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Preface 
 

 

 

 

 

 

 

Wind Energy is one of the oldest forms of energy from a natural source. 

Today, wind energy is one of the most mature renewable energy technologies 

and forms a critical stabilizing pillar for the entire portfolio of renewable 

energy sources. Wind energy supports a strong domestic supply chain. Wind 

has the potential to support over 600,000 jobs in manufacturing, installation, 

maintenance, and supporting services by 2050. Wind is becoming increasingly 

important for electricity generation — and turbines are getting bigger, taller 

and more efficient. About 7% of the world's electricity already comes from 

wind power.  

This book provides fundamental concepts of wind energy systems and 

discusses the design issues for the future as well the challenges in wind energy 

research. The future of wind energy relies on Artificial Intelligence, Cloud 

Computing, IoT, Block chain and Big data analytics for Wind energy 

generation and monitoring. Energy optimizations are also very much needed. 

Recently, electricity generation using wind power has received much attention 

all over the world. Wind energy is a free, renewable resource, so no matter 

how much it is used today there will still be the same supply in the future.  

Chapter 1 discusses with the economic integration of wind energy  

in the Economic Community of West African States (ECOWAS) between 

2010-2020. Chapter 2 provides risk analysis based selection of the best supply 

chain using the Gray approach for wind energy system. Chapter 3 depicts a 

review of surface hardness improvement techniques for wind turbine gears. 

Chapter 4 provides a comparison of Artificial Neural Network techniques 

in the prediction of wind speed using combinations of metrological variables. 

Chapter 5 presents a machine learning approach for thermodynamic 

analysis in wind turbines with optimization. 

Chapter 6 elicits the design, modelling and analysis of wind turbine gear 

and modified wind turbine blades. 
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Finally, this book covers hardware as well software analysis of the 

generation of wind energy and status of wind energy with modification of 

wind turbine also. 
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Chapter 1 
 

The Economic Integration of Wind Energy:  

An Analysis of the ECOWAS Sub-Region 
 

 

David Alemzero* and Sun Huaping 
School of Economics and Finance, Jiangsu University Zhenjiang, Jiangsu, China 

 

 

Abstract 
 

This study evaluates the economic integration of wind energy in the 

Economic Community of West African States (ECOWAS) between 2010 

and 2020. Due to the theoretical and economic potential of the sub-

regions, wind energy is the only energy source that can cost-effectively 

meet the energy needs of the sub-regions. For this reason, the study uses 

data from the World Bank Development Indicators using Panel Vector 

Auto Regression to analyze the determinants underpinning the economic 

integration of wind energy. The Panel VAR estimate shows a significant 

direct link between fossil fuel consumption and private sector investment 

in renewable energy. This implies that the sub-region consumes a 

significant amount of fossil fuels, hence the need to increase clean energy 

investments to move the sub-region towards a low-carbon future. 

Another significant lag variable is the power consumption per capita in 

the sub-region. Per capita, electricity consumption in the sub-region is 

woefully insufficient. Therefore, wind energy can ensure access via the 

development of small community wind farms where the national power 

grid cannot be extended to. When assessing the economic justification of 

wind integration, the LCOE for wind power is 2.98 cents per kilowatt for 

the lowest cost scenario, compared to nuclear power’s 2.26 per kilowatt 

hour. The FEVD shows that 13.4% of renewable energy investments are 

self-explanatory within the first and last periods. The FEVD for wind 

energy illustrates the short-term variance of 16.4 percent and increases to 

                                                           
* Corresponding Author’s Email: awelingazure@gmail.com. 
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51.1 percent in the following years after system shocks. This implies that 

the expansion of wind capacity in the sub-region is expected to increase 

in the long term. This serves as a blueprint for integrating wind energy 

into the sub-region. 

 

Keywords: wind energy, ECOWAS, PVARs LCOE, economic integration, 

JEL classification: Q4, Q42, Q4 

 

 

Introduction 

 

Wind energy integration can ensure energy security in the Economic 

Community of West African States (ECOWAS). The ECOWAS sub-region 

has made more progress in access to electricity than any sub-region in Africa, 

but access is still constrained and presents development challenges. The West 

African Power Pool (WAPP) is the sub-regional body responsible for 

providing the sub-region’s electricity needs; However, it currently only covers 

about 30% of the electricity needs of the sub-regions (Goldwind, 2013). The 

subregion includes 15 countries with a population of approximately 375 

million people with over 54 percent access to the national electricity grid 

(ECREEE, 2018.). The total primary energy supply within the sub-region was 

8885 per joule in 2018, with biofuels and waste accounting for 70 percent of 

the supply (IRENA, 2022). Overall, wind energy generated one percent of the 

75 terawatts of electricity delivered in 2018 (IRENA, 2022). Oil and natural 

gas dominate the primary supply sources with twenty percent and eight point 

eight respectively (IRENA, 2022). In addition, some countries have per capita 

electricity consumption below 40% and national electricity access below 10%. 

Access to modern cooking solutions is also below one percent in various 

economies within the sub-region. The solution lies in the economic integration 

of wind energy, which can create an energy economy while reducing energy 

poverty and ensuring energy security (Knobloch et al., 2020; Millstein et al., 

2022; Role et al., 2022). Energy presents financial and technical challenges. 

The pace of energy system transformation is underpinned by many factors 

such as the cost of research and development and the deployment of renewable 

energy and decentralized technologies. As integration of new technologies 

into energy systems increases, there is a need to minimize losses and optimize 

capital investments due to system constraints. 

To back up this claim, the study (ECREEE 2018: De La Pea et al., 2022, 

2022; Pan & Dong, 2022) discovered that the ECOWAS sub-region lost 36% 
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of the electricity generated in 2018, totaling 26,207 GWh. This shows the high 

transmission and distribution losses from the member countries. According to 

Ruth and Kroposki (2014), the world needs about $1.5-2 trillion annually to 

fund transmission and distribution networks, with over two-thirds of that 

needed for the transmission and distribution systems to transform energy 

systems by 2030. Therefore, the motivation of this study is to assess the 

economic integration of wind energy in the ECOWAS sub-region in order to 

achieve energy security and universalization, thereby achieving SDG seven by 

2030. The African Development Bank predicts that Africa will need $130 

billion to $170 billion annually to build infrastructure, but there is a funding 

gap of $68 billion to $108 billion (AfDB, 2020). Additionally, between 2000 

and 2009, West Africa received $5 billion in investments in renewable energy. 

Between 2000 and 2020, Africa attracted $60 billion in global RES 

investments, with West Africa receiving 7% of that total (IRENA, 2022). The 

analysis shows that West Africa has received significant investments in clean 

energy. Nevertheless, these investments have not boosted wind energy inflows 

in the sub-region. The devastating effects of climate change have made wind 

energy integration even more urgent and compelling for the ECOWAS sub-

region. According to the study (Baarsch et al., 2020), SSA will lose about 15% 

of its GDP per capita by 2030 due to climate change. 

The ECOWAS sub-region has a fairly good wind speed of 6 m/s at an 

altitude of 100 meters, enabling it to generate utility-scale wind farms and 

ensure sustainable consumption. Decentralized renewable energy sources 

provided electricity to approximately 2.5 percent of rural residents (ECREEE 

2018). Due to the technical potential of wind energy and falling costs, it is now 

economical for the ECOWAS sub-region to use wind energy. This point of 

view is confirmed as nearly thirty nations have achieved grid parity for solar 

and other renewable electricity due to economies of scale in deployment (D. 

Alemzero et al., 2021; M. Liu et al., 2022; Moreno-Munoz, 2019). 

Additionally, electricity tariffs are projected to double by 2035, and this makes 

an even stronger case for integrating cheaper wind energy into the ECOWAS 

subregion, which has some of the highest electricity tariffs in the world (D. 

Alemzero et al., 2021; Moreno-Munoz, 2019.; Sun et al., 2020b). Likewise, 

subsidies for wind and renewable energy are gaining importance in several 

markets in the ECOWAS subregion due to falling costs and political 

incentives (Alemzero et al., 2021). The backbone of integrating wind energy 

into the national grid is battery storage due to the variable nature of wind 

energy. Nonetheless, the cost of batteries has dropped by around 40% to 60%, 

which has led to growth in the energy storage market (Moreno-Munoz, 2017; 
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Pool, 2022). Similarly, studies predict that the global energy storage market 

(ESS) for a smart grid will increase to 73% by 2020 and beyond, supporting 

wind energy deployment in the region. The challenge of grid integration 

entails a variety of challenges; important among them is grid flexibility, 

balancing VRE sources such as wind to ensure power system reliability and 

reduce costs (Martinot 2016). 

Table 1, curated from the Goldwind study of the ECOWAS sub-region, 

shows that two of the 15 nations have fairly good to excellent wind speeds 

depending on the altitude measured. According to the study in Table 1, the 

wind resources of Ivory Coast and Guinea-Bissau are too small for investment 

(Goldwind, 2013). On the other hand, Liberia and Sierra Leone do not have 

the potential to generate electricity from wind resources. However, this does 

not mean that these countries cannot use wind energy since the potential of 

wind resources is not static but dynamic; it changes over time. With advances 

in technology, increasing the size of turbines with more swept area in certain 

locations, wind power could generate power for communities. In addition, an 

area with a wind speed of about 6 m/s or more meets the requirements for 

utility-scale wind investments, and locations with 5 m/s meet the requirements 

for small-scale or municipal wind investments (Grashof, 2019; J. Lee & Zhao, 

2021; Olatayo et al., 2018; Ramsi et al., 2020; Ivan, 2017; X. Yao et al., 2020). 

A mini-wind farm project is operating in Kenya, stimulating local economic 

development, eradicating poverty and boosting employment (Ivan, 2017). 

 

Table 1. Wind potential at best identified sites 

 
Country Average wind speed (m/s) Generation (MWh/y/MW) 

Benin 6.5 3006 

Burkina Faso 6.5 2999 

Gambia 6 2588 

Guinea 8 4051 

Guinea-Bissau 5 1717 

Ivory Coast 4.8 1565 

Liberia  -   - 

Mali 7.2 3531 

Niger 8 4051 

Nigeria 7.8 3933 

Senegal 6 2588 

Sierra Leone  -  - 

Togo 5.8 2451 

Source: Goldwind. 
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Methods and Data 

 

In this chapter, panel data from 2010-2020 for the ECOWAS subregion is used 

to empirically assess the economic integration of wind energy in the subregion 

to ensure energy security and sustainable consumption and boost economic 

growth. The study units were chosen based on data availability and the fact 

that they share similar characteristics in their economic development. These 

are 15 countries that make up the ECOWAS sub-region: Benin, Burkina Faso, 

Cabo Verde, Ivory Coast, Guinea, Guinea-Bissau, Gambia, Ghana, Senegal, 

Nigeria, Niger, Mali, Liberia, Sierra Leone, and Togo. In order to derive 

reliable estimation results, it makes sense to make a cross-sectional 

dependency of the variables. Some of the variables are not stationary and can 

lead to biased estimates. Therefore, in addition to the correlation matrix, the 

panel unit tests cross-sectionally extended Pesaran and Shin are deployed. The 

first-generation unit root tests do not encapsulate the impact of international 

shocks hitting countries, or global dependency due to cross-sectional 

relationships could affect the finite properties of the panel unit root test. The 

second-generation panel unit root tests were formulated to deal with this 

situation, to deal with this anomaly. According to (Das 2019), dealing with the 

cross-sectional dependency in the transient panel is quite challenging. He 

attributes this to the stochastic nature of the perturbation term, and the usual 

unit root measure of the t-statistic achieves finite distributions in the analysis. 

Therefore, different approaches within second-generation unit root analysis 

have been discussed. One is the set of constraints on the residual covariance 

matrix (Das, 2019). In this study, the (Pesaran, 2003) (Moon & Perron, 2004) 

test and the Bai and Ng (2004) (Das, 2019) tests are applied. 

 

 

Pesaran (2003) Test 

 

It is assumed that Pesaran formulated an easy-to-understand approach for 

estimating roots of unity in a cross-sectional dependency scenario alongside 

serially associated error. 

 

yt = ui + ∅i yit + uit   (1) 

 

From the equation (1) ui represents the deterministic term, and the 

stochastic disturbance is  
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uit = λi Ft + εit   (2) 

 

The common latent variable is serially unassociated with zero mean and 

constant variance and is said to be independently distributed among the two 

and alongside zero mean and variance. 

Bearing in mind models (1) and (2), the study derived the following 

equation (3). 

