t motivate yourself to study in your own spare time. It also takes years to become proficient.

Given that those people who are interested in software development and who are dedicated enough to study it represent only a small portion of the general population while demand for software is over the roof, they become pretty difficult to replace. This is why in the software industry if you tell your employer that you are planning to leave, you are almost guaranteed to get a counter-offer with a significantly better compensation.

This is why the salaries are kept high in the first place. Software developers don’t need to join unions.

2. Why Software Developers are Paid Well 12

What if your salary is low despite

these factors?

On rare occasions, developers do get low salaries. This is primarily because most of them are introverts, which is incorrectly inter-preted by some people as a lack of confidence. So a small number of employers assume that the developers will not be willing to get out of their comfort zone to ask for the pay rise or to look for another job.

This is not always because of employer’s greed, as this situation often occurs in businesses that apply the “race to the bottom”

principle in bidding, i. e. trying to win projects by offering the lowest possible price. Whichever it is, it is your employer’s problem, not yours.

If you are in this situation, the good news is that it is quite easy to leave. Software companies are everywhere these days, so you don’t have to stay with an employer that doesn’t value your skills. The only significant obstacle is the stress associated with leaving, but in the end, it is usually worth it.

The even better news is that if you don’t like your new place, you can change again. Being a valuable commodity, software developers don’t get penalized for job-hopping. This practice is very common in the industry, so the process of changing jobs becomes risk-free.

3. The Dark Side of

Software Development

Career

I would say without a doubt that software development is a great profession. As we covered previously, it is a career that pays significantly more than average and has some other perks associated with it. I do enjoy it and can’t imagine myself doing anything else as a career. However, there are certain negative aspects of the job that make it an unsuitable career choice for many people.

Just as there are many young guys out there who think it would be cool to join armed special forces, but only very few would be willing to go through tough physical and mental training to achieve this goal, so there are many people who chose a career of a software developer, only to abandon it shortly afterward and tell everyone how much it sucks.

Because of this, I have outlined 10 of the most prominent negative aspects of a software development career that anyone who enters the profession is very likely to encounter. If you can cope with those, then a software development career is something you should probably consider.

1. You’ll often be working in total

silence

Unless you are doing pair programming with a colleague, most software development work is done in total silence. This is because

3. The Dark Side of Software Development Career 14

you need to concentrate and think hard to solve the problems that you are presented with.

This is why a career in software development often attracts introverts. It is not necessary to be an introvert though. I have met some extroverted and outspoken people who also happen to be great programmers. But those people who cannot spend long periods without talking will find the job to be really hard to cope with.

2. You’ll be working in a loud and

distracting environment

Although most of the tasks that you will do require you to be silent, the same would not necessarily be true for your working environment. People talk and they seem to talk the most precisely when you trying to solve a difficult problem.

Some years ago, most software developers worked in cubicles, which somewhat shielded them from the outside noise. However, someone eventually came up with a “brilliant” idea of turning offices into large open spaces, which most of them are these days. Some small start-ups manage this kind of situation well. For example, I have worked for a company where salespeople and developers were based in completely separate buildings. However, if you are working for a medium or large organization, this situation is unavoidable. The only solutions are either to get used to it or get yourself a set of good noise-canceling headphones.

3. You need to have a good ability to

concentrate

This follows from the previous two points. You will be solving some really complex problems. Therefore, you will need to be able to not

3. The Dark Side of Software Development Career 15

get distracted for prolonged periods.

This is especially difficult for people who have an irresistible urge to browse the web and especially for people with even the mildest internet addiction. You will be working on a computer with internet access, so the temptation will be hard to resist.

There is nothing wrong with browsing the web once in a while and it helps to clear your head when you get stuck on a particularly difficult problem. However, being unable to control your browsing habits will get your career derailed.

4. A lot of work is repetitive and

boring

Solving challenging problems is the most interesting aspect of a software development job and one of the key reasons why many chose this career. However, the job doesn’t solely consist of this.

Very often, you will be performing trivial tasks, such as writing HTML, applying website styling, and performing code reviews.

Even the process of typing the code itself is quite repetitive and time-consuming, regardless of how interesting the problem is.

5. You will be working with

annoyingly “religious” co-workers

Many programmers are geeks and, as such, they can be very particular about terminology, coding standards, and the choice of technology, ever ready to start a “religious war” over any of these aspects.

Many of them sometimes forget that their primary role is to solve business problems. Instead, they can spend hours arguing about

3. The Dark Side of Software Development Career 16

Java being better than C# or give you a long lecture if, God forbid, you have accidentally referred to React as a “framework” instead of a “library” (which is technically incorrect, but has very little significance).

Likewise, there are those project managers who used to be developers a long time ago that would occasionally insist on doing code reviews. They will sometimes tell you to make changes that adhere to outdated best practices and would make absolutely no sense today.

For example, the use of Yoda conditions was a good practice in the 90th due to the inability of compilers to detect accidentally typed assignment (=) operator when the intention was to use equality (==).

Such a typo would lead to unexpected results and would be hard to diagnose. Any modern compiler, however, will either warn you or prevent the code from being compiled in the first place, so this practice is no longer relevant at all.

Over time, you will find that a lot of things that you thought were widely accepted coding standards are nothing more than a set of strong personal preferences of a particular senior software developer. If you will change a job at any point in the future, you will find that a completely different set of coding standards is enforced in your new team, to which you will need to adapt.

6. You will need to be able to take

criticism well

As with any technically challenging profession where the quality of the output is very important, the software industry is where a lot of constructive criticism happens. This is especially true when you are just starting and don’t yet know the best practices.

One thing that makes the software industry somewhat unique is that there are plenty of people with good technical skills who lack

3. The Dark Side of Software Development Career 17

people skills. Therefore, there is a chance that, at some point, some senior developer would unleash a heavy dose of criticism on you in a not-so-sensitive way, not because he or she wants to insult you, but purely because they are unaware of any other way of delivering constructive criticism.

For example, you may be loudly told off within earshot of the entire office for not following guidance that was never made explicit to you and which, as a junior developer, you probably wouldn’t have been expected to know. Therefore, if you are a person with a fragile ego, software development is probably not for you.

7. You will have to constantly keep

updating your knowledge

A good rule of thumb for any technical industry is that a good proportion of current knowledge will be out of date after two years, so you better be prepared. This is certainly true for the software industry.

In its infancy, the software industry was progressing slowly. This is not the case anymore, as, these days, everything software-related is being built in such a way that it gets easily replaced or updated.

For example, the back end of Facebook is completely different from what it was only a couple of years ago.

Only a few years ago, the standard way of writing JavaScript functions was by using the “function” keyword. It is still possible today, but there are now other ways, which tend to be preferred.

Lambda expression “() =>” is used often instead. Just a couple of years ago, ASP.NET Core didn’t exist. Now, all Microsoft stack developers are rushing to implement it on their servers.

The industry is full of examples like that. Therefore, if you want to succeed, you better spend some of your free time studying.

3. The Dark Side of Software Development Career 18

8. You will need to have good

negotiation skills to earn well

It goes without saying that software developers earn well. After all, the demand for programmers is high and there are nowhere near enough people who are capable of doing the job. Also, as you’ve read in the previous points, developers have to endure quite a lot for their pay.

However, it is not only their skills and knowledge that dictate their salaries. Negotiation skills are just as important.

The key reason why the salaries in the industry are sometimes lower than they should be is that some organizations want to save costs by taking advantage of software developers’ perceived introversion. It is based on the assumption that developers would not be confident enough to ask for a pay rise or to talk to recruiters.

Some organizations prefer to allow market-savvy developers to pursue opportunities elsewhere rather than give them a pay rise.

This is done based on an assumption that an organization can save some money by employing another developer, who is talented but shy. This often backfires thought and the position remains unfilled for several months afterward.

There are sometimes valid reasons why you, as a developer, would accept a somewhat lower salary. This, for example, would make sense if you have willingly joined a sector that participates in good causes but doesn’t do very well financially.

However, if you are working for a commercial organization where salespeople and managers are paid well, it’s worth being confident and assertive about your pay. In this kind of environment, you should absolutely not let people exploit you. If you earn below-market pay for too long, it will become increasingly difficult to justify a high jump in salary to the recruiters, even when you merely want to bring your salary back to the market rate.

3. The Dark Side of Software Development Career 19

9. You may be inconvenienced by

toxic salespeople

There was an occasion when I received a call from the sales team who told me that they promised to give a demo to a major client. The problem was that they promised to demonstrate a major functionality the app didn’t have, so they asked me to add it. The presentation was planned for Friday and the call was made on Wednesday, so I had just over a day to write the functionality from scratch. Needless to say, there was no time for sleep during this period.

Later, I found out from other developers that my situation wasn’t unique and these things were relatively common. Being thrown under the bus by salespeople is something you may never experience, but it pays to be aware that such a thing sometimes happens.

10. If you are after a really big buck,

forget about personal time

You have probably heard of high six-figure salaries in the software industry. This is certainly achievable, but there is a catch. You will either have to spend years working your way up to the senior level or you will need to join one of the big players in the industry, such as Google, Amazon, or Microsoft. If you do aim to join a well-known major software corporation, be prepared to sacrifice the whole of your time.

The process starts right from the onset even before you set your foot through the door. All of the big players in the industry have a vigorous multi-stage selection process with multiple interviews lasting several hours.

3. The Dark Side of Software Development Career 20

Because those companies look for people with excellent knowledge of computer science, they will ask you in-depth questions about any aspect of the subject. As there is no way to know in advance what exactly they will be asking about, you will need to spend as much time as humanly possible studying everything during the selection process.

If you have succeeded in getting selected, the amount of time and effort that you will be required to invest in your work increases even further. It is quite common within the above organizations to expect you to work for three days non-stop when major releases are due.

Some of them even go as far as contractually compelling you to work a given number of weekends each year. Those sleeping pods at Google headquarters are not just a random perk. They are there because the company doesn’t want its employees to ever go home.

The good news is, however, that it is possible to earn decent money that will allow you to live fairly comfortably while only working the standard 40 hours per week for a smaller software house.

However, your paycheck will be nowhere near as big as what the major corporations pay.

4. Pragmatic Reasons to

Start a Software

Development Career

In the previous chapter, we talked about the negative aspects of a software development career. The goal of that chapter was to show that software development is not for everyone. This time, however, I will outline the positive sides of a programmer’s job.

I will only outline pragmatic and objective reasons for becoming a programmer. So I will not mention things like “the job is really exciting”. Excitement and passion are valid reasons to start a career in software development, but these reasons are subjective.

Not every passion will pay your bills or give you a secure income.

And this is why it’s always better to choose a passion that you can comfortably live off. Luckily, if you are passionate about programming, then your passion can do just that. And here are ten reasons why.

1. Salaries are greater than the

market average

We have already covered that software developers are paid well.

Perhaps, it’s not the highest-paid profession, but the salaries that programmers receive are usually significantly higher than average.

To recap, this can be explained by the most fundamental principle that operates in a free market economy, which is as follows:

4. Pragmatic Reasons to Start a Software Development Career 22

Your pay is determined by the need for what you do, your ability to do it, and how hard it is to replace you.

Being a programmer happens to put you in a good position in all three of these categories.

First of all, the demand for software is high. If a couple of decades ago only desktop computers and servers had software running on them, then these days you are carrying mini-computers on you all the time in form of smartphones and smartwatches. Not only that but there is also the Internet of Things revolution happening right now. Even your car, your fridge, and your microwave can now be connected to the internet. And all of these interconnected devices need software.

Secondly, to be a programmer, you need to reach fairly high standards. Plus, to many, programming is a passion and they strive to do their job well. So, a real programmer is someone good at what he does.

Thirdly, to become a programmer, you will have to spend a lot of time and effort studying. Of course, you can be self-taught (more on this later), but you will still have to put in a lot of time and effort into getting to a high enough standard to become a professional programmer. And this makes programmers difficult to replace. Combined, these three factors explain why programmers earn well.

2. Regular and significant pay rises

It’s not only that software developers get good salaries to start with.

Most of them also receive regular and substantial pay rises.

An annual increase of 10% is not uncommon in many parts of the world, while increases by 20% or even 40% are not unheard of.

And there is a good reason for that. Software developers don’t

4. Pragmatic Reasons to Start a Software Development Career 23

just study enough to get a job and then stop studying. The job of a programmer involves continuous study. This is why, with experience, programmers usually get significantly better. Yes, a junior developer will be able to write code to solve many problems, but he won’t necessarily achieve it by writing well-maintainable code that adheres to best practices, like SOLID principles. A more senior developer, on the other hand, will not only solve the problem at hand but will also do it in such a way that other problems will be easy to solve in the future.

And the fact that, with experience, programming skills become significantly better, warrants regular pay rises.

3. You can be fully self-taught

In the software development industry, your education certificates don’t matter. What matters is that you can demonstrate your capabilities. And this is why, even though you absolutely will have to study long and hard to become a software developer, you don’t necessarily have to do it within the walls of a formal educational institution.