 

Δyit = ui + (ϕi − 1) yit − 1λi Ft + εit    (3) 

 

Hence the hypothesis to be evaluated is stated below: 

 

Ho=ϕi = 1, ∀i 

 

With the opposing one below: H1 = {

 

 
∅i<1,   i=1 ,2….,N1

∅i=1,i=N1,2…..N
 

Given in the model, the cross-sectional mean of yt and its past values are 

used as a proxy variable for the usual latent factor Ft. Pesaran’s unit root test 

(Im et al., 2003) is based on the adjacent Dicky-Fuller regression augmented 

test of the cross-sectional means of past value levels and first differences of 

each series. 

 

yit  =  a1i + a2i yit−1  + a3iy̅t−1 + α4i  yt̅ + eit   (4) 

 

From equation (7.4)  

 

yt̅ =
∑ yit

N
I=1

N
 and ∆yt̅ =

∑ ∆yit
N
I=1

N
  

 

Cross-section-specific augmentation The Dicky Fuller (CDAF) statistic is 

derived from the estimated coefficient of equation (7.4) for the cross-section 

unit. The asymptotic null distributions of the CADF statistics are alike and 

independent of the factor loadings. 

 

 

Variance Decomposition  

 

A variance decomposition is applied to approximate the amount of variance in 

the forecast error in projecting Xj,T+h as result of the structural shock of εit. 
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The h-step forecast errors alongside the orthogonal shocks, 

 

δh =  xt+h − IΨt = ∑ Φsεt + h − sh−1
s=0    (5) 

 

Concerning a specific variable xi the forecast error attains from: 

 

σih = xiT+hΙψt = ∑ θiIst + h − 1 + ⋯ + ∑ θiksεk, T + h − s 
h−1
s=0  

h−1
s=0  (6) 

 

Due to the fact that the structure terms are orthogonal, the variance of the 

stochastic term of the h-step prediction is: 

 

V(δih) = σεi
2 ∑ θils

2 + ⋯ . +σεk
2 ∑ θiks

2h−1
s=0

h−1
s=0    (7) 

 

As a result, the amount of variance attributable to shock εj is 

 

VDij(h) =
σεi

2 ∑ θils
2h−1

s=0

σεi
2 ∑ θils

2 +⋯.+σεk
2 ∑ θiks

2h−1
s=0

h−1
s=0

  

 

Hence, in a VAR that has K variables, there will be k2 VDij(h) Values.  

Next, the Panel Vector auto regression (PVAR) approach suggested 

(Neves et al., 2019; Lutz Kilian and Helmut Lütkepohl 2017) is ideal since the 

analysis handles potentially endogenous variables. Panel VARs usually arise 

in studies entailing different countries, but they can also be used in various 

sectors, firms, and plants. Thus, the suitability of this approach is because the 

study analyses the interaction of different variables concerning different 

countries within the ECOWAS sub-region. These variables are an investment 

in energy by the private sector; access to clean cooking solutions; percentage 

of the total population; rural access to electricity; percentage of the total 

population; Gross Domestic Product per capita; wind energy capacity; RES 

capacity; research and development (R&D); energy imports; GDP growth; 

electric power consumption per head; fossil fuel consumption; and 

transmission and distribution losses (T&D). This scenario makes it feasible to 

contribute an extra subscript to a variable. Thus, tth observation ith variable 

of country n  by Qnt. Here, i = 1, … . M and N n = 1, … . , N. Hence, utilizing 

the earlier notation, K = M. N. Let Qnt=(Q1nt … … … . QMnt ) be an M-

dimensional vector and represent by Qnt−1  and Qt−1 vectors of lags Qnt and 

all variables within the longitude individually. The model is formulated below, 

with a complete general covariance matrix ∑ u for the entire system of all N 
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countries, ∑ u is the covariance matrix of ut =(u1t
′  , … . uNt

′ ) ′. This 

longitudinal structure has three unique characteristics. To begin with, the lags 

are all endogenous variables that get into the model through unit i, explaining 

the dynamic interdependence among the variables. Next, is untoverall 

correlated among n . That is, static interdependence. Thirdly, the covariance, 

the intercept, and the slope of the shocks might be unit-specific. This explains 

the cross-section heterogeneity among the units. This makes the P-VARs 

applied in macroeconomic studies different from the ones applied in 

microeconomic research (Canova & Ciccarelli, 2014; Moreno-Munoz, 2017).  

 

Qnt = Vv + SnQt−1 + unt   (8) 

 

Levelized Cost of Energy (LCOE) Comparison of Wind Energy 

Including Nuclear 

Wind energy has experienced more cost reductions over the past five years 

than any other RE technology (Wiser et al., 2021). Regarding Africa, 

(Alemzero et al., 2021) calculated that the cost of wind energy fell by 30% 

from 2010 to 2019. The levelized cost of electricity is the total amount of 

energy generated in monetary terms over the lifetime of a facility. It measures 

the total cost of building and operating a facility over a period of time. It 

creates space for the comparison of different generations of technologies. 

Generation and production costs could be given below (Bebi et al., 2021; 

(IRENA), 2017; Sun et al., 2020). Below is a simplified concept of LCOE.The 

mathematical formulation is given below: 

 

LCOE = 
[∑  t=−1

n=−1 (
It

(1+1) t
)] foundation  +[∑  t=n−1

n=0 (
ft+O&Mt−Dt+Tt

(1+1) t
)] Production  

[∑  t=−1
n=−1 (

Gt
(1+1) t

)] Production

   (9) 

 

The discount rate of r is based on the costs available in a given country, 

considering the balance between equity and debt investments. The weighted 

average cost or discount is around 12% but varies by generation type. At the 

same time, several studies use 11% and 7% as the discount factor for the 

analysis of wind energy projects (Bebi et al., 2021). In the ECOWAS sub-

region, macroeconomic instability leads to high inflation, currency risk, and 

political risk. In addition, operating and maintenance costs are expressed in 

dollars as a percentage of the total investment. Wind turbines need 

maintenance to run efficiently, just like any other piece of equipment. This 

could typically account for a larger amount of the total annual cost, typically 
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around 20% to 25% of the LCOE cost (IRENA, 2020). The cost of wind 

energy fuel is zero. Thus, the topic of crude oil price fluctuations has no 

influence on the operation of wind farms. This highlights the profound 

differences between wind farms and traditional sources of energy generation 

(Bebi et al., 2021; Blanco, 2009; Wai-Hoo & Sovacool, 2014). Similarly, the 

cost of a wind farm requires a high initial investment compared to 

conventional energy sources such as natural gas power plants, where 40–70% 

of the costs are fuel and O&M costs. 

 

 

Figure 1. LCOE Concept Source. Author’s construct. 

Lag Selection Criteria 

Panel VAR models are preconditioned, choosing the optimum lags in the 

two VAR specification moment circumstances. (Abrigo & Love, 2016; 

Andrews & Lu, 2001) mooted the MMSC premised on GMM equations. 

 

 

Results and Discussions 

 

Descriptive Statistics 

Table 1 contains the descriptive statistics of the analysis. The variable with the 

highest mean is fossil fuel consumption. This is not a surprise as the ECOWAS 

sub-region consumes more energy from fossil fuel sources. The next variable 
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with the highest mean is fuel imports. The variable with the lowest mean is 

access to clean and modern cooking solutions at 9.425. According to a study 

(Jewitt et al., 2020; ECREEE, 2018), there have been programmes to improve 

access to clean cooking solutions through the distribution of LPG, biogas, 

solar cookers, and ethanol fuel, followed by R&D by millions of people. The 

data shows that smaller countries like Togo and the French colonies do well 

in terms of research and development. In fact, investments in renewable 

energy are beginning to take shape. It has the fourth highest mean. Rural 

access is also very low in the countries within the sub-region. According to 

wind energy output, the mean is low. Wind energy is breaking new ground in 

the sub-region as several countries have already planned or operational wind 

farm projects. Senegal is a newcomer with its Taiba Ndiaye and Ghana’s 

ongoing Ayitapa wind farm project (Alemzero et al., 2021; Countries et al., 

2021; Sun et al., 2020). 

 

Table 2. Descriptive statistics 

 
Variable Obs Mean Std. Dev. Min Max 

Investrep 165 252.512 548.216 0 2153 

Ackg 165 9.425 20.194 0 95.53 

Ruralac 165 20.431 21.939 0 95.944 

Gdpperca 165 1294.976 847.203 436.627 3482.448 

Elcons 165 51.392 80.005 0 375.945 

Fuelimprts 163 45373.553 125456.71 -8.192 477684.34 

Fosfocon 162 179080.6 192632.03 0 596000 

Windcap 164 17.675 164.74 0 2100 

Rdm 165 10.809 54.295 0 564.339 

Source: Author’s calculation. 

 

Table 2 explains the relationship between the variables. The significant 

variables are the interaction between GDP per capita and access to clean 

cooking. This explains the importance of integrating wind energy to meet the 

energy needs of the rural population. Rural people still cook with polluting 

sources such as biomass, resulting in health risks for the population 

(Dagnachew et al., 2019; Jewitt et al., 2020). According to the analysis, less 

than 1% of Liberia and Sierra Leone have access to clean cooking and 

alternative sources of energy. Meanwhile, Guinea and Guinea Bissau have less 

than 2% access to clean cooking and alternative solutions. In addition, the 

correlation between gross domestic product per capita and rural access is the 

highest. This is very revealing because development is equitable and 

sustainable when rural residents have equal access to energy. This is even truer 
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for achieving SDG 7, which calls for universal access to equitable and 

affordable energy for all by 2030. The higher a nation’s GDP per capita, the 

greater the nation’s ability to spend on clean energy sources, especially in the 

ECOWAS subregion as a developing region (Alemzero, 2022; Bashir et al., 

2021; Wai-Hoo & Sovacool, 2014). 
 

Table 3. Correlation Matrix 
 

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) 

(1) Investrep 1.000 

(2) Ackg -0.036 1.000 

(3) Ruralac 0.283 0.692 1.000 

(4) Gdpperca 0.301 0.596 0.739 1.000 

(5) Elcons 0.269 0.059 0.172 0.146 1.000 

(6) Fuelimprt -0.114 -0.160 -0.221 -0.221 -0.075 1.000 

(7) Fosfocon -0.270 -0.168 -0.322 -0.158 -0.221 0.387 1.000 

(8) Windcap 0.052 0.020 0.015 0.053 0.194 -0.023 -0.044 1.000 

(9) Rdm -0.015 0.093 0.074 -0.015 0.097 -0.027 0.023 -0.021 1.000 

Source: Author’s calculations. 

 

Table 4 is the cross-sectional dependency test of the second-generation 

unit root tests from Pesaran. This is done to establish the stationarity of the 

variable. Since the series are likely to be non-stationary over time between the 

countries studied, it makes economic sense to determine their stationarity by 

applying the cross-dependency of the second-generation root of unity tests. 

Concerns about panel heterogeneity and non-stationarity, as well as cross-

sectional dependency caused by macroeconomic variables The differences in 

the integration of wind within the ECOWAS subregion are related to certain 

latent variables such as political institutions, human resources, and other 

factors needed for wind energy integration, as well as the non-stationarity of 

macroeconomic variables within the analysis, such as gross domestic product, 

and the interdependence of national economies through cross-sectional 

dependency. The Pesaran unit test is based on the assumption that the Dickey-

Fuller regression is extended alongside the cross-sectional means of past levels 

and the first differences of each series. Hence, the unit root must overcome 

these challenges and deliver consistent and unbiased results (Baltagi, 2021; 

Eberhardt & Teal, 2011). The table above contains the time trends of different 

delays for the different variables. Therefore, considering the critical values of 

the t-bar, the null hypothesis is not rejected. Against this background, the 

CHIPS results analyzed (Pesaran, 2007) proved that the variables are 

stationary at the first difference, explaining the cross-sectional correlation 

between these variables. This makes estimating the panel VAR model possible 
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once all of these variables are stationary. Some researchers believe that PVAR 

is best suited for a study of this type where the variables are likely to be 

endogenous (Love & Zicchino, 2006; Neves et al., 2019). 

 

Table 4. Cross-section dependence test and second-generation  

unit root test (CIPS) 
 

Variable Prob. Value Z[t-bar] Lags 

ACKG 1.00*** 13.817 3 

ELCONS 1.00*** 13.817 4 

OFOSFOCON 1.00*** 12.911 3 

FUELIMPRT 1.00*** 12.911 3 

GDP_PER_CA 0.156** -1.011 1 

INVESTREP 1.00*** 13.817 2 

R_& D_  1.00*** 13.817 2 

RURALAC_  0.987*** 2.232 1 

WINDCAP 1.00*** 13.341 3 

The second-generation unit root test is performed under the null hypothesis where in the variables are 

I(1); and ***, **, * and _ denote statistical significance level at 1%, 5% and 10% individually. 

 

From Table 5, the lag order selection criteria that selected the optimal lags 

for analysis, namely: the Akaike information criteria, the Schwartz 

information criteria, and the Hannaquin information criteria, sequentially 

modified LR test statistic, and the final predictor error, are discussed (Andrews 

& Lu, 2001). These lags have the minimum values and therefore minimize the 

selection process. These have information criteria for lag orders of less than 

one. The PVAR model is therefore estimated at first-order lag one. 

 

Table 5. VAR lag order selection Criteria 
 

Lag LogL LR FPE AIC SC HQ 

0 -308.096 NA 202603.9 15.05218 15.38316 15.17349 

1 -302.826 8.281376 165663.3 14.84884 15.22120 14.98533 

2 -302.78 0.070192 173808.5 14.89427 15.30800 15.04592 

3 -275.18 40.74189 49131.30 13.62763 14.08274 13.79445 

4 271.519 5.229965* 43451.53* 13.50092* 13.99740* 13.68290* 

5 -271.405 0.158272 45533.08 13.54308 14.08093 13.74022 

6 -269.839 2.087330 44567.34 13.51615 14.09538 13.72846 

7 -269.764 0.097390 46873.92 13.56017 14.18076 13.78764 

8 -268.144 2.005710 45853.47 13.53064 14.19261 13.77328 

LR: sequential modified LR test statistic (each test at 5% level). 

FPE: Final prediction error. 

AIC: Akaike information criterion. 

SC: Schwarz information criterion. 

HQ: Hannan-Quinn information criterion. 
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PVAR  

Table 6 measures the homogeneous VAR equations by fitting a multi-panel 

regression of each explained parameter to lags of itself, past parameters of 

other exploratory parameters, and lags of exogenous parameters if any. Thus, 

the results from Table 6 show that the lagged values of fossil fuel consumption 

and the lagged values of investment in renewable capacity, a proxy variable 

for wind integration, are significant. The direction is direct. As the ECOWAS 

sub-region consumes larger amounts of fossil fuels, it is important to scale up 

investments in wind capacity and shift their consumption pattern in a 

sustainable way. So, the importance of the interaction of these variables Also, 

power consumption per capita is significant. Per capita, electricity 

consumption in the ECOWAS sub-region is not encouraging, as low as 19 

kWh for Guinea-Bissau. Wind integration can improve access to the growing 

per capita consumption in these countries. The analysis showed, for example, 

that Guinea-Bissau can generate around 1717 MWh of electricity from wind 

each year. 

Table 7 is performed to find the stability condition of the PVAR model by 

approximating the modulus of each eigenvalue of the measured equation as in 

(Canova and Ciccarelli, 2014; Neves et al., 2019; Lutz Kilian and Helmut 

Ltkepohl, 2017). Table 7 shows that the stability condition of the model is 

satisfied since all roots are less than uniform and are inside the circle. The 

stability means that the panel VAR model is invertible and achieves an infinite 

order of the invertible representation of the vector moving average, which is 

the basis for approximating the IRF. In Figure 1, a stability condition plot is 

constructed to represent all the results of the companion matrix lying within 

the circle, making the model stable. 

The IRF plots imply that the variables have a general impact on wind 

energy integration in the ECOWAS subregion after a shock hits the system. 

They start from zero and take a straight-line trajectory. That is, they all return 

to an equilibrium path. This shows the stationary of the variables and gives an 

accurate picture of the future integration of wind energy, as some of the 

variables show a direct path in the analysis when a positive outlook is 

assumed. The response of fuel imports and GDP per capita is direct and 

outpaces most variables. On the contrary, the response to access to clean 

cooking and alternative cooking solutions and investment in renewable energy 

started straight away and tumbled down a negative path. This is revealing as 

some countries in the sub-region are stagnating in access to modern cooking 

solutions due to a lack of investment. Suppose the ECOWAS sub-region is set 
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to significantly expand this sector’s access to alternative cooking solutions. In 

this case, a business-as-usual approach has to be avoided and a new paradigm 

for formulating framework conditions to maximize investments has to be 

developed. Overall, the interaction between investment in RE and variable 

shocks is less strong as the next few periods take on negative values. Clean 

energy investments within the ECOWAS sub-region are rightfully very low 

(Monyei et al., 2022; Onuoha et al., 2022). Ultimately, the responses to wind 

energy and R&D are direct and encouraging. Increasing innovation is spurring 

the deployment of wind energy and the supply chain, which is increasing the 

integration of wind energy in the sub-region. 

 

Table 7. VAR Stability Condition check 

 
Root Modulus 

-0.343565 - 0.722790i 0.800288 

-0.343565 + 0.7227 0.800288 

-0.288015 - 0.376421i 0.473968 

-0.288015 + 0.376421i 0.473968 

No root lies outside the unit circle. 

VAR satisfies the stability condition. 

Source: Author’s Calculation. 

 

  
Source: Author’s Calculations. 

Figure 2. Graph of eigenvalue stability condition. 
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Figure 3. Graphs of orthogonalized IRFs. 

 

Forecast Error Variance Decomposition Analysis 

According to the Cholesky decomposition of the residual covariance matrix, 

the forecast error variance decomposition was analyzed using 1000 Monte 

Carlo simulations for ten periods. The FEVD represents the percentage of each 

exploratory variable and highlights the forecast error variance of the different 

variables. Within the two situations of IRF and FEVD approximation of the 

VAR, the Cholesky order of the variables was used by replacing the variables 

in decreasing order of homogeneity, as shown in (Abrigo & Love, 2016; 

Andrews & Lu, 2001; Love & Zicchino, 2006). Table 6 the short-term 

variance decomposition of an exogenous shock on the investment in 

renewable energy accounts for about 13.4% of the InvestRep itself. On the 

other hand, responding to a shock in access to clean cooking and alternative 

energy sources produces about 14.8% of the variance in renewable energy 

investments. Similarly, rural access accounts for 33.2 percent of the short-term 

investment variance in the second period. In comparison, fuel imports explain 

36.7 percent of the variance in investment over the same period, the largest 

short-term variance. However, the wind cap, electricity consumption per 

capita, fossil fuel consumption, and research and development have little to no 

variance impact on InvestREP. In the long run, that is, in year 5, the impact of 
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the shocks on the system remains the same throughout the period, producing 

similar impacts on investment and response variables. 

Access to clean cooking and alternative cooking solutions has the next 

highest variance explanation within the model at 83.3 percent in the first 

period when there is a shock. At the same time, 16.7 percent is self-

explanatory due to the size of the investment. The rest of the variables had no 

decomposition variances on the InvestRep. That concerns the short term. On 

the other hand, within the long-term horizon, the variables maintain a steady 

reaction trajectory to shocks that hit the system (Role et al., 2022). Elcons also 

have a self-explanatory variance of 72.2 percent in the first period. 

Conversely, the variance within this period is highest at 96% for 

InvestmentRep, which represents the highest variance. This is because energy 

consumption is growing due to rapid industrialization and population growth 

in the ECOWAS sub-region (Goldwind Group, 2013; IRENA, 2021). 

A shock accounts for approximately 20.2 percent of the variance in GDP 

forecast error per capita. Rural access shock causes 26.67 percent of the 

forecast error variance, while access to clean cooking causes 36.7 percent of 

the forecast error variance. InvestmentinRep accounts for 17% of the period's 

short-term forecast error. Over the long term, which includes periods four and 

five, access to clean cooking solutions explains 14.8 percent of the forecast 

error variance, while rural areas explain 14.8 percent of the forecast error 

variance. Because of fuel imports, the forecast variance is 36.7 percent. In both 

long-term periods, ReinvestRep declares 13.4 percent. Even in the short term, 

FOSS accounts for 45 percent of forecast deviation in the first period 

following a shock. Furthermore, rural access accounts for 37.2 percent of 

short-term access during this time period. More importantly, wind capacity is 

responsible for 51.5 percent of the variance in forecast errors in the first period 

following a shock. According to Cross Border Information (CBI), wind energy 

is the fastest growing renewable energy source in Africa, with a growth rate 

of 2.5 percent in the first quarter of 2020. As a result, ReinvestRep accounts 

for 16.4% of the variance. This scenario confirms that the investment is crucial 

for the integration of wind energy in the ECOWAS sub-region. In contrast, 

R&D explains approximately 46.1 percent of the variance in forecast error 

shocks that pass through the system. It is the period over which the variance 

in forecast error was largely explained by the study variable; the rest had no 

R&D to explain discrepancies in decomposition analysis. This is expected as 

R&D investment in the ECOWAS region is almost non-existent in most 

countries (African Energy Commission, 2018). This is a short term within the 

first period. 57 percent in the first period and Investrep shows a negligible 
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variance in this period, the smallest variance in the entire analysis. This 

analysis is correct because investments in wind energy per se are very low 

within the ECOWAS sub-region despite the economic and technical potential 

of wind energy to sustainably meet the region’s energy needs (Assoumou & 

McIsaac, 2022; Bysa, 2020; Mbaziira et al., 2022). 

Moreso, A critical look at the results of the FEVD shows that InvestRep 

explains the forecast error variance across all ten periods but maintains a 

steady course. This paints a picture of the slow but steady way in which the 

ECOWAS sub-region is investing in renewable energy and wind. On the other 

hand, even if the variance is not significantly high, GDP per capita, access to 

clean cooking, and alternative cooking solutions show a steady trajectory, with 

the variance of the forecast error still coinciding with rural electricity access. 

This is synchronous as access to rural areas is very low and wind energy 

integration is needed to close the access gap. The fuel imports, in particular, 

explain a strong variance in the forecast error decomposition within the entire 

analysis. Here’s the fact: the ECOWAS sub-region is in an energy deficit and 

hence these nations depend on imports to meet their domestic electricity needs. 

Hence the strong and steady variation of these variables. The West African 

Power Pool (WAPP), which aims to meet the demand to harmonize the 

idiosyncratic markets into a single market to meet countries’ energy needs, is 

a classic example of the constant variance of this variable. A surprising 

discrepancy comes from FOSS, fossil fuel consumption, which does not 

explain any discrepancy at all. This is an outlier as the ECOWAS sub-region 

consumes most of it from fossil fuel sources. According to the African Energy 

Commission (2020), fossil fuels accounted for approximately 40.8 percent of 

Africa's energy consumption in the first quarter of 2020. Another variable that 

explains the need to integrate wind energy is electricity consumption per 

capita. Its variance is minimally explained in the analysis. This is due to the 

low energy consumption within the ECOWAS sub-region. The per capita 

consumption of Guinea and Guinea-Bissau is about 42 kWh and 19 kWh, 

respectively. This cannot boost economic growth and development in these 

countries. Therefore, the need to integrate wind energy to meet energy demand 

via community wind projects is due to the fact that the entire sub-region has 

the potential for community wind farm projects. Thus, a wind speed of 5 m/s 

is required for the integration of small wind farms. 

Since the ECOWAS sub-region has a growing population, this 

demonstrates that the demand for energy consumption per capita will increase 

in the coming years and justifies the integration of wind energy to meet this 

growing demand. The sub-region has one of the lowest energy consumption 
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per capita in SSA, like Sierra Leone, Liberia, and Guinea-Bissau. This fact has 

also been confirmed (Blimpo et al., 2020). 

 

 

Levelized Cost of Energy (LCOE) Comparison of Wind Energy 

Including Nuclear 

 

The diagram below shows electricity generation from wind energy and other 

generation sources. The levelized cost of bituminous coal was approximately 

8.20 cents per kilowatt hour, representing an installation cost of $12,500 in a 

lower estimate scenario and $1,500 in a higher estimate scenario. On the other 

hand, the initial levelized cost of wind energy is 2.98 cents per kilowatt at the 

lowest estimate and about 6 cents at the higher estimate. The service lifespan 

of a wind energy farm is 20 years. In terms of large-scale solar power, it is 8 

cents per kilowatt for the high estimates and 0.805 per kilowatt-cent for the 

low scenario, as shown in Figure 4 below. 

 

 

Figure 4. LCOE Comparison of generation sources. 

Sensitivity Analysis of Wind Energy and Different Generation Sources 

The sensitivity analysis is performed to help investors make an informed 

decision on the financial indicators and technical factors related to the 

economic integration of wind energy within the ECOWAS sub-region. Figure 

5 shows full load as the highest parameter required for an economic 

investment in an agricultural project within the ECOWAS sub-region. The full 

load hours explain the full utilization of a plant. The number of hours a facility 

can operate to produce electricity. Therefore, it is very important to consider 
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the full load hour of the location or generation source when constructing a 

wind farm. It is the most important parameter within the sensitivity analysis. 