These days, there are plenty of courses and bootcamps available online that will teach you how to become a programmer. And there are enough of them that are not any worse than the courses you can do in college.

In fact, there is even an advantage of being self-taught. In university, you will still have to study modules that you will never use in your life. And this is because the university curriculum doesn’t always evolve as fast as technology does. If you are self-taught, however, you can focus all of your time and effort on studying only those things that are being used in the real world of professional programming.

You can also choose your own pace of study. You aren’t tied to

4. Pragmatic Reasons to Start a Software Development Career 24

the schedule of the curriculum, so, if you focus only on the most important things and dedicate a lot of time to practicing them, you can gain enough knowledge to become a junior developer a lot quicker than you would complete a computer science degree.

And many employers don’t mind. Granted, getting your first job as a self-taught software developer may not be the easiest thing in the world. But once you have managed to overcome this obstacle, you will rarely encounter an employer that will ask to see your education certificates. You will only be asked to demonstrate that you know how to code.

I say this as a self-taught software developer who had a fairly successful career.

4. The demand for software

developers is higher than ever

I’ve already mentioned that the demand for software developers is high when I talked about why software developers earn higher-than-average salaries. But the pay that programmers receive is not the only positive by-product of high demand for the profession.

Another noteworthy benefit of software being in demand is job security. Even if you will lose your job for whatever reason, it will be relatively easy to find another one. There are plenty of companies that are looking for software developers.

4. Pragmatic Reasons to Start a Software Development Career 25

5. The demand for software

developers is unlikely to ever go

down

Technological innovation makes many jobs obsolete, but the job of a software developer is not one of them. In the next couple of decades, it is quite probable that the job of a programmer will evolve and transform itself, but it will never disappear.

What programmers do today is very different from what they have been doing a couple of decades ago. Programmers used to write low-level CPU instructions, while today they use high-level human-readable programming languages that get compiled into CPU instructions.

Even though the programmers of today require a similar volume of knowledge as the programmers of the past, modern programmers are vastly more productive. This is because using a higher level of abstraction in the form of modern programming languages has allowed them to write software much faster.

It is probable that with the assistance of AI, the programmers of the future will be using an even higher level of abstraction. However, programmers will still be needed to direct the AI. And they will require a similar amount of knowledge as the programmers of today, even though the details of what they will need to know will be different.

The good news is that the process by which programmers transform their skills happens organically. Technology evolves gradually, so, as a programmer, you won’t reach a point where you will have to abandon your current skillset and re-train yourself. So, as a software developer, you can be assured that what you do today will still be in demand in the future.

4. Pragmatic Reasons to Start a Software Development Career 26

6. There are many programming

niches to choose from

The job of a programmer is certainly not for everyone. However, there is a vast number of programming niches, so many people will be able to find something that suits them.

If you are a creative person, you can become a front-end specialist.

This is a role where you will be writing user interfaces and all the fancy things that they consist of, such as styling and animation.

If you like working with electronics, you can become an embedded software engineer. This is where you will be writing low-level code that interacts directly with the hardware.

If you like maths, you can choose to specialize in developing machine learning models. This is a field that requires advanced knowledge of maths. If you don’t like maths, then there are also plenty of programming niches to choose from.

The pragmatic reason why this variety of niches is a good thing is that you won’t have to do something that you don’t enjoy simply because it pays well. You will be able to find a niche that closely matches your natural interests.

7. Changing jobs frequently is widely

accepted as a norm

Another great thing about a career in software development is that in this career it’s more acceptable to change jobs frequently than it is in most other careers. Therefore it will be relatively easy to leave a company you dislike or move out of a specialist niche you dislike.

Of course, you will occasionally encounter recruiting managers who will ask questions if you have been changing jobs frequently.

4. Pragmatic Reasons to Start a Software Development Career 27

But not every recruiting manager will.

High tolerance for frequent job changes within the industry is driven by two factors: high demand, which we have already covered, and how developers normally get hired.

If you have built some experience as a programmer, then it will no longer be necessary for you to apply for jobs. Recruiters will be contacting you. And when you move jobs because you have been offered an objectively better position out of the blue, you will not look like someone who simply likes to jump from job to job.

8. You can work remotely

In objective terms, most software development jobs can be done from anywhere. All you will need is a computer and an internet connection.

Although there are some managers who do insist on programmers being on-site, there are many who don’t. Therefore it’s one of the careers where finding remote work is relatively easy.

And there are obvious benefits of remote work. When you don’t have to travel anywhere, you will save time and money. Or, in some cases, you can even travel to some nice place and work from there.

9. Many employers offer flexible

hours

Another benefit of a software development job is that it doesn’t require you to start and finish at a particular time.

Of course, there might be some exceptions to this. Scheduled meetings do need to happen at particular times. Likewise, you

4. Pragmatic Reasons to Start a Software Development Career 28

might be required to fix some urgent issues. But overall, the precise start and end times don’t matter.

A typical programming job requires you to complete certain tasks by certain deadlines. And it doesn’t matter what working hours you choose to achieve this. It doesn’t matter if you work eight hours every day or do six hours one day and ten hours another day. What matters is that the tasks that have been assigned to you get done within reasonable timeframes.

Fortunately, many companies agree with this and do grant software developers some freedom of choosing their own hours.

10. If a prolonged lockdown ever

happens, you are less likely to lose

your job

This is another important benefit of being a software developer that I wouldn’t have even think of if the worldwide Covid-19 lockdown didn’t happen.

During the lockdown, many businesses were forced to close and many people lost their jobs. The bulk of these people was working in professions that required them to physically be in specific places.

If any of such places are closed due to the lockdown, however, then these people can’t continue working.

But software developers weren’t affected to the same extent. And this was mainly due to their ability to work from anywhere. Largely, the only significant thing that has changed for most software developers was that the vast majority of them started working remotely while they were previously required to be on-site at all times.

Of course, there were plenty of software-reliant companies that were forced to downsize and terminate many of their software

4. Pragmatic Reasons to Start a Software Development Career 29

developers. Airbnb and Uber are two noteworthy examples. But overall, the industry wasn’t greatly affected.

As demand for some software-reliant services has gone down, the demand for other IT services has gone up. For example, people across the globe started using the internet more.

Because of this, while some companies downsized, many others have gone on a hiring spree. So, the industry as a whole has remained in a state of balance. If you have lost your job, it was relatively easy to get another one.

Lockdowns like this don’t happen often. But if they do, it’s better to be prepared for them. And one of the best ways to prepare for a lockdown is to get a job that you would be able to continue doing despite the lockdown. Software developer happens to be such a job.

5. What Programming

Language to Learn First

You can become a programmer without a formal computer science degree. Around 30% of software developers are self-taught. But you would probably want to know which language to learn first. After all, there are many of them out there.

Well, the answer to this question is simple enough if you are learning on the job. Just learn whichever language you need for that specific job. But what if you don’t have a programming job yet and you don’t know which specific language you will be working with in the future?

Well, in this case, you need to remember that it’s always harder to learn your first language than any subsequent one. Even though different languages differ in syntax, all of them still share fundamental concepts, like conditional statements, loops, and so on. You can write similar algorithms in different languages. This is why, as long as you already know at least one language, you will only have to learn the syntax of the new language but not the fundamental principles behind it.

If you don’t have a specific language to aim at and ask for advice online, you will usually trigger a language war. Some people will be saying that you should choose Python. Other people will recommend C/C++. Based on my own experience, there seem to be more people in the latter category. C and C++ can be lumped together because C++ is nothing more than an extended version of C.

Today we will examine the pros and cons of each approach. And you will see why Python is probably better.

5. What Programming Language to Learn First 31

C++ or Python?

Both C++ and Python are highly popular. And they have been popular for many years with no sign of decline in popularity.

Therefore, if you learn either of those, chances are that you won’t even have to learn some other language to get your first job.

However, as far as general-purpose languages are concerned, Python and C++ are on the exact opposite ends of the spectrum.

C++ is a highly complex mid-level language. By “mid-level”, I mean a medium level of abstraction. It doesn’t consist of pure CPU

instructions. We have assembly language for that, which you will probably never have to use directly. But you still have to do a lot of low-level things yourself, like ensuring that the memory is freed after you no longer need it.

Python, on the other hand, is a high-level language. All you do in it is write the logical flow. The engine that runs the language will do everything else for you. You won’t have to worry about the hardware resources as a developer. Therefore it is much easier to write a program in Python than it is to write an equivalent one in C++.

Another advantage of Python over C++ is its fundamental principle that says “There should be one– and preferably only one –obvious way to do it“. Because of this, the syntax of Python doesn’t consist of as many components as that of pretty much any other language.

It’s very small. C++, on the other hand, has different keywords that achieve broadly the same thing. For example, there are several different ways of achieving the same flow control by using different conditional operators and different types of loops. And this fundamental difference makes Python way easier language to learn than C++.

But you will often see developers arguing against learning Python first. They would say that the factors that make C++ hard are the reasons that you will become a much better software developer if

5. What Programming Language to Learn First 32

you learn it first. According to them, a Python developer would cry if he or she would have to then learn C++. But a C++ developer would breathe through learning Python. But is this statement true?

Let’s find out.

There is no empirical data that says

C++ is better

The argument that knowing C++ will make you a better developer overall seems logical. But there is no real empirical evidence to support it.

I can only rely on anecdotal evidence. But based on my personal experience of interacting with many C++ developers, there are just as many bad ones out there as there are good ones.

There are C++ developers who don’t know basic best practices of programming, such as SOLID principles. There are plenty of C++

developers who write unreadable and buggy code. And there are plenty of them who manage to learn another language, but keep their bad habits. In this case, the code written in a new language is just as bad as the code they used to write in C++.

But likewise, some C++ developers are genuinely good at what they do. They write clean code in C++ and they write clean code in any other language that they ever need to learn.

Likewise, I knew developers who had to learn C or C++ at the late stages of their careers. And they had no problem with that. Even though C++ happens to be harder than the languages they already knew, their accumulated knowledge and experience made it easy for them to learn it.

So, while the argument that learning C++ as your first language has some merit, there doesn’t seem to be any actual real-life evidence that this is the case.

5. What Programming Language to Learn First 33

My own experience with C++ and

other languages

And I’m not expressing my point of view as someone who has never learned C++. I have learned it a while ago. I went through all the fundamental parts of its syntax. But I have now forgotten most of it. This is because I never had to use it. And the stuff that doesn’t get used tends to be forgotten.

For me, C++ wasn’t the language I learned first. The first one I learned was Visual Basic (VB). First, in the form of VBA. Then, in the form of VB.NET. Even though it wasn’t as simple as Python, it’s still a beginner-friendly language. And this is mostly because VB

looks almost like plain English.

C++ is a language I was learning in my spare time alongside Java and C#. The reason why I’ve chosen to learn those two was because, at the time, they were among the most popular languages. And the thing is, even though I found C++ somewhat more difficult compared to VB, it wasn’t extremely more difficult. I still managed to get a reasonably good grasp of it within a couple of months.

But then C# became my main language. And since then, I haven’t encountered a single situation where I needed to use C++. Granted, the names of the languages sound similar, but the languages are completely different from each other. Unlike C++, C# is a high-level language. And it’s much easier to use.

So, based on my personal experience, it doesn’t really matter if you have chosen a beginner-friendly language as your first language.

You will still be able to learn C++ relatively easily if you need to.

It’s only the first language that you learn that is hard. Any language you learn after this will be easy to learn.

5. What Programming Language to Learn First 34

The real reason why people tell you

to learn C++ first

If you have a look at what kind of people recommend C++ as your first language, you will notice that it’s almost exclusively computer science graduates. And it’s not necessarily because they know better. The main reason why C++ is the language that they recommend is that they have been taught this way.

C and C++ are the main languages that many universities teach.

And it’s been like this for decades. One reason for this is that university degree programs don’t tend to change as quickly as things do during real-world industrial innovation. And the other reason is that there is really no need to change it.

C++ is still one of the most popular languages. And the argument that it’s an easy gateway to other languages still holds true. Knowing C++ certainly won’t give you any disadvantage compared to knowing any other language.

So, when you hear someone insisting that C++ should be your first language to learn, they aren’t lying. But chances are that the only reason they say that is because they were taught this way.

Why Python is much better for a

beginner

But being a good programmer is not only about knowing a programming language well. Being a good programmer is also about being efficient. This is why you would be asked to learn algorithms and design patterns instead of always coming up with your own solutions from scratch.

And learning C++ as your first language doesn’t happen to be the most efficient thing you can do for your career. Unless you

5. What Programming Language to Learn First 35

are specifically aiming to work in a niche where C++ is heavily used, learning C++ will just fill your head with a lot of useless information.

Even though C++ is a general-purpose language, it’s not as general-purpose as any other high-level language. The fact that it’s so hard to write code in C++ is the reason why it’s not used unless it absolutely has to be used. You won’t be writing a mobile application, desktop application, or a website back-end in it.

You will, however, use it to write device drivers. Or gaming engines.

Or embedded device firmware. Or high-performance modeling software. And this is because those things that make the language hard are also the things that allow developers to write high-performance software that runs close to the bare metal.

But if you don’t aim at these specific niches, learning C++ will just delay you, because you will then have to learn another language anyway. So why not just choose one of those languages to start with? And Python just happens to be the easiest one of those to learn. Because Python is so popular and it’s a true general-purpose language, there will be plenty of opportunities to choose from once you master it.

Do you know why data scientists choose Python as their main language? It’s not because it happens to be the best language for data science. It’s actually because data scientists are mathemati-cians rather than software developers. Python just happens to be the easiest language to learn.

But despite being relatively simple, Python still has all the fundamental components of any good programming language. So, once you learn it, it will still be easy enough for you to learn any other language later.

5. What Programming Language to Learn First 36

Wrapping up

So, even though both C++ and Python are good, unless you are specifically aiming at a job in embedded software development or game-dev, you should probably choose Python. There is no harm in learning C++, but Python will allow you to become a competent programmer much faster.

Even though the argument is that knowing C++ will make it easier for you to learn other languages in the future, there is no actual evidence for it. Observations indicate that regardless of what language you choose as your first one, the second language will always be much easier to learn.

But overall, if you don’t know any programming language yet, you should follow this algorithm to decide which one to learn: 1. If you know exactly which language you will be working with

– learn that language.

2. If you don’t know yet – just learn Python.

Remember that it’s not the knowledge of any specific language that will make you a good software developer. It’s knowledge of how to use the language well that will do so. So, even if you have an encyclopedic knowledge of C++ syntax, you will still be a pretty bad developer if you don’t know how to actually write easily readable, well-maintainable, and bug-free code in it.

6. Why You Don’t Need

Maths to Become a

Programmer

Despite a very low barrier to entry, many people, who are totally capable of becoming successful programmers, choose not to even try learning how to code. And this is primarily because there is one misconception about programming that prevents them from starting – a false belief that, to be a programmer, you need to be good at maths. There are many intelligent people out there who don’t like maths. Perhaps they had a bad maths teacher at school.

Or maybe they just find all the maths formulae boring. Regardless of why they dislike maths, the thought that they need to go through the pain of learning it to become software developers is what prevents them from even trying to start learning to program. The good news is that the belief that you need to be good at maths to become a professional programmer is nothing more than a popular misconception. I say this as a senior full-stack software developer who has worked in several different industries and has built several different application types. In this article, I will explain why you don’t really need maths to become a software developer. What skills do you actually need for programming By many, the software is seen as something that is primarily used for calculations. However, although every type of software is performing calculations to some degree, calculations are not what software is primarily written for.

The primary role of software is to outline operational logic. And logic has very little to do with maths in its traditional sense This is why, to become a professional programmer, you don’t necessarily need to possess above-average maths skills, but you definitely need a solid ability to think logically. To prove my point, I will show you

6. Why You Don’t Need Maths to Become a Programmer 38

an example of a simple console application written in C#. All of the concepts demonstrated here, however, can be applied in any other programming language. The entire application code can be found below:

1

using System;

2

using System.Collections.Generic;

3

4

namespace AppLogicDemo

5

{

6

class Program

7

{

8

private static Dictionary< string, int> inputtedTe\ 9

xts

10

= new Dictionary< string, int>(); 11

12

static void Main()

13

{

14

var exit = false;

15

16

while (!exit)

17

{

18

19

Console.WriteLine("Type any random text."\ 20

);

21

Console.WriteLine("Type 'exit' to stop th\ 22

e program.");

23

24

var input = Console.ReadLine();

25

26

if (input == "exit")

27

{

28

exit = true;

29

}

30

else if (inputtedTexts.ContainsKey(input)) 31

{

6. Why You Don’t Need Maths to Become a Programmer 39

32

inputtedTexts[input]++;

33

Console.WriteLine(

34

$"The input of '{input}' has been\

35

entered {inputtedTexts[input]} times.");

36

}

37

else

38

{

39

Console.WriteLine(

40

$"The input of '{input}' has been\

41

entered for the first time.");

42

inputtedTexts[input] = 1;

43

}

44

}

45

}

46

}

47

}

The application asks you for some inputs and then, based on what you have provided, it executes some code associated with one of the conditions defined by if-else statements. And the application keeps asking you for inputs indefinitely by executing a continuous

“while” loop until you explicitly tell it to stop. The combination of all of the inputs, outputs, the while loop, and if-else statements is known as application logic.

Please note that, in this example, we have not used any maths at all. We do increment the counter by one, but this is a calculation that a two-year-old can do, so it’s not something that requires any advanced maths knowledge.

Yes, the runtime itself indeed performs some calculations while the application executes its logic, but these calculations didn’t require any maths knowledge from us. We didn’t write anything that is even remotely similar to any advanced maths operation.

Although this example represents an application with very simple logic, it’s a fully functioning application nonetheless. The code for

6. Why You Don’t Need Maths to Become a Programmer 40

most real-life applications uses very similar syntactic structures but has them arranged in a much more complex manner.

Just like in our example, unless you are working in a niche field that requires advanced maths calculations to be performed by the applications you are writing, the most code you will encounter will have either no maths calculations at all or only the most basic calculations that a primary school student can understand.

If on some rare occasion, you will be required to use something equivalent to high school level maths, pretty much any language has an in-built system library that abstracts these maths formulae to basic methods with simple input parameters. System.Math is an example of such a sub-library represented by a single class in .NET

ecosystem, which includes such languages as C#, VB.NET, and F#.

On the other hand, the ability to think logically is a must. However, you don’t need an extraordinary ability to think logically. After all, logical thinking is like a muscle. The more you use it, the better you become at it. And continuous programming practice is probably enough in itself to develop your ability to think logically to an adequate level.

However, if you can’t correctly answer even the most basic logic questions in an IQ test, then I have bad news for you. In this case, you should probably choose some other profession than programming.

Some niche programming fields do

require advanced maths

Even though advanced maths skills are not necessary for you to become a professional software developer, they are absolutely required to be a software developer in specific programming niches.

The good news is that the vast majority of programming jobs are

6. Why You Don’t Need Maths to Become a Programmer 41

outside those niches. On the other hand, you must be aware that these fields exist.

Machine learning is one such niche. Calculus, statistics, and many different advanced maths formulae form the backbone of machine learning.

For example, one of the most popular ways to execute machine learning logic is to have several layers of interconnected nodes and then repeatedly execute calculus-based backpropagation algorithm until numerical values associated with nodes and their connections adjust themselves in such a way that, for a given set of inputs, the system starts to reliably produce outputs that are close enough to the expected outputs from the training data.

Backpropagation is only one of many possible ways of performing machine learning. It just happens to be one of the most popular ones, because the setup containing interconnected nodes with dynamically adjustable numeric values closely mimics how neu-rological pathways get established in an animal brain. This is why such a setup is known as a neural network.

But regardless of what method of machine learning you would choose to use, you will absolutely have to gain a good understanding of several advanced maths formulae. There is no getting away from it.

Another noteworthy programming niche where good maths knowledge would be required is writing engines for any performance-intensive software, whether it’s games or modeling software.

The goal of such software types is to be able to use as few hardware resources as possible while producing as much in terms of output as possible. And to be able to achieve this, you must be able to write well-optimized algorithms and know specialized formulae. Plus, in such situations, you will have to work with low-level programming languages, such as C++ and C. And when you write code intended for low-level components, such as CPU and GPU, your standard

6. Why You Don’t Need Maths to Become a Programmer 42

maths libraries would add unwanted overhead, so they won’t be available.

Another reason why you would need to be good at maths if you want to work on gaming or modeling engines is that the logic itself would contain a lot of complex calculations. Imagine an average 3D shooter. Every time you move your character or aim your gun, your position and the direction of your aim need to be recalculated.

And the same thing needs to happen to every movable object in your environment. And this happens for every frame.

And there is also gaming physics. Physics in games is nothing more than a set of many real or slightly modified formulae from Newtonian physics that are made to inter-operate with each other.

This means that you won’t be able to develop gaming physics until you gain a good intuitive understanding of these formulae.

With modeling software, you will need to learn formulae that are specific to the things the software is designed to model. For example, if you are writing software that calculates the risk of flooding, you will have to get familiar with a whole range of hydrological formulae. If your software will be modeling a flow of traffic, then you will need to learn formulae that are specific to this area. The list goes on.

There are several other programming areas where knowledge of maths would be essential. However, I have described the most popular ones. But, as you have probably noticed, there are countless widespread application types that haven’t been mentioned.

And this is precisely because most application types don’t require advanced maths knowledge. So, even if you have decided that machine learning and developing gaming engines is not for you, you can still write desktop applications, mobile applications, cloud applications, web applications, internet of things (IoT) applications, and many more application types.

You can even still be involved in machine learning or game development, but in these cases, your role would probably be restricted

6. Why You Don’t Need Maths to Become a Programmer 43

to writing high-level components, such as user interfaces. The key point is that, even if you aren’t so good with maths, you will still have plenty of options as a software developer.

Even low-level computing hardware

is based on logic rather than maths

You may be surprised, but even at the lowest level, computers are not using anything that even remotely resembles maths. This is true even when they are performing numeric calculations. What they are actually using is logic.

At the most fundamental level, a CPU, the brain of a computer, uses a complex combination of logical gates of various types. There are AND gates, OR gates, NOT gates, and so on. The goal of each gate is to decide whether to produce 1 or 0 based on the available outputs.

For example, AND gate will take two bits of input and will produce either 1 if both of them are 1 or 0 if at least one of them is 0. OR

gate, on the other hand, will produce 1 if at least one of the inputs is 1.

What we see as numeric calculations is nothing more than several logical gates working together. When maths operations are performed at a low level, the numbers that the operation is performed on are split into combinations of bits, which are then processed by a series of logical gates. The exact combination of logical gates is chosen based on the maths operation that is being used.

I won’t describe how this logic works in detail, as this is beyond the scope of this article. If you want to find out more, there is a great article that you can find here. However, this overview is sufficient to demonstrate that it’s logic rather than maths that forms the fundamental principle behind computers.

Even the binary system itself highlights this principle quite well.

6. Why You Don’t Need Maths to Become a Programmer 44

You can think of 1 and 0, the only possible binary values, as being equivalent to logical values of true and false.

Wrapping up

So, even though having good maths skills will give you an advantage in a software development career and in life in general, you absolutely don’t have to be good at maths in order to start a software development career.

Of course, even when you are applying for a job where you wouldn’t have to know maths, there is still a tiny chance that you may be asked some advanced maths questions during the selection process. But this would be purely because of HR bureaucracy rather than the requirements of the job itself. But you should be prepared that you would encounter at least a couple of jobs with irrational hiring practices dictated by people in HR who are completely clueless about what the actual job consists of. Fortunately, there are also more than enough organizations out there with very pragmatic selection processes.

7. Why Practicing

Algorithmic Problems

Will Enhance Your

Programming Career

As someone interested in becoming a software developer, you have probably heard that it’s important to learn algorithms. Or maybe you have already started your programming career and haven’t yet encountered a situation where knowledge of algorithms would be beneficial to you. Either way, you might be wondering why would you need to study algorithms.

This is precisely what I will address today. Studying algorithms is important, but the reasons why it’s important may not seem obvious. Today, I will show you what those reasons are.

And let us start with dispelling a common misconception – that, allegedly, knowledge of algorithms is absolutely critical if you want to be a professional software developer.

Knowledge of algorithms isn’t

always required

Software development consists of many specialist areas. And, just like there are many areas for which you aren’t required to learn maths beyond school-level basics, there are plenty of areas that don’t require you to know any algorithms at all.

7. Why Practicing Algorithmic Problems Will Enhance Your Programming Career 46

But despite this fact, I don’t want to give people a false impres-sion and encourage aspiring software developers to be mediocre.

Whether learning something specific is necessary or not, becoming a software developer requires hard work and dedication. You will still absolutely have to study a lot if you want to have any meaningful success in a software development career.

So here are some reasons why algorithms aren’t specifically needed in many software development niches:

1. Most algorithms are already

implemented by core libraries

If you are only working with high-level languages, such as JavaScript, Python, C#, etc., most algorithms that you would typically be taught in a computer science class are already implemented by core libraries of the language. For example, if you want to sort your array, there will already be a method called sort(), or equivalent, available to you. If you want to search your collection for a specific value, there will also be a method that you can call. And all of these methods will take just a simple set of parameters and execute a well-optimized version of the algorithm.

You don’t even need to know the names of any algorithms. All you’ll need to know is that if you want to rearrange your collection or check if your collection contains a specific value, there is a specific method in the core language library to use. And with this, you are unlikely to ever be required to write any algorithm yourself from scratch.

7. Why Practicing Algorithmic Problems Will Enhance Your Programming Career 47

2. Some niches don’t even have

problems solvable by algorithms

Let’s take the role of front-end developer as an example. If that’s your niche, then you will be required to know how to create really nice and engaging user interfaces. You will need to know how CSS, DOM, and JavaScript interact with each other. You will need to know various tricks, such as animations. But you are less likely to encounter complex calculation problems that back-end developers are likely to encounter.