The full load hours make it possible to compare locations, years, and plants in 

order to normalize the area’s energy yield. The full load hour is not static but 

dynamic over time. The next important variable within the sensitivity analysis 

is the investment costs. It is particularly high for wind energy within the 

ECOWAS sub-region, as illustrated by the height of the bar chart. A closer 

look reveals that wind energy has the highest investment costs for building 

wind farms in the sub-region. However, the expected investment costs for 

wind energy will continue to fall from now until 2030, regardless of these 

currently high costs. The cost of wind turbines overshadows the capital cost 

of wind energy. Other costs in the form of a control system and land make up 

a negligible proportion of this aspect. Notably, wind has no variable or 

marginal costs, fuel costs, or carbon dioxide pollution, as shown in the figure 

below. These parameters are shown in the figure for traditional energy 

sources. The hard coal power plant, obviously. Only the conventional source 

has. This makes integration into the ECOWAS sub-region necessary. The only 

technical cost of integration is the cost of the network connection, as shown in 

the figure. This does not prevent the ECOWAS sub-region from using wind 

energy, since wind energy can be connected to the grid without significant 

disruptions to the primary reserves of over 10%. 

 

 
Source: Author’s construct. 

Figure 5. Sensitivity Analysis. 
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Conclusion: Summary of Findings 

 

This study analyses the economic rationale for integrating wind energy into 

the ECOWAS sub-region. The ECOWAS sub-region is one of the largest 

energy deficit regions in SSA. This was done by applying a panel vector 

autoregression (PVAR) approach and levelized analysis to determine the 

drivers and economics of wind energy deployment. The study period extends 

from 2010 to 2020. The period chosen takes into account that the beginning 

of the 21st century saw the introduction of renewable energies such as wind 

energy in the region. The results were varied and interesting and justified the 

need to integrate wind into the sub-region. First of all, access to clean cooking 

in the sub-region is negligible. A majority of the population is still dependent 

on polluting cooking sources that have health and economic impacts. For 

example, access to modern cooking solutions is around 6% in Benin and 8.9% 

in Burkina Faso. Mali has declined from 1.02 percent in 2010 to about 0.96 

percent in 2016. This corroborates the importance of the per capita electricity 

consumption variable in the analysis of the panel variables. This implies that 

the population in the subregion has the lowest overall energy consumption. 

Another significant variable is the amount of fossil fuel consumption. Fossil 

fuel consumption is very high in the ECOWAS sub-region. This parameter is 

significant and reached the highest mean of the analysis. Because of this, there 

is a need to switch to competitive and environmentally friendly wind energy. 

Furthermore, the conclusion equally implies that research and 

development have at least one non-slight variance declared as FEVD to other 

variables, with another intrinsic variance of about 46%. This results in the 

lowest investment in research and development (R&D) among member 

countries. This explains why R&D investments are scarce in many of the 

countries studied. Consequently, the economic analysis shows that onshore 

wind energy integration has the next cheapest generation costs of nearly 3 

cents per kilowatt and nearly 7 cents per kilowatt after large-scale solar power 

within the ECOWAS sub-region of the study. The analysis found that given 

the affordability of wind integration costs, as the cost of wind deployment 

continues to decrease through massive economies of scale in terms of cost per 

kilowatt, the analysis found the sub-regions should implement measures to 

scale up wind power. Finally, the sub-region has the technical potential (with 

significant wind speeds) for the development of utility-scale wind farms. 

Furthermore, the sensitivity analysis shows that of all the parameters that 

determine the integration of wind farms, the full-hour load is the most 
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important for determining where to set up a farm and the yield per year. The 

next important parameter is the investment cost. Besides, the capital cost of 

wind energy is high, with turbine costs accounting for a larger portion of the 

cost. The other costs are control systems and land. Furthermore, the conclusion 

implies that research and development are at least as important as the FEVD 

explains no less than 46% of variance to other variables other than self-

variation. This translates to the least investment in research and development 

(R&D) among member countries. This explains why R&D investments rarely 

exist in many of the study countries. 

Eventually, the analysis implies that investing in network infrastructure to 

modernize it is crucial in the long to medium term. This creates additional 

capacity to transport the increased generation, disruptions, and uncertainties 

of large amounts of wind energy connected to the national grid. This does not 

mean that developing countries cannot start integrating wind now because they 

lack grid capacity; they can do this because they are within the tipping point. 

Given the above factors, linking access to clean cooking and energy 

programmes needs to be integrated into national anti-poverty and development 

policies. Also, a significant increase in funding, both crowd funded and non-

crowd funded, is very important in wind energy integration. In terms of 

innovation, there is little research and development (R&D) investment in the 

study countries. The ECOWAS sub-region needs to invest in research and 

development to find innovative ways to achieve the rapid deployment of wind 

energy. In order to achieve effective and meaningful development and 

economic growth, there should be adequate and inexpensive energy sources 

such as wind energy. Finally, diversity refers to the formulation of policies 

such as rural electrification programs to promote access and create an energy 

economy in disadvantaged communities. 
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Abstract 

 

Interest in supply chain management has been growing since the late 80s 

as it is the critical stage of the production system. It mainly focuses on 

raw materials, work in progress inventory, finished goods inventory, 

information, and cash flows in the system. It is vital to learn about and 

investigate the risks connected to the supply chain. Profitability, future 

development, market share, client satisfaction, competitive edge, and 

corporate social responsibility are all linked to risk. Risk management 

processes are key apprehensions for people, companies, and 

organizations as there is escalating volatility and increasing uncertainty 

in the supply chain network. Customer demand and customer deliveries 

contribute mainly to the uncertainties in the supply chain. The next prime 

uncertainty is the potential requirements. As a result, risk management is 

the most important aspect of the supply chain, and it is critical to 

recognize and categorize various types of risks associated with the supply 

chain in order to select the best supply chain. This paper examines the 

dissimilar types of risks and uncertainties connected with supply chains. 

                                                           
 Corresponding Author’s Email: drssmech@gmail.com 



S. Santhosh, M. Vesvanth and K. V. Siva Suriya 

 

28 

An effort has been made by the Gray approach to select the finest supply 

chain for Indian industries. 

 

Keywords: supply chain, Gray approach, risk management 

 

 

Introduction 

 

Global markets are crossing the boundaries and managing the demands and 

supply all over the globe. This market is benefiting global companies around 

the world. To keep down the cost of manufacturing, they are continuously 

looking into setting up production centers where the product and labour are 

chipped. Companies procure materials globally from various vendors to their 

production units located in different parts of the world, and finished goods 

from these factories are passed to different parts of the world through various 

distribution chains. This is the supply chain or network that processes raw 

materials and makes available goods to their consumers. It is not an 

individual’s potential that makes a supply chain efficient, but a group that 

helps build this chain’s proper functioning. It is the supply chain that confirms 

the success of any firm, and yet it is simultaneously affected by some risk. 

Therefore, risk management is a key thing to analyze. Due to its global 

nature, the supply chain faces more risk than any other area of the company, 

and it directly impacts the financial performance of the company. Often, a 

number of forces that drive the supply chain risk include supply shortages, 

quality and safety challenges, security, terrorism, weather and natural 

disasters, longer lead times needed for the global environment, etc. Risk 

planning often falls to the bottom without being met with a crisis. So much 

motivation is needed that existing planning will be effective. Risk can be 

managed to get rid of it, but it cannot be eradicated. 

 

 

Literature Review 

 

Every business is associated with some kind of risk, so risk management is not 

new in the field of supply chains. Recognizing and mitigating those risks is a 

primary task for any firm. A number of papers are available on this. The 

following studies on supply chain risk are: Risks are categorized under two 

headings, i.e., operation risk and disruption risk. Any risks that are related to 

customer demand, supply, and cost and include uncertainty come under 
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operational risk, whereas risks related to the destruction of property, which 

can be caused by floods, earthquakes, terrorist attacks, or economic crises, 

come under disruption risk. The strength of disruption risk has more business 

impact than operation (C. S. Tang, 2006). 

A framework has been proposed that presents a planned way to identify 

and assess risk and its influence on the network level of the supply chain (S. 

C. Cheng and B. Hon Kam, 2008). They identified and categorized risk into 

two clusters, i.e., those happening from simplifying the compound system of 

supply and demand and, secondly, those happening from perturbation from 

normal activity. The major focus of the research was on the perturbation side 

(P. R. Kleindorfer and G.H. Saad, 2005). An approach was developed to 

identify and manage risk in the supply chain. This structured and ready-to-use 

approach can be divided into phases where tasks are related to risk for 

identification, measurement, assessment, evaluation, mitigation, contingency 

planning, control, and monitoring via a data management system (R. 

Tummala, T. Schoenherr, 2011). A model was created to analyze the risk 

associated with the food supply chain with interpretive structure modelling 

(ISM). Risks were identified and their types were clustered into five categories 

(Samvedi, V. Jain, and F.T.S. Chan, 2013). They studied and came to a point 

where risk can be quantified in a supply chain and then combined the value 

into a comprehensive risk index. Risks are here classified as an environmental 

risk, process risk, demand risk, and supply risk (A. Diabat, K. Govindan, and 

V.V. Panicker, 2012).  

They discussed some of the operational risks of the supply chain, such as 

utility failure, poor quality, HR problems, IT system failure, theft of 

information, personnel, and suppliers (A. Samvedi, V. Jain, and F.T.S. Chan, 

2013). They prepared a model for congruence to analyse factors influencing 

risk conditions that would be easy to apply but also accurate, and they also 

provided empirical evidence about misfit relationships that focused on three 

categories of risk: supply market complexity, purchase criticality, and 

technological uncertainty (M. Dadeviren, Y. Hasan, 2008). They reviewed 

ninety-two research papers and, accordingly, categorized them into risk, 

supply chain risk, and supply chain risk management. The structure of 

classification of the risk includes two levels and three categories, such as 

internal, external, and environmental in the first layer, and the second level 

consists of several subcategories (J. Gualandris, M. Kalchschmidt, 2015). 

They formulated a model to analyze the internal and external risks and their 

alternatives that affect the supply chain and accordingly set the priorities for 
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them to verify the best supply chain under these deliberations (S. M. Wagner, 

C. Bode, 2006). 

This research includes some of the risks that supply chains usually come 

across. Economic risk, environmental and societal risk, performance 

measurement risk, and procurement risk are all prioritized. Economic risk is 

regarded as one of the most significant risks because it directly affects the 

firm’s financial status and profitability (M. Chand, T. Raj, R. Shankar, and A. 

Agarwal, 2017). Environmental and societal risk mainly includes disasters and 

political or economic activaities such as earthquakes, hurricanes, floods, 

money devaluation, and political, regulatory, and market forces (S. K. Kumar 

et al., 2010). Procurement risks come into the picture when orders are not 

completed on time due to deviations in supply time, quality, and quantity (M. 

Dagdeviren, S. Yavuz, and N. Klnc, 2007). All these risks can affect the supply 

chain in terms of cost, quantity, quality, and lead time. For managing this risk, 

some approaches and models have already been utilized: Fuzzy AHP by 

Degdeviren et al., (2013) and fuzzy AHP by Wang et al., (2013); Fuzzy AHP 

and fuzzy TOPSIS by Samvedi et al., (2013); the Quality Function 

Development (QFD) approach by Faisal M.N. (2007); and the Analytical 

Network Process (ANP) and Multi-Objective Optimization by Rational 

Analysis (MOORA) by Chand et al., (2006). 

 

 

Research Design 

 

ABC Limited, headquartered in Coimbatore (India), provides wind energy 

systems to their customers. It started as a service and supply of wind energy 

systems to its customers. The demand for wind energy systems has increased 

in various areas, like the residential and commercial industries. A company 

likes to expand its manufacturing facilities as demand increases. The company 

wants to select the best supply chain for supplying its products to its 

customers. The company has proposed four supply chains, from which the 

company has to select one based on risk management. The four proposed 

networks are given in Figure 1. A description of the network is given below. 

The first network consists of suppliers; manufacturing units; distribution 

hubs; retailers; sorting and dismantling units; reprocessing units; and disposal 

units. The supplier supplies the raw material, which will be converted into a 

product in the manufacturing unit, and it will be distributed to the retailers by  
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the assembling unit. The end-of-life or end-of-use products are given back to 

the retailers. Retailers hand over the used products to the sorting and 

dismantling unit, where the products are disassembled, tested, and sent to the 

reprocessing unit and disosal unit, respectively. 