Of course, certain types of UI would require complex calculations.

Any UI with a graphical designer functionality would be a good example of this. But even in this case, you would be able to use in-built methods rather than implementing your own algorithms.

Database specialist is another example of a niche where knowledge of algorithms wouldn’t be a critical requirement. You would need to have a good knowledge of how to build your data storage so it’s as well-optimized as possible. For example, knowledge of correct table indexes usage is a must. You would also need to know how to write well-optimized queries.

Well, those people who have built the engines for the database management systems absolutely needed to implement a whole range of classic sorting, searching, and other types of algorithms for those queries to be executed in the most efficient way possible. But you don’t have to know those details if you are building databases and not database engines. You can perform your job reasonably well without having a detailed knowledge of what algorithms your database engine implements under the hood.

So, unless you are working on programming languages, building computational engines from scratch, developing communication protocols, or simply writing any low-level code that executes close to the hardware, you probably won’t explicitly write a single

7. Why Practicing Algorithmic Problems Will Enhance Your Programming Career 48

algorithm that you have learned in your computer science class.

Here is some personal anecdote. As a self-taught developer, I hadn’t explicitly learned a single algorithm until three years into my professional career. And I was able to get quite far in my career without knowing any.

But don’t get me wrong. The fact that you don’t necessarily have to learn algorithms doesn’t mean that you shouldn’t. There are still good reasons why learning algorithms will significantly benefit you, even if you have chosen a niche that doesn’t specifically require you to know any. This is why I eventually started to study them and this is why you should too.

What is so useful about algorithms

Contrary to what many believe, the main purpose of studying algorithms is not to memorize their steps and their names. Studying algorithms teaches you how to think. So no, you don’t necessarily need to remember how to do bubble sort and merge sort. But after spending a good amount of time practicing solving problems with algorithms, you will start to intuitively understand the fundamental principles behind them. This will allow you to solve a large variety of problems in an efficient manner, even though your solution will be bespoke and won’t fully adhere to any classic algorithms from a computer science class.

The same applies to learning the computational complexity of algorithms, the so-called Big-O notation. You don’t merely need to memorize computational complexity for every classic algorithm type. You need to gain an understanding of why a particular algorithm has a particular computational complexity so that when you are working on a bespoke solution to a specific problem, you will be able to determine how alternative solutions might vary in efficiency.

7. Why Practicing Algorithmic Problems Will Enhance Your Programming Career 49

In my career as a software developer, even though I never had to write any of the classic algorithms from scratch, I have encountered many situations where understanding how algorithms work has helped me to come up with an efficient solution.

A good example of it was a problem that I needed to solve with real-time railway data. The software I was working on would ingest information about upcoming trains from a third-party feed. One of the core components of this data was a collection of objects representing the stations that the train would pass along its journey. Each of these objects would include information like station code, estimated arrival and departure times, scheduled arrival and departure times, and some other station-specific data.

The problem with this data was that sometimes stations were excluded from the collection. This applied to some, but not all, stations that the train moved through but didn’t call at. However, the system that I was building absolutely needed to know every station that the train passed through, along with the estimated time at which the train would pass each station.

I solved this problem by applying the divide and conquer principle that I have learned from studying algorithms. The collection of calling stations would be iteratively traversed from both ends.

So would be the reference data containing all stations along a particular route. This way, any stations missing from the list of passing stations would be determined and inserted into the data.

And, because the traversal is happening both ways, the time at which the train is expected to pass the station would be interpolated efficiently and with reasonable accuracy.

If I didn’t know any algorithms, I would still have come up with a solution. But my solution would probably not be as efficient.

Perhaps, it would even be an acceptable solution if the system would have been expected to only deal with small volumes of data.

However, since the system was being built to handle large volumes of real-time train data, any brute-force type of solution would not

7. Why Practicing Algorithmic Problems Will Enhance Your Programming Career 50

have been efficient enough to deal with it.

So, the takeaway is, once you start working on large scalable systems, you will almost not be able to do your job as a programmer if you have zero comprehension of algorithms.

Big tech would always asses your

knowledge of algorithms

As well as teaching you how to think and giving you tools to solve your own bespoke problems in the most efficient way possible, algorithms are the only way to get employed by large tech companies, such as Amazon, Google, Microsoft, and Uber. Every single one of these companies assesses your knowledge of algorithms during the recruitment process.

And the reason for it is simple. When big tech companies hire a developer, they often wouldn’t look to place the developer in a specific role. The candidate would usually be expected to be able to fit into any of a relatively wide range of roles. And in some of them, the developers are guaranteed to encounter problems where only algorithmic solutions would be suitable.

But not all of these companies would want to know if you can tell the difference between bubble sort and merge sort. Amazon, for example, will give you some bespoke problems to solve during the interview. Those are precisely the kind of problems I’ve previously mentioned. You can’t solve them by just applying any standard classic algorithm, but you would require to use the fundamental principles of those to develop your own bespoke algorithms.

So, it doesn’t matter if you know many algorithms by name. Even if you forgot the proper name for, let’s say, binary search, you would still have a good chance of passing the Amazon interview, as long as you’ve had a reasonable amount of practice with algorithms.

7. Why Practicing Algorithmic Problems Will Enhance Your Programming Career 51

They don’t care how much academic knowledge you have. All they care about is whether you can solve complex problems efficiently.

Sadly, not all companies implement the same enlightened selection process as Amazon does. Some do indeed test your academic knowledge of algorithms. So, even if you are smart, there are companies that you can fail an interview at because there is a specific algorithm that you have either forgotten or never knew in the first place. This is known as algorithm lottery.

Usually, algorithm lottery type of selection is only done by smaller companies. Unlike Amazon, they don’t have the resources to design a recruitment process that assesses candidates’ skills as objectively as possible. All they know is that Amazon and Google ask about algorithms, so it’s just assumed that this is what needs to be done.

However, while most big tech companies assess knowledge of algorithms in a meaningful way, the companies that implement an arbitrary algorithm lottery are shooting themselves in a foot. You can often hear stories of exceptional candidates who got rejected simply because they got unlucky by being asked to describe an algorithm they don’t know. Likewise, plenty of otherwise horrible developers pass through these filters just because they happen to remember the specific algorithms they’ve been asked about during the interview.

Wrapping up

So, you can now see that, while you can have a career in software development without explicitly studying algorithms, choosing to study them makes you much more effective in your job. And, if you want to have any chance of breaking into big tech, you must make yourself familiar with algorithms.

The most important thing about studying algorithms is not merely memorizing them, but getting to understand the principles behind

7. Why Practicing Algorithmic Problems Will Enhance Your Programming Career 52

them. And to do so, you have to spend your time practicing algorithms to solve real problems instead of just reading about the algorithms.

And there are many good ways you can practice applying algorithmic solutions to problems. For example, you can register on Leetcode*, HackerRank†, or Topcoder. All of these sites have a whole range of algorithmic problems that you can solve in any programming language of your choice. Also, many of these problems happen to be the same problems you may be asked to solve during an actual job interview, as many IT companies actively use these sites.

*https://leetcode.com/

†https://www.hackerrank.com/

8. How to Get Your First

Job as a Self-Taught

Programmer

It may come as a surprise to you, but many professional programmers are self-taught. And many of them have been able to reach fairly high positions in their career. Therefore, it is not only realistic to get into the software development profession without any formal programming qualifications, but it’s also possible to become successful within this industry.

The software development industry is probably the industry with the least amount of bureaucracy. Once you have some professional experience under your belt, very few companies would care what formal education you have. As long as you can demonstrate your programming skills during the recruitment process, you will be able to get a job as a software developer.

However, if you don’t have any formal qualifications related to programming, there is one problem. If you don’t have any professional experience, how would you get in? After all, your resume will be competing with people who do have either formal qualifications or professional experience.

Once you complete a computer science degree, you will be eligible to apply for a graduate job that has been specifically designed for university graduates who don’t have any real job experience yet. But if you either haven’t been to university or have studied something completely unrelated to programming, you won’t be able to apply for that kind of job. So, how would you get your first programming job in this situation?

8. How to Get Your First Job as a Self-Taught Programmer 54

Luckily, it is possible and this is exactly what I will be talking about in this article. I am a self-taught software developer who now holds a job title of a lead software engineer, so I have relevant experience in this area. I am also an author of multiple technical books and a mentor. During my career, I have met many other self-taught developers who have shared their own career stories with me.

But before I start, I’ll have to give you a little disclaimer. Everything described in this chapter is based purely on my personal experience and the experience of people I have personally met. Therefore there might be more effective ways of getting into a software development career, but I am not aware of any. And my conclusions are based on a fairly limited sample size.

As far as I know, nobody has ever done a proper scientific study of how self-taught developers start their careers and what processes work the most effectively in this area. Therefore we have no choice but to rely on anecdotal evidence. But in the absence of any other evidence, anecdotal evidence is still good evidence.

So, let’s begin.

Common misconceptions about

self-taught developers

Before we go into how to get your first software development job, I need to dispel some common misconceptions about being a self-taught developer.

Becoming a self-taught programmer isn’t easier than getting a computer science degree from a university. Very often, it’s harder.

Yes, you can learn to code on your own in a single year, while a university degree would take a couple of years to complete. But still, most people would find a university degree a lot easier.

When you are at university, you are instructed on what to study

8. How to Get Your First Job as a Self-Taught Programmer 55

and where to find the learning material. You also have a grading system that motivates you. The structure of your entire course is well known in advance. And some tutors can answer most of your questions if any of the subject areas aren’t clear enough to you.

When you are learning to code on your own, you don’t have any of that. You will need to have a tremendous level of self-discipline, as you probably have to do your practice while having other commitments. You won’t know what are the best sources of the learning material. The internet is full of free information on programming and you will have to use a lot of trial and error to distinguish good information from bad. You will probably feel frustrated at times, as it will take a while to produce any meaningful indicators of your progress.

So yes, while it is possible to learn enough in a year to become a real software developer, the process of doing so requires a tremendous amount of discipline and patience. Also, be prepared to have virtually no spare time while you are doing so.

On the other hand, as a self-taught developer, you can focus on only those skills that are actually being used in real-world industries, while university students learn a lot of material that they will never apply after they’ll graduate. Some of it is because the university curriculum cannot keep up with the pace of change in the actual industry, so university students end up studying various practices, technologies, algorithms, and other things that will never be used in the real world.

Another reason for it is that there are many specialties within software development and university courses don’t focus on just a single one. The students will probably learn a little bit about every main software development niche, but a university degree will not make them masters in any single one of them.

This is what can give self-taught software developers an advantage over university graduates. As a self-taught software developer, you can focus on any specific niche and get to know it in as much depth

8. How to Get Your First Job as a Self-Taught Programmer 56

as you want.

For example, you may become really knowledgeable in web application development, but know absolutely nothing about firmware development or mobile application development. A university graduate, on the other hand, would know the basics of web development, mobile development, and firmware development. But if you then both apply for a web development position, you would be able to outcompete him, because your knowledge of web development will be a lot deeper, while knowing anything at all about other software types won’t matter in this situation.

That, of course, is based on an assumption that the university graduate hasn’t been doing any self-study beyond the mandatory university material. Of course, if you have completed a university degree and have gained a lot of additional knowledge on your own, you will have a massive competitive advantage over most people.

But only a tiny number of people actually do this.

So, as we have now got a realistic picture of what being a self-taught developer entails, let’s talk about getting your first programming job.

The most reliable method of getting

your first programming job

So, before further ado, here is the most reliable method of getting your first job as a self-taught software developer: 1. Get into any office-based role in a company that has a software development team.

2. Tell the developers that you can code and volunteer to help them with their tasks.

3. If successful, gradually transition into a full-time software development role.

8. How to Get Your First Job as a Self-Taught Programmer 57

After all, many office-based jobs don’t require any special qualifications to get in. Likewise, if you have studied something unrelated to software development, your education certificate would still be able to open the door for you into an office-based job.

I know that this may sound counterintuitive. Also, this may be different from what you have been told about getting your first job by various bloggers and influencers. But, as someone with a reasonably long software development career, this is the only way I have ever seen working.

Of course, some other ways come to mind. For example, you may think of a successful completion of a coding boot camp or being a major participant in an open-source project as good evidence of your coding skills for your first programming job. Unfortunately, I have never met anyone who has managed to obtain a real programming job via these routes.

I am not advocating against participating in open-source projects or learning how to code via a boot camp. Both of these will give you useful skills that will put you ahead of the competition.

Open-source projects will give you an opportunity to practice what you have learned. And, because you will be collaborating with real software developers, this is one of the best ways for you to learn skills beyond the knowledge of programming languages, such as writing clean code, design patterns, SOLID principles, etc.

Experienced developers will simply not allow you to commit badly written code into the code base and they will explain why your code doesn’t meet the required standard.

Boot camps are also a really good way to learn how to write code.

They pull you out of your comfort zone and force you to study non-stop for some time while giving you all the necessary guidance throughout the process. A boot camp will probably teach you a lot more than you could ever do on your own within the same period.

So, if those things are so beneficial, why are they unlikely to land you your first real programming job? The answer is simple.

8. How to Get Your First Job as a Self-Taught Programmer 58

I, as an experienced engineer, would certainly consider a candidate who lacks any official job experience but has a certificate from a reputable boot camp or an impressive commit history from a well-written open-source project. However, chances are that I won’t even receive their resume to start with.

Even though senior developers do get involved in looking at candidates’ resumes, they won’t be looking at every single resume that comes in. Only a small number of resumes would normally get through to the actual development team. The rest would be filtered out by HR and management. And those will probably include all resumes that don’t have any jobs with the titles of

“software developer”, “software engineer” or “programmer” in the career history.

So, if you have successfully completed a difficult coding boot camp or have already gained good programming skills by participating in an open-source project, you are more than capable of being a professional software developer, at least at a junior level. However, without any official relevant work experience, the chances of progressing your application through the HR filters are slim. So, unless you personally know somebody who can hire you, you will probably still need to go through the process of getting a non-programming job first.

My own story recap

I have already touched upon my own story of getting into the software development career in the introduction to this book. But I will briefly outline it here.

I graduated from a university, but my degree had nothing to do with programming. My honors degree was in environmental biology and my master’s degree was in environmental informatics.

The master’s degree was somewhat related to computer science,

8. How to Get Your First Job as a Self-Taught Programmer 59

but only vaguely. I did study a little bit about project management, relational databases, and geographic information systems (GIS), but I haven’t studied anything about coding. So, when I started to learn how to code, I was starting from scratch.

And I didn’t even originally intend to become a software developer.

Software and technology were something that I have always been interested in, but my intention, at the time of graduation, was to have a career related to the subjects that I have actually studied.

And I did manage to get into a graduate scheme that was directly related to those.

The company I ended up working for was in the business of water and environmental engineering and I was given a role of an assistant analyst. My role entailed analyzing large quantities of hydrological data to assess the risk of flooding in any given area.

Quite a lot of the tasks I was doing were tedious and repetitive as I was copying large volumes of data into Excel spreadsheets. That was until my colleagues hinted to me that Excel has an in-built programming language called VBA, which stands for Visual Basic for Application. This was the language that could automate quite a lot of what I was doing. So, I started actively learning it.

Later, I found out that the software development team within that company was using a different flavor of the same language called VB.NET to write their own software. And, as I was now able to automate most of my daily tasks away, I started asking them if I could help them with their projects.

The overworked software development team gladly accepted my help and I gradually started doing more and more work that involved real software development. The types of software I was focusing on at the time were simple desktop applications and plug-ins for GIS software.

Long story short, my salary within that organization was very low.

And I found out that the same goes for most salaries within the

8. How to Get Your First Job as a Self-Taught Programmer 60

industry I was in. So, I have then decided to become a pure software developer and ditch the environmental sector for good.

Once I made this decision, I started researching the market for software development jobs. I found out that C# and web development were niches that had more local vacancies than anything else. So, I have started learning those in my own spare time.

Luckily, learning your second programming language is always much easier than learning your first. You will only have to learn the particularities of the language syntax. Other language structures, such as functions, control flow, conditional logic, etc. you will already know from studying your first language. So, even though C# and VB had very different syntaxes, getting to know C# was relatively easy.

Once I was confident enough with C#, I started submitting my applications to various software development roles. And I have secured a web developer role very shortly. It took me roughly 18

months between starting the graduate scheme and getting a pure software development role elsewhere.

Since then, I had a fairly successful software development career. I now hold a senior role and teach others how to code.

Similar stories of other software

developers

Throughout my career, I have met many self-taught software developers and they had very similar stories. The details were different, but the general principle of getting the first software development job was always the same.

In the water engineering company, there was a person whose story was very similar to mine. He also originally came from an

8. How to Get Your First Job as a Self-Taught Programmer 61

environmental science background, learned VBA to automate his daily tasks, and gradually became a software developer.

I have also worked with a self-taught developer who originally studied law. After getting into a graduate scheme for a legal organization, he found out that a career in law is nowhere near as exciting as he has expected it to be. He then started trying other things and one of them was software development.

The legal organization had a heavy software development workload and not enough people who could reduce it, so he was allowed to liaise with the software development team to ease the workload for them. And the rest is history. He is now a successful programmer.

There were also self-taught software developers I worked with that didn’t have any degree at all. Most of them started their career by applying for tech support roles. Luckily, many such roles don’t require any specific qualifications. And, even without university degrees, these people have managed to become software developers.

The specifics of their stories are different. Some have gradually moved from first-line support to way more technical third-line support before becoming professional software developers. Others skipped a few steps. But all of them eventually got there.

And, even without any qualifications related to programming, some of these people have managed to do very well in their careers.

Some of them have gotten into senior positions within a relatively short period. I even know one person who became a technical architect within only a couple of years of teaching himself how to code.

8. How to Get Your First Job as a Self-Taught Programmer 62

Wrapping up

So, based on my knowledge, the most effective way of getting your first programming job as a self-taught software developer is this: 1. Get into any office-based role in a company that has a software development team.

2. Tell the developers that you can code and volunteer to help them with their tasks.

3. If successful, gradually transition into a full-time software development role.

9. What to Study to

Become a Web Developer

Web developers are in higher demand than ever today and, because of this, the salaries in this sector are generous. This is not only driven by the web growing at an exponential rate, but also by the fact that more and more enterprises are moving from desktop-based applications to the centralized intranet or cloud-based solutions, both of which are accessible by a standard web browser.

To become a web developer, you don’t need a sophisticated computer science degree, although having one would be helpful. The software industry is probably one of the least bureaucratic systems.

Business owners care about your abilities rather than your qualifications. As long as you know what you are doing and can demonstrate it during a job interview, you will be successful regardless of your IT qualifications or lack thereof. I am, for example, writing this as a successful software developer who did Biology instead of anything computer-related at university.

If you don’t have the right education, however, the caveat is that you would have to spend your time getting to know the fundamentals in certain key areas. At the time of writing, to be a successful web developer, you need to know HTML, CSS, JavaScript, the concept of AJAX, a database language, a server-side framework, and a multi-purpose language used by the server-side framework of your choice. Front-end, back-end, or full-stack?

When it comes to web development, there are also different specialties. Unless you want to become a full-stack developer, you won’t have to learn all the technology types outlined below. You will only have to learn those technologies that are specific to your chosen niche.

9. What to Study to Become a Web Developer 64

Primarily, there are three types of web developers: front-end, back-end, and full-stack. Each of these types also contains sub-types based on a specific technology stack. But the technology stack is often chosen purely based on preference. Different technology stacks in the same niche are designed to solve the same type of problem. Therefore the difference between front-end and back-end developers is more fundamental than the difference between developers who use different technologies in the same niche.

Everything that is happening inside the browser and the technologies that are used there are collectively known as the front end. At the most fundamental level, the front-end technologies consist of HTML, CSS, and JavaScript. These are the technologies that every front-end developer must know.

There are also many other technologies, such as libraries and frameworks, that make the process of writing front-end code much easier. But the code produced by these tools will still consist of HTML, CSS, and JavaScript. Therefore, if you want to learn how to develop front-end apps or web pages, you will definitely need to learn these three technologies before learning anything else.

The back end is everything that’s happening on the server before the content is delivered to the browser. This includes database connections. Various types of conditional logic decide which content should be served and how data should be stored. This is collectively known as business logic.

This is where things get more complicated, as there is no single back-end technology. There are different types of databases. There are different programming languages to write your business logic in. Therefore, to become a back-end developer, you need to make your choice. Perhaps the best way to choose your stack would be to look up the availability of jobs in a particular stack and the median salary for each.

So, in web development, you can be a front-end specialist, a back-end specialist, or a full-stack developer that works with both niches.

9. What to Study to Become a Web Developer 65

Without further ado, let’s look at the technologies you will need to learn for all of these niches.

Front-end technologies

HTML

HTML, which stands for the hypertext markup language, is the most fundamental declarative language understood by browsers.

This forms the backbone of a web page and puts all of its elements in place. Without it, there can be no web page. The following tutorials will help you to master HTML:

W3 Schools HTML tutorial: https://www.w3schools.com/html/

HTML.com HTML tutorial: https://html.com/

CSS

Cascading Style Sheets technology is used to apply styling to HTML

elements on the page. CSS is critical for positioning and the look of the elements on the page.

The properties available in CSS include font style and size, dimen-sions of the visible elements, location of elements relative to other elements, and many other attributes that control the look of the page. The most recent version of CSS, which is compatible with all modern browsers, even has various animations. The tutorial below is sufficient to learn all about CSS:

W3 Schools CSS tutorial: https://www.w3schools.com/css/

9. What to Study to Become a Web Developer 66

JavaScript

If this article would have been written 20 years ago, this section would have been called “client-side scripting languages”. However, since then, JavaScript became a de-facto standard, virtually prevent-ing other languages, such as VBScript, from being widely used in browsers.

Despite its name, the language has very little to do with Java. The syntax is somewhat similar, but this is where the similarities end.

There are several good tutorials on JavaScript available online, such as the ones below:

W3 Schools JavaScript tutorial: https://www.w3schools.com/js/

JavaSScript.INFO JavaScript tutorial: https://javascript.info/

One important thing about JavaScript to remember, however, is that knowing the language itself won’t be enough in the modern-day web development workplace. You will need to learn at least two or three popular frameworks, such as React, which completely change how the language is used.

The resources for some of the most popular frameworks can be found here:

The official React tutorial: https://reactjs.org/tutorial/tutorial.html

Vue.js tutorial: https://vuejs.org/tutorial/

Angular tutorial: https://angular.io/tutorial

AJAX

AJAX, which stands for Asynchronous JavaScript and XML, is used to update a part of a page without having to reload the whole page. Any modern web application relies on technology, as it is the key to a great interactive user experience. For example, interactive timeline on social networking websites heavily depends on AJAX.

9. What to Study to Become a Web Developer 67

As the name suggests, the technology allows the web pages to make requests to the server asynchronously, i.e. completely independently from the main page load event.

To find out more, go to the following address:

Mozilla AJAX tutorial: https://developer.mozilla.org/en-US/docs/

Web/Guide/AJAX/Getting_Started

Database languages

Relational databases based on SQL (Structured Query Language) are the most commonly used data storage/manipulation layers in web applications. Although more and more applications rely on NoSQL databases, such as MongoDB, these technologies are not as popular as SQL-based relational databases.

The most popular relational database platforms are Microsoft’s SQL Server, Oracle, MySQL, and PostgreSQL. Some of them are commercial, while others are free open-source. Luckily, all of them use standard SQL language with only slight variations. Therefore, one tutorial is sufficient to grasp the fundamentals of all of them: W3 Schools SQL tutorial: https://www.w3schools.com/sql/

SQLTutorial.org tutorial: https://www.sqltutorial.org/

If you want to learn what types of data storage are the most appropriate for any given situation, this article will go into the details of it.

Server-side languages and

frameworks

The era of static web pages is truly over. These days, virtually all web applications have the bulk of their code executing on the server

9. What to Study to Become a Web Developer 68

with no direct interaction with the browser. And server-side code is absolutely mandatory if the web application relies on a database.

Unfortunately, different server-side frameworks are very different from each other. Therefore, web developers tend to specialize in only one or two of them.

PHP

The most popular open-source language is PHP. This probably is the easiest language to learn. However, the downside of it is that the developers who specialize in it don’t usually earn much compared to their colleagues who specialize in ASP.NET or Java-based frameworks. Also, it doesn’t tend to be used in enterprise-level applications.

This tutorial will give you all of the fundamentals of PHP: The official PHP tutorial: https://www.php.net/manual/en/tutorial.

php

Node.JS

Node.js is a platform that allows you to run JavaScript on the server.

It uses the V8 engine to do so, which is the same engine that Google Chrome uses to run JavaScript in the browser.

Node.js is massively popular and, among other server-side frameworks, it has the gentlest learning curve. And the reason for this is that you would have already learned JavaScript for client-side coding, so you will not need to learn another language for your server-side logic.

To learn it, you can visit the official guides via the link below: Node.js guides: https://nodejs.dev/en/learn/

9. What to Study to Become a Web Developer 69

ASP.NET Core

ASP.NET Core is a commercial enterprise-level framework from Microsoft. It is much more complex than PHP but is also more reliable, secure, and functional. The best place to learn about ASP.NET Core is by reading the official documentation on the Microsoft website:

Introduction to ASP.NET Core: https://learn.microsoft.com/en-us/

aspnet/core/introduction-to-aspnet-core

An important prerequisite for these tutorials is knowledge of at least one .NET language. The most popular language is C# (pronounced as C sharp).