 

Table 1. Identified criteria 

 

Id Criteria Id Criteria 

C1 Economic Recession C7 Product Performance 

C2 Financial market Instability C8 Process performance 

C3 Fuel Price C9 Requirement Uncertainty 

C4 Natural Disasters C10 Supply Disruptions 

C5 Machine Explosive C11 Unreliable Supplier 

C6 Social and Cultural Grievance C12 Damage to Cargo 

 

Table 2. Linguistic terms for supply chain ratings 

 

Linguistic Term  Membership Function 

Extremely dissatisfied ED (0,1) 

Dissatisfied D (1,3) 

Somewhat dissatisfied SD (3,4) 

Undecided U (4,5) 

Somewhat satisfied SS (5,6) 

Satisfied S (6,9) 

Extremely satisfied ES (9,10) 

 

Table 3. Linguistic terms for criteria weights 

 

Linguistic Term  Membership Function 

Absolutely Low AL (0,0.1) 

Very Low VL (0.1,0.3) 

Low L (0.3,0.4) 

Medium M (0.4,0.5) 

High H (0.5,0.6) 

Very High VH (0.6,0.9) 

Absolutely High AH (0.9,1.0) 

 

In the second network, the manufacturing unit is divided into processing 

units and assembling units. In the processing unit, the raw materials will be 

converted into parts, and they will be assembled in the assembling unit. In the 

third network, the customers give back the used products to the sorting and 

dismantling unit. In the fourth network, vehicle routing was implemented 
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between the distribution hub and retailers. In supply chain selection criteria, 

along with financial risk criteria, some important natural and social risk, 

performance measure risk, and procurement risk criteria are added and 

evaluated. These criteria are listed in Table 1. In this work, we use a Gray 

approach for choosing and evaluating a suitable supply chain. Linguistic terms 

for alternative ratings and linguistic terms for criteria weightings, respectively, 

are given in Table 2 and Table 3. The methodology for assessment is explained 

in the next section of the chapter. 

 

 

Gray Approach Methodology 

 

In this section, the most suitable supply chain among the projected supply 

chains is identified by a multi-criteria decision-making approach. After many 

pilots were run, the Gray approach was found to be suitable for selecting the 

best supply chain. The Gray approach for evaluating supply chains consists of 

eight stages, and these approaches are described in fact as follows. 

 

 

Selection of Evaluation Criteria  

 

In this approach, identifying the criteria and measuring the indicators is the 

most important step. With the help of a strategic goal, the experts will be 

brainstorming and will be identifying the criteria. 

 

Assignment of Weight to Criteria and Rating for the Supply Chain 

S = (S1, S2, S3… Sn) is the n number of the supply chains, and C = (C1, C2… 

Cm) is the m number of criteria. Wm (m=1, 2…... i) are the criteria weights. 

The performance ratings of each decision maker Dk (k=1, 2… K) for each 

supply chain are denoted by dn (n=1, 2… j).  

The evaluation of the criteria and supply chain will be carried out by the 

decision maker in this step, and they will also determine the linguistic terms 

for supply chain and criteria.  

With reference to the linguistic terms from Tables 2 and 3, the Gray rating 

for the supply chain and the Gray weight of the criteria are assigned. Calculate 

the aggregate Gray weight for criteria and rating for the supply chain. 

Determine the decision matrix. 



S. Santhosh, M. Vesvanth and K. V. Siva Suriya 

 

34 

Rk = (xk, yk), k= 1, 2… K is all the decision-makers Gray weights for 

criteria and Gray rating for the supply chain. Then R = (x, y) is the aggregated 

gray weight for criteria, and ratings for supply chains are given by where 

 

 (1) 

 

The aggregate Gray weight of the criteria and aggregate Gray rating for 

the supply chain is determined using equation (1). The Gray decision matrix 

(DM) is determined for the criteria (C) and the supply chain (S) is constructed 

as follows. 

 

R = [rmn]i x j m=1, 2,…, i n=1,2,, j                 (2) 

 

Calculated the Weighted Normalized Matrix 

Various criteria are scaled to a comparable scale using a linear scale 

transformation. 

The normalized Gray decision matrix R* is given by 

 

R* = [r*
mn]i x j m=1,2,…, i n=1,2…..., j             (3) 

where  
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The weights (wl) of the evaluation criteria are multiplied with the 

normalized Gray decision matrix r*mn to calculate the weighted normalized 

matrix V for criteria 

 

V = [vmn]i x j m=1,2,…, i n=1,2,….., j  (4) 

 

where vmn = (Wm) (r*mn)   
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Set the ideal supply chain alternative as a referential supply chain. 

The ideal referential supply chain and ideal negative referential supply 

chain Smax = (V1max, V2max... Vjmax) are obtained from m possible supply 

chain sets S using 

 

Smax= {[ ),(max 11
1

nn
jn

vv


]… [ ),(max 33
1

nn
jn

vv


 ]}  

 (5) 

 

where n=1, 2… j  

 

Calculate the Gray Possibilities 

Contrast Supply Chain Set S with the ideal referential Supply Chain Set Smax. 

 

P1= P (Sn  Smax) = 1/i





i

m
nmn VvP

1

max )(

  (6) 

 

Ranking the Supply Chain 

In this step, the supply chain with a minimum Pi is better. According to the 

above procedure, the ranking order of the entire supply chain is determined, 

and we can select the best from among the set of supply chains. 

 

 

Computation Experiment 

 

Four supply chains are identified for the company, and the best chain is 

selected using the Gray approach. Four expert consultants as decision makers 

have been used in this approach. These decision-makers have examined all the 

criteria and supply chain, and respective weights and ratings in linguistic terms 

have been given. 

Their Gray membership function has been obtained from Tables 2 and 3 

using the linguistic reviews provided to the decision-makers. For these Gray 

weights, an aggregate Gray weight is computed using equation (1) for the 

criteria and rating for the supply chain and is shown in Table 4 and Table 5 

respectively. From the aggregate Gray decision matrix for supply chain, the 

weighted normalized supply chain matrix is determined using equation (3) and 

equation (4) as shown in Table 6. 
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Table 4. Aggregate Gray criteria weight 

 

Criteria Aggregate Gray Weight 

C1 0.375 0.475 

C2 0.525 0.725 

C3 0.725 0.875 

C4 0.200 0.350 

C5 0.475 0.575 

C6 0.475 0.575 

C7 0.650 0.850 

C8 0.725 0.875 

C9 0.625 0.775 

C10 0.725 0.875 

C11 0.825 0.975 

C12 0.675 0.925 

 

Using equation (5) for m possible supply chain set S, the ideal referential 

supply chain Smax is listed below. 

Smax = (0.296, 0.475), (0.366, 0.725), (0.564, 0.875), (0.125, 0.350), 

(0.343, 0.575), (0.327, 0.575), (0.474, 0.850), (0.505, 0.875), (0.478, 0.775), 

(0.554, 0.875), (0.631, 0.975), (0.559, 0.925) 

 

Table 5. Aggregate Gray Decision Matrix for supply chain 

 

Criteria 
Supply Chain 

S1 S2 S3 S4 

C1 7.50 9.50 6.50 8.50 5.50 7.50 6.00 9.00 

C2 5.25 6.75 5.75 8.25 5.75 8.25 5.25 6.75 

C3 3.50 4.50 2.25 3.75 2.50 4.00 2.75 4.00 

C4 1.75 3.50 2.25 3.75 1.50 3.25 2.50 4.00 

C5 3.25 4.25 2.75 4.00 3.25 4.50 3.25 4.25 

C6 4.75 6.25 4.75 6.25 5.25 7.25 5.50 8.00 

C7 5.50 7.50 6.75 9.25 5.50 7.50 5.75 8.25 

C8 5.00 6.00 5.75 8.25 5.50 7.50 5.50 7.50 

C9 5.50 7.50 6.50 8.50 5.75 8.25 5.50 7.50 

C10 5.50 7.50 6.50 8.50 5.25 6.75 5.50 7.50 

C11 5.25 6.75 6.50 8.50 5.75 8.25 5.50 7.50 

C12 5.25 6.75 7.25 8.75 5.50 7.50 5.25 6.75 

 

 

 

.
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Table 6. Normalized aggregate Gray Decision Matrix for supply chain 

 

Criteria 
Supply Chain 

S1 S2 S3 S4 

C1 0.30 0.48 0.26 0.43 0.22 0.38 0.24 0.45 

C2 0.33 0.59 0.37 0.73 0.37 0.73 0.33 0.59 

C3 0.56 0.88 0.36 0.73 0.40 0.78 0.44 0.78 

C4 0.09 0.31 0.11 0.33 0.08 0.28 0.13 0.35 

C5 0.34 0.54 0.29 0.51 0.34 0.58 0.34 0.54 

C6 0.28 0.45 0.28 0.45 0.31 0.52 0.33 0.58 

C7 0.39 0.69 0.47 0.85 0.39 0.69 0.40 0.76 

C8 0.44 0.64 0.51 0.88 0.48 0.80 0.48 0.80 

C9 0.40 0.68 0.48 0.78 0.42 0.75 0.40 0.68 

C10 0.47 0.77 0.55 0.88 0.45 0.70 0.47 0.77 

C11 0.51 0.77 0.63 0.98 0.56 0.95 0.53 0.86 

C12 0.41 0.71 0.56 0.93 0.42 0.80 0.41 0.71 

 

Using equation (6), Gray has the possibility of comparing the supply chain 

set S with the ideal referential supply chain Smax. 

 

P1 (S1 Smax) = 0.646; P1 (S2 Smax) = 0.563; P1 (S3 Smax) = 0.624; P1 

(S4 Smax) = 0.613; P1 (S4 Smax) = 0.613 

 

Using the Gray possibility value, the supply chain is ranked. The Gray 

possibility betters the supply chain. 

 

S2 > S4 > S3 > S1 

 

From the illustration, it is clear that S2 is the best supply chain shown in 

Figure 2. The next important supply chain is S4, and S1 is the worst supply 

chain in this set. 

 

 

Conclusion 

 

In this chapter, the Gray approach is used to evaluate the financial risk of the 

supply chain along with the natural and social risks, procurement risks, and 

supply risks for a manufacturing company. In the proposed method, a 

brainstorming session was carried out, and 12 criteria were chosen for the 

assessment of the supply chain. For the chosen criteria and supply chain, an 
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expert consultant examines and allocates the weights and ratings accordingly. 

These weights are processed in the Gray approach and a ranking is given to 

the supply chain. Using the ranking, the best supply chain is selected and used 

as the supply chain for the company. 

 

 

Disclaimer 

 

None 
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Abstract 

 

Wind energy is an eco-friendly and favoured energy source for power 

generation among various sources of energy. Today, wind energy is the 

fastest growing sector of renewable energy sources because the wind 

power plants work efficiently and economically when depended on for 

continuous and reliable operation. Today, the wind turbine plants are not 

working up to their complete lifetimes; they fail to achieve the desired 

life. The wind turbine parts, such as gears, bearings, mechanical brakes, 

and blades, are failing due to repetitive loads and sudden changes in 

climatic conditions. The gears, which are the main parts of the wind 

turbine that failed due to the pitting failure, may have occurred in the 

region of the gear tooth surface. To avoid this failure and ensure the 

reliable operation of the wind turbines, companies are offering surface 

solutions optimised for wind turbine components. Improved surfaces can 

be achieved by depositing thin coatings or by heat treating the steel 

components. To achieve accurate process control, the nitriding process 

parameters need to be modelled and controlled to meet the specifications. 

 

Keywords: wind turbine, gear, pitting, surface coating 
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Introduction 

 

Wind turbine plants can be found in enormous landscapes or coastal areas. 

Most industrialised nations use this environmentally friendly technology for 

electrical energy generation to meet their energy needs. When compared to 

nuclear-generated energy, wind energy generation is more cost-effective 

where disposal, final storage, and risk factors are taken into consideration. 

During the 1980s, the first wind power plant farms were installed. Since then, 

the generation of wind energy has spread quickly in Germany and other 

countries. One million tonnes of steel are used every year for the production 

of wind turbines in Germany. This is three times more than in the ship building 

industry. As the world slowly turns away from nuclear power, wind energy 

becomes more important. Later in 2010, the power generated was 238,000 

MW; in 2012, the world-wide installed power was 282,587 MW. By 2015, it 

had increased to 460,000 MW. Hence, power generation increases by 15% 

every year. China is the biggest producer of wind energy, which, jointly with 

the USA and Germany, produces about 60% of the worldwide installed 

capacity. With approximately 15%, Denmark is at the next highest level, with 

28% of energy production, followed by Spain and Portugal. 