Java

There is also a collection of Java-based enterprise-level frameworks that are widely used. However, unlike ASP.NET, many of them still need to be standardized. Therefore it is difficult to get it right in terms of which framework to choose. On the other hand, however, knowing Java language itself will sufficiently prepare you for most of them.

Oracle, the owner of Java language, has kindly published a very detailed tutorial available below:

Official Java tutorial: https://docs.oracle.com/javase/tutorial/

Which server-side technology to pick

Since there is a whole range of entirely different server-side technologies, you may be confused about which one would be the best.

But two simple rules will help you to make the decision.

9. What to Study to Become a Web Developer 70

If you research the web developer job market in your area, you will see how many vacancies there are for each of the technologies. So, you may just want to pick up the one that has enough vacancies and pays well. The last point is important because different demand for different programming languages drives the differences in salaries.

If you just want to learn web development skills as quickly as possible and aren’t currently ready to start applying for web development jobs, then definitely pick Node.js. Because it uses JavaScript throughout, you will not have to learn separate programming languages for the client and the server. You will be able to grasp the universal concepts of full-stack web development fairly quickly. So, if you would ever want to switch to a different technology, all you’ll have to do then is just learn the syntax of a different language.

10. What to Study to

Become a Mobile App

Developer

Just like the software industry in general, the mobile app industry is growing at a rapid pace. Instead of browsing the web by traditional means, more and more users are opting to install web-connected apps, which often provide far better users experience and allow the level of interactive use that is unachievable in a browser, such as posting pictures on social media instantly after taking them.

As the demand for app developers outgrows the supply, salaries in the sector grow higher. However, unlike most other well-paid professions such as a doctor or lawyer, the profession of a mobile app developer does not require costly qualifications and certificates that take years to obtain.

Although a computing-related degree is helpful, the ability to code is valued much higher in the industry and there are many people out there who either have degrees unrelated to computing or no degree at all.

We previously saw how to become a web developer by doing free online courses from the comfort of your home. The good news is that you can also learn everything that is required to become a mobile app developer absolutely free of charge, regardless of what platform you chose to develop on.

This chapter lists the most fundamental technologies that you would need to know and the links to the best free online resources to study them with.

10. What to Study to Become a Mobile App Developer 72

XML

Whether you chose to develop for Android, iOS, or any other mobile platform, you would need to know Extended Markup Language or XML. This is a declarative language that is used for arranging user-visible layouts, storing app configuration, and transferring data. It is very similar to HTML, the language used by web pages.

To learn XML in sufficient detail, you can visit one of the following free tutorial:

W3 Schools: https://www.w3schools.com/xml/

Back-end programming language

XML on its own will not be sufficient to build a functional app. As well as having the user interface, the app needs to perform actions.

This is achievable by an object-oriented language in the back end.

The language that you would need to learn would depend on the platform of your choice. Android uses Java and Kotlin. Apple uses Objective-C and Swift in its iOS platform on iPhone and iPad. Or you can choose to write your codebase in C# on .NET MAUI, which will allow you to later compile it into either an Android or an iOS app. The tutorials below will allow you to learn all of these languages to good standards:

Official Oracle Java tutorial: https://docs.oracle.com/javase/

tutorial/

Official Microsoft C# tutorial: https://learn.microsoft.com/en-us/

dotnet/csharp/tour-of-csharp/tutorials/

Objective-C tutorial: https://developer.apple.com/library/archive/

documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/

Introduction/Introduction.html

Swift tutorial: https://docs.swift.org/swift-book/

10. What to Study to Become a Mobile App Developer 73

Dart tutorial: https://dart.dev/tutorials

Platform-specific API

As well as knowing a programming language specific to the platform of your choice, you will need to know how to use it on that platform. This is why you would need to learn the Application Programming Interface (API) for your specific mobile operating system.

I have found that the official API tutorials are harder to follow than unofficial ones from sites like w3schools.com and tutorials-point.com. However, as manufacturers of mobile devices, especially Android, are known to deprecate, remove or change various features in different releases of their operating systems, official tutorials are the only 100% reliable sources of information. Otherwise, you may spend hours following instructions that have been written a few years ago and no longer work on the most recent release of the mobile OS.

Learning the entire API is not necessary. As it would take a very long time to do so, my recommendation is to go through the basics and then learn additional specific features as you need to implement them in your app.

The official Android tutorial is available here: https://developer.

android.com/guide

For the iOS tutorial,visit this site: https://developer.apple.com/

tutorials/app-dev-training

Cross-platform framework

Instead of specializing in developing mobile apps for a specific device type, you can use a cross-platfrom development framework.

10. What to Study to Become a Mobile App Developer 74

This way, your code will be written in one language. But then you can built a platform-specific app from it.

This approach has its pros and cons. The main benefit of using it is that you will not have to maintain multiple codebases. You can make updates to all platfrom-specific apps at the same time and release them at the same time. The benefit for an organization that uses this approach is that it doesn’t have to have two separate development teams, as all types of mobile apps are developed from the same codebase.

The disadvantage of this approach is that you will still have to ocasiaonlly apply device-specific code. If your app is relatively basic, it’s not a problem. But if your app relies on low-level interactions with the device drivers, then you will have to add so much device-sepcific code to it that it may not even make sense to use a cross-platform development platform.

The most popular platforms that allow you to develop mobile apps from the same codebase are Flutter, React Native, and .NET MAUI.

The tutorials for each can be found below.

The official Flutter tutorial: https://docs.flutter.dev/reference/

tutorials

The official React Native tutorial: https://reactnative.dev/docs/

tutorial

The official .NET MAUI tutorial: https://dotnet.microsoft.com/en-

us/learn/maui/first-app-tutorial/intro

Practice by developing your own

apps

These tutorials will give you the basics, but to truly master app development, you need to make your own apps. All manufacturers of mobile OS allow you to do so and it is quite easy to get started.

10. What to Study to Become a Mobile App Developer 75

If you are not sure what to do, start with the apps that would extend the functionality of your mobile device to something that you want it to do that it doesn’t do on its own already.

Your first app doesn’t need to be completely unique, but if it is of reasonable quality and free, people will download it. For example, my very first Android app, Pocket Interest Rate, has been downloaded by many users without any proper marketing.

Having your own apps published on any major app market and making them available for free is the only way to show off your skills to prospective employers if you don’t have any formal qualifications or experience related to app development. Also, this is much more exciting than simply following tutorials that will teach you how to make a very basic app that writes “Hello World” on the screen.

11. What to Study for

Roles in Cybersecurity

The word hacker does not necessarily have to have a negative connotation and not all hackers are cybercriminals. Generally, there are 3 types of hackers: black hats (those who do get involved in cybercrime), white hats (those who work on behalf of legitimate clients to defend them against cybercrime), and grey hats (a mixture of both).

Generally, regardless of what path a hacker would choose, whether it is to attack cybersystems or to defend them, the skillset that he or she would need would be the same. Performing a cyberattack is all about finding and exploiting security vulnerabilities while defending against cyberattacks involves actively finding and patching vulnerabilities before malicious black-hat attackers can find them.

If you are interested in becoming a hacker, this article will provide the list of the most basic technologies you can learn to get yourself started. We don’t endorse any illegal activities and any other malicious black-hat practices and we hope that you will use these skills to advance yourself in a career as a penetration tester or use them as an independent ethical hacker to participate in bug bounty programs.

Of course, how you chose to use these skills is entirely up to you.

However, you are fully responsible for any negative outcome if you are to use them maliciously.

All of the techniques listed below are the most fundamental types of hacking. As cybercrime is not new, the expectation is that the majority of organizations with online presence are aware of these techniques and are capable of protecting themselves against them.

11. What to Study for Roles in Cybersecurity 77

However, you will be surprised how often these days you will still be able to find a business that is vulnerable to at least one of these types of exploitation.

Learn some basics of web

development

The best hackers are good web developers. Although some knowledge of web development is required, you don’t need to know the full stack of web technologies to get started as a hacker. We have previously described how to obtain the most fundamental skills to get started as a web developer. However, as a bare minimum, you would need to learn HTML, JavaScript, and SQL to get yourself started as a hacker. Basic knowledge of TCP/IP and HTTP is also a must.

Learn how to use traffic-sniffing

tools

If you are remotely interested in cybersecurity, you have probably heard the advice about not entering any personal details on a web form that does not use encryption, especially if you are connected to a public Wi-Fi network. Traffic-sniffing software tools are the reason why. As the name suggests, these tools are capable of reading the full content of requests and responses sent and received by computers (or other digital devices) connected to the network.

Most of these tools were not intended as instruments of malicious hacking. The intended purpose of these tools is to perform network debugging by system administrators on enterprise networks.

However, the same functionality can be used to steal unencrypted personal data that travels through the network.

11. What to Study for Roles in Cybersecurity 78

The most noteworthy examples of such tools are Wireshark and Fiddler. The information on how to use these tools is beyond the scope of this article, but you can find detailed instructions on their official websites.

If you are connected to a public Wi-Fi network, it is possible to use one of these tools to capture all unencrypted traffic that moves between any connected computers and the router. You will be able to see the full content of the communication, including its full HTTP headers. Knowledge of HTTP and HTML will help you to understand this information.

The most basic way of defending against somebody using this tool maliciously is to ensure that your online communication is encrypted by Secure Socket Layer (SSL). When SSL is used, the web address in your browser will start with “HTTPS”. If this is the case, your traffic will look like a large blob of completely random characters to anyone who is using one of the network sniffing tools.

URL manipulation

URL, which stands for Unique Resource Identifier, is the official name of a web address that is entered into the address bar of your browser. Not only URL allows you to conveniently retrieve a web resource that you need without having to enter its IP address, but also, on badly-designed websites, it can be used to obtain some restricted information that never was intended for you.

Although this security vulnerability would indicate that the website owners have neglected some of the most basic security practices, this vulnerability is surprisingly common. For example, we have recently seen a web page that was used by a practicing solicitor firm as a web portal for their customers that was vulnerable to URL

manipulation.

URL manipulation relies on two concepts: query string parameters

11. What to Study for Roles in Cybersecurity 79

and routing. A query string is a collection of key-value pairs in the URL separated by an ampersand (the & symbol) that follows a question mark (?) character at the end of the URL.

In the example below, “account=123456&issue=001” is the query string. The parts separated by an ampersand are individual vari-ables. For each one of them, the text on the left of the equality character is a key and the combination of characters (in this case, numbers) to the right of the equality symbol is a value.

1

http://website.com?account=123456&issue=001

Now, let’s assume that this website is used by a solicitor firm.

The number that follows “account” would be a case number of an individual client. Therefore, if there are issues with how this website is designed or how this web address is distributed, changing the account number in the URL can potentially give you access to someone else’s personal information.

Routing is a different way of placing entity-identifying information into the URL. The example below shows how to place the same user-identifiable information into the core part of the URL.

1

http://website.com/123456/001

The principles of URL manipulation are the same as they are with the query strings, but it is the core part of the URL that is manipulated.

Websites that use routed entity identifiers are much more likely to be secure than the ones that use query strings for this purpose, as the server-side technologies that allow URLs to be constructed in such a way, such as ASP.NET Core, tend to be very modern, therefore they tend to heavily enforce best security practices.

11. What to Study for Roles in Cybersecurity 80

Cross-site scripting

Cross-site scripting is a technique that allows you to post executable browser code into forms on websites. To become familiar with this technique, you must have a good knowledge of HTML and JavaScript.

The technique works as follows. Imagine that you have a web page that contains a search box. In HTML, it will look something similar to this:

1

<input value="" />

For example, you may want to search for articles that contain the word “longbow”. This is how the HTML representation of the search box changes when you do this:

1

<input value="longbow" />

In a badly-designed web form where the developers weren’t aware of the dangers of cross-site scripting, you would be able to type a text that would modify the HTML of the web page. For example, you can do so by typing the following into the box: 1

" onclick=" javascript:alert('cross-site scripting');"

This will change the HTML to the following when the page reloads after re-submission of the form:

1

< input value="" onclick="javascript:alert('cross-site scr\ 2

ipting');" />

This particular executable code will cause a pop-up with a “cross-site scripting” message to appear on the page every time you click on the search box.

11. What to Study for Roles in Cybersecurity 81

Of course, this particular example is harmless. However, a successful entry of the following code indicates that the website is vulnerable to cross-site scripting and it is possible to insert something much more malicious into it.

SQL injections

Variations of Structured Query Language (SQL) are used by a variety of popular database engines to retrieve and manipulate the data and to alter the structure of the database itself. Any web application that accepts data input is very likely to use a database with SQL in the back end.

SQL is easy to learn, but difficult to master. The syntax is very close to written English; however, if you know the inner workings of database engines well, it is possible to construct very complex queries. The example below retrieves all records contained in a table called “users”

1

select * from users

SQL injection attack is similar to cross-site scripting, but instead of browser code, it involves inputting executable SQL into text boxes.

For example, imagine a log-in form with two fields where one field accepts an input of the username and the second field accepts the password.

Let’s assume that there is a user with the username of ABC and the password 123. Once the form is submitted, the server-side code may use the following SQL to retrieve the right data: 1

select * from users where username = 'ABC' and password =\ 2

'123'

11. What to Study for Roles in Cybersecurity 82

As a user, you have no direct access to this SQL statement. However, if you only know the username and there is a SQL injection vulnerability, you may be able to retrieve user-specific data by entering the following into the username box:

1

ABC' and 1 = 1 --

Double-dash is the standard syntax for in-code comments and anything after it will be ignored. Therefore, the following SQL

syntax will be generated with the executable part highlighted in yellow:

1

select * from users where username = 'ABC' and 1 = 1 -- a\ 2

nd password = "

As SQL can be used to alter the structure of the database, this is a type of attack that can cause a high degree of damage, especially if the database isn’t properly backed up. Because of this, it is rare to find a professional website that has this vulnerability. Nonetheless, every ethical hacker needs to know how to perform an SQL

injection attack to be able to protect the assets against one.

Don’t neglect social engineering

All of the hacking methods described so far are technological. However, most of the successful breaches are made via psychological rather than technological exploitation. This exploitation is known as social engineering. As the name suggests, this is a method of deception to get people to perform the desired action on your behalf.

Those who are familiar with the term often associate it with bogus emails from banks asking for your personal details and fake solicitors telling you about the death of your rich relative who left a

11. What to Study for Roles in Cybersecurity 83

large sum of unclaimed inheritance. However, it can be much more sophisticated than that and doesn’t necessarily involve emails.

A notorious ethical hacker, Jamie Woodruff, for example, found out that a particular organization expected a pizza delivery on a particular day of the week. Because of this, the security guards wouldn’t check the pass of the delivery driver.

Armed with this knowledge, he successfully obtained a job at the pizza company, infiltrated the building, and, once inside, was able to gain access to the main server room.

Where to go from here

The above techniques are only the basics that, we believe, every ethical hacker should become proficient in. Of course, hacking is much more vast than that. For example, Distributed Denial of Service (DDoS) is a well-known and popular type of cyberattack that is capable of taking websites down by flooding them with more requests than the servers can handle. DDoS, however, is something that is practically impossible to perform legally without owning a server farm.

Also, many low-level hacking techniques are not suitable for a novice. If you are, however, interested in such techniques and would be willing to put a lot of effort into becoming a true hacker, Hacking: The Art of Exploitation by Jon Erickson is the book that we would recommend. Although it does talk about low-level programming of processor registers using C, which is a very complex subject, it does a better job of making it understandable than most books of this kind.

Have fun and remember that we will not accept any responsibility if you will decide to misuse any of the above techniques.

12. Developing the Right

Mindset: Why You Need

to Think Like a Hacker

Contrary to the popular belief, hackers are not always the people who breach website security and steal personal data. The word also refers to the software developers who build revolutionary software by putting together some components in such a way that nobody thought of before. This is why when you hear somebody referring to Mark Zuckerberg as a hacker, this doesn’t necessarily mean that he is out there to steal your data, as many assume. What it means in the context is that he has built the most successful social media network in the world from his university dorms.

What is more interesting, however, is that the hackers think in a particular way and this way of thinking is not only applicable to technology. It can be applied anywhere. Regardless of who you are and what you do, if you learn to think like a hacker, the quality of your life will improve significantly.

This mode of thinking is not exclusively present in those who are traditionally referred to as hackers. Some of the best scientists, artists and other creative individuals have it too. And, at its base, it is quite simple. It is all about thinking out of the box and not accepting the status quo.

This is the core skill that needs to be developed before anything else if one aspires to become a hacker or learn to think like one.

This way of thinking is what allows hackers to use various things for something other than their intended purpose. The rest of the equation, the specialist skills, are much easier to learn.

12. Developing the Right Mindset: Why You Need to Think Like a Hacker 85

The convention exploitation of

security

The most common way of exploiting security holes in software is to use various accessible components of the said software for something other than what these components were intended for.

For example, a very common way of exploiting web applications is to type text into various text boxes in such a way that it becomes an executable code. This is how, for example, cross-site scripting and SQL Injection work.

Hackers, both cyber criminals and the ones of the white-hat variety keep software developers on their toes. Now, you don’t only have to add all the input controls to your UI as prescribed by requirements, but you also need to think of all the ways your forms may be misused.

Of course, nobody ever intends to build a form that can directly accept the query language that will run in your database. However, if you fail to consider the possibility of someone trying to do it before you build the software, this is exactly what some hackers will do one day. The consequences of such malicious action may be catastrophic.

This is why to be a good programmer, you need to think like a hacker. Yes, you can learn how to use various advanced technologies effectively. This will allow you to build software that satisfies all of the requirements given to you by project managers and business analysts. And those people who are usually much less tech-savvy than programmers will enthusiastically sign such software off. However, unless you can think of any non-standard ways your software can be used, it will only be a matter of time before somebody will use it as a tool of cybercrime.

There are also some much more benign ways of bypassing various checks on websites and making life more convenient for oneself at

12. Developing the Right Mindset: Why You Need to Think Like a Hacker 86

the expense of the website’s owner’s revenue. For example, there are online publications that allow you to read several articles for free before you have to apply for a paid subscription.

Something as simple as clearing your browser’s cookies often gives you unlimited access to all of the content. This action is not criminal.

However, the developers of the websites who overlooked this are now responsible for the loss of some revenue by the publishing company.

This is how revolutionary

technologies are built

Although the word “hacker” is often used to describe cyber criminals, this is not what this word originally meant. For a long time, the word for a cybercriminal was “cracker”. Hacker, on the other hand, was somebody who took some existing technology, did something unusual with it, and got some amazing results. This is how most revolutionary technologies are built, so it is safe to say that hackers are largely responsible for technological progress.

Bill Gates bought a widely unknown operating system, QDOS, from a small software house and, after making some changes to it, he released it as MS-DOS, which quickly became one of the most widely used operating systems at the time.

Elon Musk and his team of engineers have combined several conventional technologies in a way it has never been done before and this is how they have managed to come up with the world’s first electric car that looks like a car and not a golf cart.

In the world of software development, one of the most used technologies of today was born from the process of hacking in the original sense of the word. Traditionally, JavaScript was only used in browsers. However, as a huge ecosystem of reusable JavaScript

12. Developing the Right Mindset: Why You Need to Think Like a Hacker 87

components was developed over the years, somebody came up with the idea of enabling JavaScript to be used elsewhere. This is how Node.js was born.

While initially dismissed as a stupid way of using JavaScript, Node.js has become one of the most widely used technologies in web development. Its main library of reusable components, NPM, is now the biggest repository of its kind. Node.js has now entered niches beyond web development and you can even write desktop applications in it.

What made Node.js so popular is a significantly simplified way of becoming a full-stack web developer. If in the past, you had a steep learning curve in front of you, having to learn entirely different languages for each layer of the application stack, with Node.js, you don’t. In the MEAN stack, which stands for MongoDB, Express.js, Angular and Node.js, it’s JavaScript all the way through.

Hack your career like a pro

The key point that defines a hacker is not that he is good with technology, but that he thinks outside of the box and ignores the status quo. This is why there is a term “life hack”, which relies on a similar mode of thinking that traditional hackers use, but applies it to a wider context of life.

For example, the conventional way of becoming a software developer is to complete a degree in Computer Science. However, if you start asking questions about why it has to be this way, you will find a much easier, unconventional route.

Why exactly do you need a computer science degree? Because it demonstrates that you know a thing or two about computers. If that’s all it is, how can you demonstrate your skills in a different way that is easier and cheaper? Well, there is nothing that stops you from learning how to program in your own spare time and

12. Developing the Right Mindset: Why You Need to Think Like a Hacker 88

building a website, a portfolio of repositories on GitHub, or some mobile apps.

Congratulations! You have now made yourself desirable to potential employers in the software industry and have completely bypassed the degree stage.

A similar principle applies to salary negotiations. Everybody wants to get paid as much as possible and the accepted convention is that you work in one job, do your job well and wait for your superiors to notice your efforts and get you promoted. Or you can look at the whole employment thing from a free market perspective and treat the process of choosing your job no different from the process of buying a loaf of bread in a supermarket.

If this is how you see the job market, there is nothing that stops you from simply changing your employer for the one that pays you better and treats you better in other ways if your current one doesn’t fully satisfy you.

According to the status quo, you rely on your employer for your professional training. Therefore, your professional growth is usually limited by what your employer thinks your training requirements are. However, if you take a step back and think about it, you will see that there is nothing that stops you from building some advanced professional skills in your own spare time.

If your professional development in a given employment is restricted, this is probably done so your superiors don’t have to promote you. However, if you take the matter into your own hands, you can make yourself promotable. Now, you can either try to negotiate at your current place of work or just go somewhere else.

You have the leverage.

12. Developing the Right Mindset: Why You Need to Think Like a Hacker 89

Life hacks help with much more

than just the career

All of the examples from the previous section are good life hacks that apply to your career. However, some other ones will improve your wider life. One such thing is a principle known as “The Law of Attraction”.

The proponents of this principle believe that your external reality is a reflection of your dominant mode of thinking. Essentially, any thought about what reality is like sends a signal to the universe and the universe responds by making your reality match this thought.

Whether this is true or not is debatable. The modern scientific method is limited in scope and can neither prove nor disprove it.

However, there is one aspect of it that works in a way that is confirmed by science. This phenomenon is known as cognitive bias.

More often than not, you will hear people telling you that you need to be aware of your cognitive biases and try your best to eliminate them. However, anyone who will take a step back and carefully think about it will soon realize that, instead of eliminating cognitive biases, you can get them to serve you.

Why would you want to eliminate a particular cognitive bias?

Because it prevents you from having an objective view of the world.

However, the follow-up questions that come from this are why should you want to have a completely objective view of the world, and whether it is even possible to achieve it?

It is indeed impossible to see all things from a completely objective perspective. The reality is way too complex and it is impossible to know everything. And neither it is possible to eliminate all of our cognitive biases.

This is why each of us holds a model of the world in our head that abstracts away certain complexities of reality. And it is not the

12. Developing the Right Mindset: Why You Need to Think Like a Hacker 90

model that represents the most accurate view of the world that is the best.

Your model of reality is better than someone else’s if it serves you better than theirs serves them. Having an exceptionally accurate model of reality does nothing other than feed your ego by making you know that you are more knowledgeable than other people.

This is why it sometimes pays to take advantage of your cognitive biases instead of eliminating them. And this is where the Law of Attraction comes into play as a great life hack.

Things are diverse in any economically developed society with a reasonable degree of economic freedom. There is poverty as well as wealth. Fitness is popular, even though there is also an obesity epidemic. Some places are run down, but there are also well-developed ones.

The conscious practice of the Law of Attraction will create some cognitive biases by making you focus on those aspects of reality that you prefer and ignore the ones that you don’t. And if you will keep telling yourself that there are plenty of opportunities around you to have the life you want, you will suddenly start seeing all the different ways to get there. Likewise, you will stop seeing the reasons why you may fail.

Both the good and the bad have always existed in the objective reality. All that happened is that your focus has shifted, so you are only focusing on the things that serve you.

Whether the universe responds to your innermost thoughts, is up to you to conclude. However, believing so will certainly help.

This is the belief that allowed Conor McGregor to get from abject poverty to being one of the best-paid MMA fighters. If you truly believe that you will attract anything you focus on, it will make you put in all of the required work to achieve this.

Working hard is not pleasant by any means (although it is partly due to the perception of work that most people got by being socially

12. Developing the Right Mindset: Why You Need to Think Like a Hacker 91

conditioned to think this way). In itself, hard work is not what people want. They mainly do it because they believe that it will lead to something much more desirable. This is why believing that you can get anything you want, regardless of your current circumstances, will motivate you to do any necessary action to get there.

Sometimes people who don’t believe that they can achieve what they want also work hard. However, more often than not, working hard while having this negative attitude yields no positive results and only makes people more resentful.

After all, if you are in this state, you have already programmed your subconscious mind to sabotage your efforts, even when you are doing your best consciously. So, at the end of the day, you aren’t working hard to achieve a great life for yourself, but rather to prove to yourself and the world that it really cannot be done.

Of course, there are situations where having a cognitive bias related to a particular issue is disadvantageous, but they are probably not as prevalent as some people want you to believe. For example, when your career depends on an objective understanding of a particular area, this is where you should eliminate all cognitive biases related to that area. Another example of a situation where a particular cognitive bias should be eliminated is when your view of the world is hurting yourself or the others around you.

Wrapping up

The way the hackers think can be perfectly summarised in the following statement:

What are the best tools I can use to achieve my intended goal, regardless of the existing rules and conventions?

This doesn’t apply only to IT. You can vastly improve your quality of life by asking this question concerning anything in your life.

13. Things to Watch out

for When Working With

Recruiters

Recruitment consultants are very popular in the tech industry.

They can be extremely useful to both employers and candidates.