The wind power plant requirements are very diverse and are affected by 

differences in local and meteorological conditions. In the case of offshore 

plants, corrosion due to salt and dampness will result in the failure of the power 

plant. Re-powering will play a major role due to the increase in size and 

performance of wind turbine plants. Repowering replaces older plants with 

newer, higher performance power plants. In addition to minimising down-

times, performance and efficiency are to be taken by the wind power plants. 

They have to withstand enormous and often changing forces from external 

influences. The drive train of a wind power plant is subjected to high loads 

and stresses. Simultaneously, this makes them susceptible to higher 

maintenance and repairs. In particular, downtime caused by drive train and 

gearbox damage is high. To maximise plant profitability, downtime and 

maintenance work have to be minimized. The general causes of wind power 

plant failures are wear and component fatigue, such as on gearwheels, which 

lead to long downtimes. 

The materials used in gear box construction have to withstand enormous 

stresses, diverse forces, high impact momentum and torsion. The main 

purpose of the gearboxes is to change the speed of rotation and torque. To 

achieve high efficiency, slow rotor rotational speeds in the range of 6–20 rpm 

can be transformed into high speeds in the range of 900–2000 rpm. The 
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approximate transmission capacity of modern wind energy power plants is 144 

million rotations of the rotor shaft or 15 billion rotations of the generator shaft. 

For guaranteeing a high and reliable performance level, steel is used, which 

has enormous wear and fatigue strength. The material must have high 

toughness and vibration strength to resist the strong stresses. The gear flanks 

are very much protected against wear and pitting, and so the flanks are 

designed in such a way to withstand wear and fatigue from high frictional 

forces. High surface pressure is exerted on the gear tooth when engaged, and 

plastic deformation has to be prevented on the ductile outer zone. 

 

 

Literature Survey 

 

A literature survey has been done on various methods of surface coating 

techniques and is presented in this section. 

Gas nitriding is one of the techniques that are thermo-chemical surface 

treatments in which nitrogen is transferred from an ammonia atmosphere into 

the surface of steel at temperatures within the ferrite and carbide phase region. 

(Pye D., 2003; Somers & Marcel A. J., 2000). After nitriding, a compound 

layer and an underlying diffusion zone are formed near the surface of the steel. 

Next is plasma nitriding, which uses plasma-discharge technology at a 

lower temperature to introduce nascent nitrogen onto the steel surface. It is 

another well-established surface hardening process in steel (Baldwin et al., 

1998), and is also known as ion nitriding. In this method, plasma is formed by 

high-voltage electrical energy in a vacuum. Nitrogen ions are accelerated to 

impinge on the work piece, which is connected as a cathode. The ion 

bombardment heats the work piece, cleans the surface and provides the 

nascent nitrogen for diffusion into the steel material (J. R. Davis, 2002). 

Wind turbine gearboxes are designed to survive in extreme environmental 

conditions, most notably high wind forces, desert heat, and arctic cold. 

Regardless of how strong the design and materials are, the typical gearbox 

fails to meet its design life (Wallace (Jack) Titus and AFC-Holcroft, 2010). 

Statistical studies by the National Renewable Energy Laboratory have shown 

that, on average, a gearbox’s time to repair can be as short as five years, give 

or take, when the economic payback model requires 20 years. Other 

preliminary studies indicate that the gearbox and/or planetary carrier systems 

are subjected to higher-than-anticipated stresses and that the materials used 

may not have the strength to resist the stresses encountered. Historically, pit 

furnaces and the pit quench have been employed to case harden these and other 
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large gears because, for treat, there just has been no other choice. In addition, 

pit furnaces can be energy hogs, especially when carburizing cycles of 35 

hours or longer are common. 

In the next paper, a study of pulsed nitriding in AISI H13 tool steel is 

carried out at a low temperature (400°C) for several durations. Despite the low 

temperature, the author proposed that x-ray diffraction reveals a nitrogen-

enriched compound (Fe2-3N, iron nitride) that forms on the surface within the 

first hour of the process (L. F. Zagonela et al., 2012). The result shows that the 

material hardness increases linearly with the concentration of nitrogen, 

reaching up to 14.5 GPa at the surface while the Young Modulus remains 

unaffected. Nitrogen profiles show a case depth of about 43 µm after nine 

hours of the nitriding process. From these results, it is clear that pulsed plasma 

nitriding is highly efficient even at low temperatures. 

In the next survey, a low-alloy steel AISI 4340 (Sule Yildiz Sirin et al., 

2008) was investigated by the author under different process parameters, 

including time and temperature. The result shows that the ion nitriding process 

improves the fatigue strength and fatigue limit. Up to a 91% improvement in 

fatigue strength has been attained with this surface treatment. The author 

found that the subsurface ‘fish eye’ type formation is the most suitable fatigue 

crack initiation mechanism. 

Actually, the life time of wind turbines is designed for around 20 years, 

but existing gearboxes experience failure only after 5 years of operation 

(Adam M. Ragheb and Magdi Ragheb, 2010). Wind turbine profits are 

influenced by factors such as the cost of replacing the gearbox and the length 

of downtime. For example, replacing a simple gearbox on a 1.5 MW wind 

turbine may cost the operator well over $250,000. A gearbox replacement 

costs about 10% of the wind turbine’s construction and installation cost, which 

affects the estimated income from a wind turbine. 

 

 

Gear Material Selection and Gear Failures  

 

Power transmission gears are manufactured from a wide variety of steels and 

cast iron. In all categories of gears, materials can be chosen only after careful 

consideration of the performance demanded by the application end-use and 

total manufactured cost. Key design considerations require an analysis of the 

type of applied load, whether gradual or instantaneous, and also the 

mechanical properties like bending fatigue strength or wear resistance, which 

will define core strength and heat-treating requirements. The process of gear 
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manufacturing involves the collection of raw materials and the manufacturing 

of gears. The reasons for hard machining are from different sources shown in 

Figure 1. Each area in the gear tooth profile sees different service demands. 

Major issues like tooth bending and contact stress, resistance to scoring and 

wear, and fatigue are given more consideration during forces that will act on 

the gear teeth. 

Good surface hardness and high residual compressive stress are desired to 

improve endurance or bending fatigue life. A combination of high hardness 

and adequate subsurface strength is necessary to prevent the spalling effect 

and handle contract stress and wear. 

Material selection properties include tensile, yield, and impact strength, 

as well as elongation properties. Repairing or replacing a failed wind turbine 

gearbox is an extremely expensive undertaking. Gearbox failures can be 

caused by fundamental design issues, manufacturing defects, lubricant system 

failures, high loading or many other reasons. A correct failure mode diagnosis 

is the first step in identifying the actions that can be taken to avoid additional 

failures. Five of the most common gear and bearing failure modes, along with 

tips on identification and potential means of prevention, are provided below. 

 

 

Figure 1. Reasons for hard machining. 
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Figure 2. Micro pitting. 

 

Figure 3. Macro pitting. 

 

Micro Pitting 
 

Micro pitting is a form of localised material surface damage that occurs under 

rolling and sliding contact operating in the boundary lubrication region. Micro 

pitting can affect both gears and bearings. Failures due to micro pitting are 

very common in wind turbine gearboxes. Micro pitting results in a matte finish 

surface in affected areas, as seen in Figure 2. Changing the type of lubricant 

and reducing component surface roughness are two methods for preventing 

micro pitting failures. 
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Macro Pitting 

 

Macro pitting occurs when the contact stress in the gear or bearing exceeds 

the fatigue strength of the material, which is shown in Figure 3. It can affect 

both gears and bearings. Wind turbine gears and bearings are typically 

designed for a 20-year service life, and macro pitting that occurs before the 

end of the design life is an indication that one or more design assumptions, 

such as contact stress, material properties, lubricant condition, or applied load, 

were not met. Beach marks due to the presence of corrosion and lubricant in 

the crack are sometimes present and indicate a fatigue progression process. 

Macro pitting failures can be prevented by reducing loads, improving 

gear/bearing profiles to reduce stress, increasing material strength through 

alloy selection or a heat treatment process. 

 

 

Bending Fatigue 

 

Bending fatigue occurs when the stress exceeds the capability of the gear 

material at the root of the gear tooth. This is due to excessive loads, incorrect 

heat treatment, inclusions in the steel or a cut in the root of the tooth. Fracture 

surface appearance will vary depending on whether the failure was high or low 

cycle fatigue. Features such as ratchet marks are occasionally present and 

indicate multiple crack origins. This failure can be prevented by increasing 

gear material strength, decreasing load, and optimising the gear root fillet 

geometry. 

 

 

Fretting Corrosion 

 

Fretting corrosion can affect gears and bearings. It occurs when two contacting 

surfaces have small oscillating relative motions with no lubricant film between 

the surfaces. It occurs in wind turbine gearboxes due to transportation or 

spending time with no rotation. This type of corrosion can be identified by the 

presence of ruts along the lines of contact, along with the presence of reddish 

brown or black wear debris. This can be prevented by minimising the amount 

of time that a gearbox spends without rotating or by improving transportation 

conditions, depending on the cause of the fretting corrosion. 
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Axial Cracking 

 

Axial cracking occurs in bearings always on the bearing inner ring. The cracks 

developed in the axial direction, perpendicular to the direction of rolling. Axial 

crack failures are most likely to occur in through-hardened bearings. This type 

of failure can be prevented by using case-carburized bearings, applying a black 

oxide coating, ensuring that the appropriate amount of retained austenite is 

present, and ensuring the correct level of interference fit exists between the 

bearing inner ring and the shaft on which it is mounted. Case-core separation, 

plastic deformation, scuffing, polishing, adhesion, abrasion, sub-case fatigue, 

erosion, electric discharge, cavitation, corrosion, are some additional forms of 

cracking. Whatever may be the type of failure mode, proper and prompt 

identification is needed to prevent a reoccurrence of any gearbox failure. 

 

 

Methodology  

 

Sulzer Metco Company has already established surface coating techniques for 

braking devices, valve parts, hydraulic components, and gears. The coating 

technique depends on the service demands. Thin film coatings are deposited 

by Physical Vapor Deposition or Plasma-Assisted Chemical Vapor 

Deposition. For heat treatment processes like case hardening and carburizing, 

nitriding is used. The following methods are generally used for surface coating 

techniques: 

 

 

Case Hardening 

 

The method of case hardening is used to generate high hardness in the outer 

zone and toughness, as well as an elastic core at the same time. Drive shafts 

require a ductile outer zone and a tougher core due to high torsion and impact 

loads. Case hardened gears and drive shafts are to fulfil the required surface 

hardness, hardness of the outer zone and ductility with a tough core. The shaft 

and gear withstand wear and the specific high pressures required for wind 

turbine applications. Case hardening takes place at a high temperature of 

950°C to 1050°C, such that the carburizing and tempering processes can cause 

deformation. Regular carburizing depth ranges are between 0.1 and 4.0 mm. 

Based on the high case hardness, the post-deformation of teeth is not a 
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problem, although the post-treatment may lead to reduced case hardness. 

Shafts and large gears have to be aligned after the case hardening process. The 

range of hardness values for case hardened steels after hardening is 45-64 

HRC. 

 

 

Nitriding 

 

The nitriding process (shown in Figure 4) is a heat treatment that diffuses 

nitrogen atoms into the surface of a metal to create a case-hardened surface. It 

is largely used on steel, but it is also on titanium, aluminum, and molybdenum. 

Usual applications include gears, die-casting tools, crankshafts, camshafts, 

forging dies, cam followers, valve parts, extruder screws, extrusion dies, 

injectors, and plastic-mold tools. The processes are named after the medium 

used to donate. The three main methods used are: gas nitriding, salt bath 

nitriding, and plasma nitriding. 

 

 

Figure 4. Nitriding Process. 

 

Gas Nitriding 

 

The gas nitriding process is shown in Figure 5. The main donor is a nitrogen-

rich gas, generally ammonia (NH3). It is sometimes known as ammonia 

nitriding. When ammonia comes into contact with the heated work piece, it 

disassociates into nitrogen and hydrogen. The nitrogen atom then diffuses onto 

the surface of the substance, creating a nitride layer. This process has been 

around for a while, but only recently have efforts been made to investigate its 

http://www.metlabheattreat.com/images/gas-nitriding-large.jpg
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thermodynamics and kinetics. Researchers are doing this to accurately control 

the process. The thickness and phase constitution can be selected for the 

nitriding layers (shown in Figure 6) and the process optimised for the 

particular properties. The temperature range for the gas nitriding process is 

480°C–650°C. 