The former can benefit by filling an open position very efficiently with the total cost pretty much limited to the agency fees. To the latter, recruitment agencies are even more beneficial, as they allow job seekers to find suitable positions without dedicating too much effort to job search. Indeed, these days it is possible to find a good job by simply registering your resume on a job board site, ticking the box to make the resume searchable, and waiting for the barrage of calls and emails from recruiters.

However, not everything about the recruitment industry is nice and rosy. As with any targeted sales position where a large proportion of earnings comes from commissions, the position of recruitment consultant sometimes attracts individuals who are willing to take not-so-ethical shortcuts to maximize their earnings. Likewise, there are certain rules that the industry operates by that people should be aware of. Below are 10 key things that you should know as a job seeker, so you can avoid any unpleasant surprises.

1. Some consultants are not afraid

to lie when it’s profitable

Although it is probably only a minority of recruitment consultants that are willing to lie in order to sell you a job, it is a significant

13. Things to Watch out for When Working With Recruiters 93

minority. Therefore, if you actively work with many recruiters, the chance of encountering dishonest ones is high.

Why would the recruiters lie? The most common situation when it happens is when a particular position is fairly close to the job-seeker’s specifications, but not quite there. For example, a recruiter knows in advance that the salary budget is 10% lower than what the job seeker is looking to earn, but tells the job seeker that the amount on offer fully meets or even exceeds the expectation.

Only after successfully passing the final interview will the candidate find out what is the real salary on offer. And the recruiters base such behavior on the assumption that the candidate at that point has already put so much effort into the application process, that he or she would be unlikely to say no.

A good practice to prevent this from happening to you is to confirm the key points of the offer directly with the prospective employer as soon as you will get a chance to do so. If there is a discrepancy between what you have been told by the recruiter and what the recruiting manager tells you, it is better to move on than to waste your time and regret it later.

2. Beware of the bait vacancies

Bait vacancies are the adverts for jobs that look attractive, but don’t actually exist. They are placed by unethical recruiters as a method of obtaining a large number of resumes within a short period of time.

Although not always the case, the main indicators of bait vacancies are that they are easy to find and that they offer significantly bigger salaries than similar positions. So, when a job posting is located somewhere toward the top of Google results and the salary offered is double compared to what you expect it to be for such a position, it is probably not worth applying for that position. The application

13. Things to Watch out for When Working With Recruiters 94

probably will not result in a job, but you are almost guaranteed to receive a lot of spam afterward.

3. When a recruiter says that your

asking salary is unrealistically

higher than the market rate, it is

not always the case

Sometimes it simply means that this particular recruiter doesn’t have anything in the pipeline that pays that much. Although it is usually in recruiters’ interest to find you a job that pays as much as possible, a lower commission is better than no commission.

To find out whether your asking salary (or a day rate if you are an independent contractor) is reasonable, do your research by checking sites like payscale.com and searching online for similar vacancies.

If the pay on offer is shown as higher on several other similar job postings, then you can be confident that what this particular recruiter offers is actually below the market rate. Therefore the position is probably not worth applying for.

4. When recruiters can negotiate

higher pay, they almost certainly

will

This comes from the fact that, in most cases, the recruiter’s commission is proportionate to the candidate’s salary. Therefore getting you bigger pay is in the recruiter’s interest.

However, sometimes there are situations when negotiating a high salary is simply not possible. For example, when the recruiting

13. Things to Watch out for When Working With Recruiters 95

company has strict salary bands, there is no room to negotiate. This is when point number 3 applies.

5. This does not apply to internal

recruiters

The commission structure of internal recruiters who are employed directly by the recruiting company is different from the ones who work for independent agencies. Therefore it is not uncommon for them to try to negotiate the salary down.

When you have been contacted by an internal recruiter, it would be a good practice to ask the interviewing manager if he or she is happy with your asking salary, so you can use it later in negotiation with the recruiter if you have to.

6. When you have applied for a

position directly, don’t let the

recruiter know

When a recruiter contacts you to offer a position that you have already applied for, they will almost certainly ask you whether you have applied directly. Unfortunately, quite often it is not a mere polite interest that prompts them to ask the question.

In many cases, the recruiter will simply update their internal records. However, sometimes they overstep an ethical boundary by contacting the company and telling them that you have actually found this position with their help, so they can receive the fee from the company and potentially sabotage your application. According to many web forums, this happens fairly often.

13. Things to Watch out for When Working With Recruiters 96

7. Don’t tell the details of the other

positions you have applied for

This point is related to the previous one. You can (and probably should) tell the recruiters that you have applied for other positions.

However, you should never mention the names and locations of the companies and especially the contact details of the recruiting managers. If your recruiter pushes you to provide this information (e.g. by telling you that the client demands it), it is a massive red flag. It is best not to do any business with this particular recruiter.

On some occasions, nothing bad will happen if you share more information than necessary. However, once recruitment consultants know that a particular company is hiring, they almost certainly will try to get their own candidates in, who may out-compete you for the position.

However, people on various forums have described a more sinister thing that may happen. In some rare and extreme cases, the recruiters have been sneakily getting in touch with the recruiting managers of the company that the candidate has originally applied to work at and telling them that the candidate no longer wants to be considered for the role. This is done so the candidate can become available for one of the roles that the recruiter is working on and there is less chance that the candidate will be taken off the market.

8. Recruiters can sue you for making

direct applications on the back of

theirs

In the recruitment industry, it is not always the recruitment consultants that act unethically. Sometimes candidates do it too.

13. Things to Watch out for When Working With Recruiters 97

One of the most common unethical behaviors of the candidates is finding out about a vacancy from a recruiter, saying no to it, and then getting in touch with the company to apply directly. However, the candidates should be aware that such behavior is not only unethical but may also land them in serious trouble.

There are various laws that protect recruitment agencies from such behavior and usually, recruiters have access to a strong legal team.

And this is also the reason why the recruiters can get away with sabotaging your application if it is made known to them that you have applied directly, as outlined in point 6.

9. Don’t provide references until you

are happy to accept the offer

Employment references are only needed right at the end of the application process and there is also a risk involved with providing them too early. If you are planning to leave your current job, you probably don’t want your manager to know until you have accepted the other offer and are fully confident about resigning. However, by sharing your references too early, you are giving either the recruiter or the prospective employer the ability to contact the referees early, which your superiors probably wouldn’t be too happy about.

This actually happened to me personally. I was pretty much forced to resign from one of my previous jobs, as the relationships with my managers were all but ruined. Luckily, it turned out well in the end and the other company came back with a solid offer. However, should the offer have fallen through, I would not have been in the most pleasant situation.

13. Things to Watch out for When Working With Recruiters 98

10. Making your resume searchable

online is both a help and a hindrance

Despite all the negative points, recruitment agencies are certainly worth the effort. And they are extremely useful to those skilled people whose professions are in high demand, like software developers.

If you are one of such professionals, all you have to do these days is post your resume on several job search sites, make it searchable, and wait for recruiters to call you.

Be warned, however. As the recruitment industry is very competitive, you will probably receive quite a lot of calls. Therefore it is always worth asking whether a recruiter who calls to simply “check your current situation” actually has a job on offer. This will weed out the time wasters.

And don’t forget to hide your resume once you found the job you were looking for. Otherwise, the calls will never stop.

Another negative side-effect is that you will probably carry on receiving occasional cold calls and spam emails, but those are things you can almost certainly live with.

14. Epilogue and Where

to Go From Here

You have now reached the end of the book. Congratulations!

You should now be fully equipped to get your first job as a software developer and start a fulfilling career. But reading a book is not enough. The rest is now up to you.

To be a successful software developer, you need to constantly practice and learn. It’s not a kind of profession where you can learn things once and then stop. Once you’ve mastered the basic syntax of one or two programming languages, you need to learn the industry standards and best practices. It’s not enough to have the tool. You also need to know how to use it properly. And this is what best practices are for.

You will also need to keep constantly up to date with new technologies. In the software development industry, things evolve at a rapid pace. Therefore it’s safe to assume that the technologies you are using now will be obsolete in a couple of years.

To make it easier for you to figure out what to learn next, I have compiled a list of the best books every software developer should read. It is available via the following address:

https://scientificprogrammer.net/recommended-books-for-coders/

Also, I wrote a book that would teach you how to develop good software development habits and eliminate procrastination. The book is called “The battle hardened developer”. Many people found it helpful and it was featured as the number one bestseller on Amazon. It can be found via the following address:

https://scientificprogrammer.net/2022/09/05/the-battle-hardened-

14. Epilogue and Where to Go From Here

100

developer/

If you want to get in touch with me regarding the content of the book, you can contact me via either Twitter or LinkedIn. Perhaps, there is additional content that you want me to cover in more detail in the next edition of the book. Any feedback is welcome. And this is how you can get in touch:

Twitter: https://twitter.com/FSazanavets

LinkedIn: https://www.linkedin.com/in/fiodar-sazanavets/

Email: info@scientificprogrammer.com

Also, if you found this book useful, please write a review about it on the site you bought it from. This will help me as the author and will help the algorithms to show this book to more people who might need help with learning design patterns.

And, of course, if you liked this book, spread the word. Let your friends know about it. This way, you will help more people to become better software developers.

All the best and good luck!

Document Outline

	Table of Contents

	1. Becoming a Software Developer is Easier Than You Think

	How I became a software developer

	How can you become a software developer too

	The goal of this book

	A word of caution

	2. Why Software Developers are Paid Well

	Three factors that determine your salary

	Software is needed

	Software geeks are usually good at what they do

	Software developers can't be easily replaced

	What if your salary is low despite these factors?

	3. The Dark Side of Software Development Career

	1. You'll often be working in total silence

	2. You'll be working in a loud and distracting environment

	3. You need to have a good ability to concentrate

	4. A lot of work is repetitive and boring

	5. You will be working with annoyingly ``religious'' co-workers

	6. You will need to be able to take criticism well

	7. You will have to constantly keep updating your knowledge

	8. You will need to have good negotiation skills to earn well

	9. You may be inconvenienced by toxic salespeople

	10. If you are after a really big buck, forget about personal time

	4. Pragmatic Reasons to Start a Software Development Career

	1. Salaries are greater than the market average

	2. Regular and significant pay rises

	3. You can be fully self-taught

	4. The demand for software developers is higher than ever

	5. The demand for software developers is unlikely to ever go down

	6. There are many programming niches to choose from

	7. Changing jobs frequently is widely accepted as a norm

	8. You can work remotely

	9. Many employers offer flexible hours

	10. If a prolonged lockdown ever happens, you are less likely to lose your job

	5. What Programming Language to Learn First

	C++ or Python?

	There is no empirical data that says C++ is better

	My own experience with C++ and other languages

	The real reason why people tell you to learn C++ first

	Why Python is much better for a beginner

	Wrapping up

	6. Why You Don't Need Maths to Become a Programmer

	Some niche programming fields do require advanced maths

	Even low-level computing hardware is based on logic rather than maths

	Wrapping up

	7. Why Practicing Algorithmic Problems Will Enhance Your Programming Career

	Knowledge of algorithms isn't always required

	1. Most algorithms are already implemented by core libraries

	2. Some niches don't even have problems solvable by algorithms

	What is so useful about algorithms

	Big tech would always asses your knowledge of algorithms

	Wrapping up

	8. How to Get Your First Job as a Self-Taught Programmer

	Common misconceptions about self-taught developers

	The most reliable method of getting your first programming job

	My own story recap

	Similar stories of other software developers

	Wrapping up

	9. What to Study to Become a Web Developer

	Front-end technologies

	Database languages

	Server-side languages and frameworks

	Which server-side technology to pick

	10. What to Study to Become a Mobile App Developer

	XML

	Back-end programming language

	Platform-specific API

	Cross-platform framework

	Practice by developing your own apps

	11. What to Study for Roles in Cybersecurity

	Learn some basics of web development

	Learn how to use traffic-sniffing tools

	URL manipulation

	Cross-site scripting

	SQL injections

	Don't neglect social engineering

	Where to go from here

	12. Developing the Right Mindset: Why You Need to Think Like a Hacker

	The convention exploitation of security

	This is how revolutionary technologies are built

	Hack your career like a pro

	Life hacks help with much more than just the career

	Wrapping up

	13. Things to Watch out for When Working With Recruiters

	1. Some consultants are not afraid to lie when it's profitable

	2. Beware of the bait vacancies

	3. When a recruiter says that your asking salary is unrealistically higher than the market rate, it is not always the case

	4. When recruiters can negotiate higher pay, they almost certainly will

	5. This does not apply to internal recruiters

	6. When you have applied for a position directly, don't let the recruiter know

	7. Don't tell the details of the other positions you have applied for

	8. Recruiters can sue you for making direct applications on the back of theirs

	9. Don't provide references until you are happy to accept the offer

	10. Making your resume searchable online is both a help and a hindrance

	14. Epilogue and Where to Go From Here

cover_image.jpg
The easiest way
to become a
software
developer

Fiodar Sazanavets

index-1_1.jpg
The easiest way to become
a software developer

How to get your first programming job,
even 1f you are a self-taught coder

Fiodar Sazanavets

index-2_1.png