 

 

Figure 5. Gas Nitriding. 

 

Figure 6. Diffusion zone of Nitrided iron. 

 

Salt Bath Nitriding 

 

In this process, the nitrogen-donating medium is a nitrogen-containing salt 

such as cyanide salt. Salts are also used to donate carbon to the work piece 

surface during the salt bath process. Nitrocarburizing temperatures range 

between 550 and 590 degrees Celsius. 
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Plasma Nitriding 

 

Plasma nitriding is preferable for an industrial surface hardening process for 

metallic materials. In this technique, strong electric fields are used to produce 

ionised molecules of the gas around the surface to be nitrided. Such a highly 

active gas with ionised molecules is called plasma. Usually, pure nitrogen gas 

is used for the plasma nitriding process. 

Generally, steels are surface treated with plasma nitriding. The advantage 

of plasma nitriding is related to the close control of the nitrided microstructure, 

which allows nitriding with compound layer formation. During the process, 

the performance of metal parts is improved, and the working lifespan is also 

boosted. For instance, mechanical properties of austenitic stainless steel like 

wear can be significantly reduced and the hardness of tool steels can be 

doubled on the surface. A plasma nitrided part is usually ready for use, and it 

does not require machining, polishing, or any other post-nitriding processes. 

So the process is user-friendly, saves energy and causes little or no distortion. 

Plasma nitriding can be done at temperatures ranging from 260°C to over 

600°C. Stainless steel can be nitrided to maintain the corrosion resistance 

properties at moderate temperatures without the formation of chromium 

nitride precipitates. 

 

 

Carburizing 

 

Carburizing (shown in Figure 7.) is a type of heat treatment process to produce 

a surface which is wear resistant while preserving the value of toughness and 

strength of the core. Carburizing increases the strength and wear resistance by 

diffusing carbon into the surface of the steel. This treatment is suitable for after 

machining with low carbon steel parts, as well as high alloy steel bearings, 

gears, and other components. Usually, the temperature at which the 

carburising and carbonitriding processes take place is 815°–1010°C. Most of 

the carburizing process is done by a fit furnace or sealed atmosphere furnace 

for heating the components. Gas carburizing allows for accurate control of 

both the process temperature and the carburizing atmosphere. The carbon 

potential of the gas can be lowered to allow diffusion, avoiding surplus carbon 

in the surface layer. 

 

 



P. Sakthivel and R. Mani 

 

52 

 

Figure 7. Carburising Process. 

 

Figure 8. Oxide layer and diffusion zone. 

After carburizing, the work is slowly cooled for later quench hardening or 

quenched directly into oil. A quench selection is made to attain the optimum 

properties with the proper levels of dimensional change. In some cases, the 

product is tempered, then cryogenically processed to convert retained 

austenite to martensite, and then retempered. 

 

 

Carbonitriding 

 

The gas carbonitriding process is just like carburizing, except a small amount 

of nitrogen is added at a slightly lower temperature to the atmosphere. As a 
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result, the case depth and, therefore, the capability of load carrying is not as 

high as with the carburizing process, but the dimensional control and wear 

resistance are often better. The carbonitriding process can be performed on 

unalloyed steels; other types of machined parts to make strong and wear-

resistant parts can be produced economically. 

 

 

Nitro Carburizing 

 

The nitrocarburizing process is slightly varied when compared with the other 

processes. During the nitrogen carburizing diffusion process, nitrogen, carbon, 

and oxygen atoms diffuse into the steel surface, forming a compound layer 

and diffusion layer at the surface. The operating temperature for the gas 

nitriding/nitrocarburising process is 482°–650°C. The aim of the process is to 

provide anti-wear resistance on the surface layer and to improve the fatigue 

and corrosion resistance on the material surface. Nitrocarburizing can be 

applied to the same materials as those surfaces coated by nitriding, as well as 

unalloyed materials, where good quality wear resistance and improved fatigue 

resistance can be produced at a low cost. 

 

 

Conclusion 

 

There are numerous methods available for the surface coating of wind turbine 

gear. But the selection of the right method for surface treatment processes 

along with control of process and equipment variables is essential. According 

to the findings, surface-coated gear offers effective protection against Gray 

spotting and pitting. The increase in pitting resistance through the surface 

coating is 27%. Generally, the life of an uncoated gear is 1.35X106, but after 

the surface coating, the expected life of the gears is 5.4X107 cycles. 

 

 

Disclaimer 

 

None. 
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Abstract 

 

In this study, wind speed is predicted using Feed Forward Neural 

Networks with a Backpropagation Algorithm (FFNNBA) and 

Generalized Regression Neural Network (GRNN) in 60 cities in India. 

The input variables used in this analysis are longitude, latitude, air 

temperature, elevation, relative humidity, cooling degree-days, heating 

degree-days, daily solar radiation-horizontal, earth temperature, and 

                                                           
 Corresponding Author’s Email: sentinfophd@gmail.com 



S. Sivakumar, W. Rajan Babu, A. Ravikumar et al. 

 

56 

atmospheric pressure. The Mean Square Error (MSE) of the two models 

is compared, and GRNN gives better results than FFNNBA. The 

accuracy of FFNNBA and GRNN is 98.07% and 96.05% for the training 

phase and 98.97% and 96.54% for the testing phase, respectively. 

 

Keywords: feed forward neural networks with back propagation algorithm, 

generalized regression neural network, artificial neural network, mean 

square error, and wind speed prediction 

 

 

Introduction 

 

Wind energy is one of the most abundant and easily available sources of 

energy. Adoring this fact, responsibility should be raised to obtain maximum 

usage. India is in the second position in terms of population. (A. K. Yadav, 

Hasmat Malik, and S. S. Chaudhry, 2015). The population explosion panics 

with the demand for energy utilization. Most of the sources for meeting this 

demand are non-renewable and are on the verge of extinction. There are many 

renewable sources that can be utilized for generating energy. Among the 

available resources, wind energy is surplus and can be used very efficiently. 

The most common method used for electricity generation from wind is by 

using wind turbines. To install the wind farm in any particular area, the wind 

speed prediction in that area must be accurate. The wind is uncontrollable and 

has properties of randomness. Due to this, it is difficult to predict the wind 

speed correctly (A. K. Yadav, Hasmat Malik, and S. S. Chandel, 2014). Many 

models have been developed for the prediction of wind speed. The most 

commonly used model is the Artificial Neural Network (ANN). For various 

subjects like wind energy assessments, including pattern recognition, 

approximation, and time-series prediction, raised to obtain maximum usage. 

India is in the second position in terms of population. (A. K. Yadav, Hasmat 

Malik, and S. S. Chaudhry, 2015). The population explosion panics with the 

demand for energy utilization. In this study, we have developed two models 

using FFNNBA and GRNN. Then these two models are compared to find out 

which one gives a better result. There are several models developed for the 

prediction of wind speed. The most commonly used model is the Artificial 

Neutral Network (ANN). In this paper we have developed two models using 

FFNNBA and GRNN. Then these two models are compared to find out which 

one gives a better result. 
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Methodology 

 

In this section, the dataset used for this study is described along with a brief 

introduction of FFNNBA, GRNN, and the implementation of the GRNN for 

predicting the long-term wind speed. 

 

 

Database Collection  

 

The selected 24 cities of India are used for training the GRNN model; 15 cities 

of Tamilnadu are used for testing; and 15 cities of Tamilnadu are used for 

prediction (Chow S. K. H., Lee E. W. M., Li D. H. W.). The training, testing, 

and predicted values of selected cities are shown in Table 1. Monthly data 

samples of these locations are collected from a publicly available online 

dataset from NASA (D. F. Specht). Using this data for long-term wind speed 

prediction is done. The variables which are used as input are longitude, 

latitude, air temperature, elevation, relative humidity, cooling degree–days, 

heating degree–days, daily solar radiation–horizontal, earth temperature, and 

atmospheric pressure. The average monthly values for a year using these 

variables are recorded. 

 

Table 1. Datasets  
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Artificial Neural Network (ANN) Models 

 

An artificial neural network (ANN) is primarily designed to model the internal 

operational features of the human brain and nervous system. ANN models can 

be used for various applications, including pattern recognition, pattern 

classification, nonlinear mapping, and general computer simulation. There are 

different types of ANN models for a problem depending on various parameters 

such as the complexity of the function, the architecture, the training algorithm, 

and the number of training cases (A. K. Yadav, Hasmat Malik, and S. S. 

Chandel, 1991). Among the various types of ANNs, we chose the FFNNBA 

and GRNN models. 

 

 

Generalized Regression Neural Network (GRNN) Models 

 

GRNN is normally used for function approximation. It is a learning algorithm 

with an extremely parallel structure. The main purpose of this algorithm is to 

acquire the perfect mapping between the input vector and the target vector 

with minimum error (Dowell J., Weiss S., Hill D., Infield D., 2014). The 

general regression neural network (GRNN) was suggested by Donald F. 

Specht, with the theoretical basis of nonlinear regression analysis as shown in 

Figure 1. The GRNN consists of four components: 

The input layer: the original variables enter the network, which resembles 

the neurons one by one, and are submitted to the next layer. 

 

 

Figure 1. The Structure of the Generalized Regression Neural Network (GRNN). 

The pattern layer consists of two things: A nonlinear transformation is 

applied to the values obtained from the input layer. The transfer function of 

the ith neuron in the pattern layer is: 
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𝑃𝑖 = exp [−(𝑋 − 𝑋𝑖)𝑇(𝑋 − 𝑋𝑖)/2𝜎2] 𝑖 = 1,2, . . 𝑛  (1) 

 

where X represents the input variable, Xi is the learning sample corresponding 

to the ith neuron, and σ is the smoothing parameter. 

The summation layer calculates the sum and weighted sum of the pattern 

outputs. The summation layer has two types of neurons, in which one neuron 

SA makes an arithmetic summation of the output of all pattern layer neurons, 

and the weight of each neuron in the pattern layer to this neuron is 1. Its 

transfer function is: 

 

SA = ∑ Pn
i=1 i

  (2) 

 

The outputs of all neurons in the pattern layer were weighted and summed 

to gain the other neurons’ SNj in the summation layer. The transfer function 

of the other neurons in the summation layer is: 

 

𝑆𝑁𝑗 = ∑ 𝑦𝑖𝑗𝑃𝑖  𝑗 = 1,2,3 … . , 𝑘,𝑛
𝑖=1   (3) 

 

where y_ij is the connection weight between the ith neuron in the pattern layer 

and the jth neuron in the summation layer. y_ij is the jth element in the ith 

output sample y_i. The output layer is where the forecasting results can be 

derived. The output of each neuron is: 

 

𝑦𝑗 =
𝑆𝑁𝑗

𝑆𝐴
 𝑗 = 1,2, …,k (4) 

 

where y_i is the output of the jth neuron. 

 

 

Feed Forward Neural Networks with Backpropagation Algorithm 

(FFNNBA) 

 

The input vector of independent variables pi is related to the target ti (wind 

prediction) using the architecture depicted in Figure 2. This figure shows one 

of the frequently used networks, namely, the layered feed-forward neural 

network with one hidden layer. In this place, every single neuron is connected 

to those of the previous layer through adaptable synaptic weights. Knowledge 

is generally stored as a set of connection weights. Training is the process of 

making changes to the network using a learning mode in which an input is 
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supplied to the network along with the desired output, and then the weights 

are adjusted so that the network attempts to produce the desired output. The 

weights after training contain significant information, whereas before training 

they are random and have no meaning. 

The architecture of the network examined in the study was such  

that 𝑝𝑖
′ = (𝑝𝑖1,𝑝𝑖2,…,𝑝10) p_10) contained values for 10 input independent 

variables from distinct i.  

The input variables are associated with each of the N neurons in a hidden 

layer by using the specifications specified for each independent variable (j) to 

neuron (k) connection. The mapping has two forms for the relationship 

between output t and independent variables: 

 

 

Figure 2. The architecture of an artificial neural network. 

 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑛𝑘
(1)

= ∑ 𝑤𝑘𝑗
(1)

𝑝𝑗 + 𝑏𝑘
(1)

; 𝑎𝑘
1 = 𝑓𝑙𝑒𝑣𝑒𝑙−𝑜𝑛𝑒 (𝑛𝑘

(1)
)𝑅

𝑗=1   (5) 

 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝑛𝑘
(2)

=  ∑ 𝑤𝑘
(2,1)

𝑎𝑘
1 + 𝑏1

(2)
; 𝑡𝑖̂ = 𝑎𝑘

(2)
=𝑗−1

𝑓𝑙𝑒𝑣𝑒𝑙−𝑡𝑤𝑜 (𝑛𝑘
(2)

)  (6) 
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In the case of N neurons in the neural network, the biases are 

𝑏1
(1)

, 𝑏2
(1)

……𝑏𝑁
(1)

. Prior to activation, the input value for neuron k is 𝑏𝑘
(1)

+ 

∑ 𝑤𝑘𝑗𝑝𝑗
10
𝑗=1 . An activation function f(.) (linear or nonlinear) is then applied 

to the input in each neuron and gathered as ∑ 𝑤𝑘
′𝑁

𝑘𝑖=1 𝑓𝑘(𝑏𝑘
(1)

+

∑ 𝑤𝑘𝑗𝑝𝑗
10
𝑗=1 ) + 𝑏(2) where 𝑤𝑘(𝑘 = 1,2, … , 𝑁) are 𝑏(1)and𝑏(2)) bias 

parameters in the hidden and output layers. At the end of the process, this 

activated total quantity is carried out again with function g(.) as 

𝑔[∑ 𝑤𝑘
′ 𝑓𝑘

𝑁
𝐾=1 (. ) + 𝑏(2)] = 𝑓𝑘(𝑛𝑘

(2)
), which then becomes the estimated 

target variable (Wind prediction) value of ti in the training data set, or  

 

𝑡̂𝑖 = 𝑔 {∑ 𝑤𝑘
′𝑁

𝑘=1 𝑓(∑ 𝑤𝑘𝑗𝑝𝑗
𝑅
𝑗=1 + 𝑏𝑘

(1)
) + 𝑏(2)} ; 𝑗 =

1,2, … . . 𝑅 𝑘 = 1,2, … . , 𝑁  (7) 

 

In this study, 70% of the organized data set was used for the training set, 

and the rest (30%) of the data set was used for the test set. 

 

1 fhidden layer (.) = linear (.) and foutput layer (.) = linear (.) 

2 fhidden layer = Tangent sigmoid (.) and foutput layer = linear (.) 

In this study, 70% of the organized data set was used for the training set 

and the rest (30%) of the data set was used for the test set. 

 

 

Implementation of GRNN and FFNN 

 

First, data from 60 Indian cities, monthly data samples of these cities are 

collected from a publically available online dataset from NASA. Then this 

data is divided into training, testing, and prediction. The selected 24 cities are 

used for training the GRNN model; 15 cities are used for testing the model, 

and the remaining 15 cities are used for prediction. The input variables used 

in this analysis are longitude and latitude, air temperature, elevation, relative 

humidity, cooling degree-days, heating degree-days, daily solar radiation-

horizontal, earth temperature, and atmospheric pressure. The training data 

contains 250 samples of 10 variables, the testing data contains 210 samples of 

10 variables, and 200 samples of 10 variables are used for prediction.  
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Wind speed is used as the target. After preparing the data, the code for 

GRNN After preparing the data, the code for GRNN is implanted, and then 

the code is processed. The proposed algorithm for this model is shown in 

Figure 3. 

 

 

Figure 3. Proposed feed forward neural networks with back propagation algorithm. 
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Figure 4. Proposed generalized regression neural network algorithm. 

The FFNN with the backpropagation model was developed using the 

ANN fitting tool (D. F. Specht, 2001). The variables used are the same as in 

GRNN. The input and target data are entered and randomly divided into 70%, 

15%, and 15%, which are used in training, testing, and validation respectively, 

resulting in an ANN-based model. After that, the network is trained by 

changing the hidden layer of neurons. The number of neurons in the hidden 
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layer is calculated by Eq. (Murat Kayri, 2015). The algorithm which is derived 

is shown in Figure 3. 

 

ℎ =
𝑖+𝑜

2
+ √𝑠  (8) 

 

where s and h are the total number of data samples and the number of neurons 

in the hidden layer, o and I represent the output and input variables, 

respectively. 

GRNN is used due to some drawbacks of the FFNN model. Some of the 

drawbacks are that the model has to be run again and again for the different 

numbers of neurons and has low prediction accuracy. The GRNN model does 

not have these drawbacks, which is why it is used to develop the model. 

 

 

Results and Discussion 

 

Wind Speed Prediction Using FFNNBPA 

 

The results of the FFNNBPA-based model are shown in Figure 5. The 

regression plots for training, testing, validation, and overall are shown in 

Figure 5(a) to Figure 5(d). The performance plot of the FFNNBPA model is 

shown in Figure 5(e). This is a plot of the Mean Square Error and the number 

of epochs. From this plot, it is found that with the increase in epochs, the MSE 

is decreasing. The validation set error and test set error to have comparable 

characteristics at epoch 19. The error histogram is shown in Figure 7.  

 

 

Figure 5. Graphical Results of FFNNBA (a) Regression plot for training, (b) 

Regression plot for testing, (c) Regression for validation (d) over all Regression plot 

for ANN model. 
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Figure 6. Error histogram plot for FFNNBA. 

 

 

Figure 7. Performance plot for FFNNBA. 

 

 

Figure 8. Comparison between the measured and predicted values of predicted cities. 

It provides authentication for the model. It is a plot of instance versus error 

values. Table 2 shows the performance of the FFNNBPA model for the 

training and testing phases. The measured and predicted values of the wind 

speed for some cities in Tamilnadu are shown in the table. Figure 8 shows the 

comparison between the measured and predicted values of the predicted cities. 
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Wind Speed Prediction Using GRNN 

 

Figure 9(a) shows the graphical results for the GRNN model during the 

training phase, and Figure 9(b) shows the results during the testing phase. The 

regression plot for training and testing is shown. The accuracy for the training 

is 98.97% and the testing is 96.54%. The model output and the target plot are 

shown in Figure 9(d). Figure 9(d) shows the comparison between the 

measured and predicted values of the predicted cities. 
 

 

Figure 9. Training and testing phase results of GRNN. 

 

Result Comparison of FFNNBA and GRNN Model 

 

In this paper, two models are developed using the FFNNBA and GRNN 

techniques. On comparing these two models, it is found that GRNN gives 

better results than FFNNBA, as shown in Table 2. By analyzing Table 2 and 

Figure 5 to Figure 10, we conclude that GRNN gives comparable results to 
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FFNNBA. Therefore, GRNN can be used to predict the wind speed at a new 

location. The comparison of the measured and predicted values of wind speed 

for both models is shown in Figure 10. The wind speed of some cities in 

Tamilnadu, India has been predicted by using both models and compared with 

the measured values obtained from NASA and is shown in Table 3. 
 

Table 2. Result comparison 
 

Model Training Phase Results Testing Phase Results 

MSE RMSE Accuracy (%) MSE RMSE Accuracy (%) 

GRNN 0.0117 0.1073 98.971 0.0394 0.1874 96.05 

FFNNBA 0.0391 0.1987 98.07 0.0392 0.1894 95.4 
 

 

Figure 10. GRNN and FFNBA model result comparison with measured value. 

 

Table 3. Predicted values of wind speed using GRNN and FFN models 
 

 
Measu = Measured. 
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Conclusion 

 

In this paper, GRNN and FFNNBA-based neural network models are 

developed to predict long-term wind speed. The data sets for the training, 

testing and prediction phases of these two models are collected by NASA. The 

variables which are used as input variables for these models are longitude, 

latitude, air temperature, elevation, relative humidity, cooling degree–days, 

heating degree–days, daily solar radiation–horizontal, earth temperature, and 

atmospheric pressure. The wind speed prediction accuracy for FFNNBA is 

found to be 98.07% for training and 96.05% for testing, while GRNN is 

98.97% for training and 96.54% for the testing phase of the model. In the 

comparison of these models, it is found that GRNN gives better results than 

FFNNBA. Therefore, GRNN can be used for the effective prediction of long-

term wind speed. 

 

 

Disclaimer 
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Abstract 

 

A wind turbine is a machine that converts the energy of the wind into 

other more useful forms, like mechanical energy. Water pumping wind 

turbines are generally referred to as wind turbines. Shrouded wind 

turbines are characterized by a higher mass flow rate of air passing 

through the turbine blades as compared to bare wind turbines. 

Thermoeconomic analysis of shrouded wind turbines considers different 

shroud area ratios and the speed range of the wind turbine. The significant 

intension of this work is to frame an Artificial Neural Network (ANN) 

with the assistance of optimization techniques. The ANN is utilized to 

predict the various thermoeconomic parameters of wind power 

generation based on wind speed and turbine surrounding area. Different 

optimization techniques such as Particle Swarm Optimization (PSO), Ant 

Colony Optimization (ACO), and Harmony Search (HS) algorithms are 
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utilized to arrive at the optimal weight of the ANN process. All the 

optimum results demonstrate that the error values attained between the 

output of the experimental values and the predicted values are close to 

zero in the designed network. From the results, the minimum error of 

85.72% is determined by ANN to attain the harmony search (HS) 

algorithm. 

 

Keywords: wind turbine, speed, thermoeconomic parameters, area ratio, 

artificial neural network (ANN), harmony search (HS) 

 

 

Introduction 

 

At present, the wind turbines offer a huge radar signature on account of the 

turbine tower and also the rotating blades, which stimulate a Doppler spread 

which is dependent on the blade tip momentum, frequency, and aspect angle. 

(Alessio Balleri et al., 2013) In fact, the wind turbine has emerged as one of 

the best methods to extract power from the wind. Further, it is common 

knowledge that the power extracted from wind by a wind turbine is in direct 

proportion to the cube of velocity, with the effect that a trivial acceleration of 

the wind tends to pave the way for a huge enhancement in power extraction 

(Wen-Xue Wang et al., 2015). 

In this regard, the innovative brands of wind turbines point to an 

inclination towards elevated power levels. Moreover, the added energy harvest 

capacity in view of the higher tower height and the larger blade diameter 

resulted in an incredible preliminary installation cost as well as the 

preservation expenses per unit (Venkata Yaramasu et al., 2014). Thus, it is 

evident that the actuator disk continues to be in its hey-days as it has been 

afforded a red-carpet welcome as a highly thriving and extensively employed 

brand for replicating the open and ducted wind turbine wakes.  

Furthermore, there is a lot of excitement surrounding the comparison of 

open and ducted wind turbines in terms of realising an incredible increase in 

the power extracted by the rotor (Bontempo and Manna, 2014). Incidentally, 

the flow fields of a small wind turbine with a flanged diffuser illustrate the fact 

that the power coefficient of the shrouded wind turbine is approximately four 

times that of the bare wind turbine (Chen, Liao, and Cheng, 2012). Further, 

increasing attention has been evinced by many investigators throughout the 

cosmos to diffuser technology exploration, enthused by the significant 

improvement in the efficiency which the diffuser is competent to generate in 
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wind turbines, especially for minute systems (Deborah Aline et al., 2014). On 

account of the inconsistent wind flow in the urban area, certain wind turbines 

deploy stator vanes to further propel the efficiency to superior levels. The 

Sistan wind mill system, triggered by the drag force with added wing wall, top 

and bottom disk, significantly ushers in supreme overall efficiency of the 

turbine (Wong et al., 2014), which is likely to depend on certain contributing 

features like the generator efficiency, the ratio of the gear box system, and the 

height of the hub from the ground (Seyed Mehdi Mortazavi et al., 2015). In 

the case of a shrouded turbine, the turbine is enclosed in a shroud which goes 

on to step up the incoming wind, incredibly scaling up the mass and power 

available to the turbine (Aniket Aranake et al., 2015). The add-on of a diffuser 

shroud endowed with a brim has shown its mettle in enhancing the efficiency 

of a wind turbine by stepping up its output power.  

Though there are three-phase generators (Huihui Sun and Yusaku 

Kyozuka, 2011) which are offered in the market for employment in wind 

turbines, the higher phase number generator seems to have an edge over them 

as a zooming technology as it glistens with glittering advantages which are not 

within the reach of the three-phase systems (Janarthanan et al., 2014). With 

the ever-zooming requirement for energy, the setting up of wind turbines has 

inched towards the deeper waters. Whereas the floating platforms acting as 

strong pillars for the wind turbines emerge as a preferred choice in deep waters 

(greater than 90 m), fixed platforms are capable of delivering the goods in the 

case of transition waters (30–90 m) (Abhinav and Nilanjan Saha, 2015). 

Several renovations to the deflecting plate concept have been initiated on the 

Savonius wind turbines, which have computationally standardised the 

geometry and position of a flat deflector for both the two-blade and three-blade 

Savonius turbines (Daegyoum Kim and Morteza Gharib, 2013). One of the 

major mechanisms for this is a blend of enhanced mass flow rate and decreased 

wake rotation downstream of the turbine.  

With a diffuser-shrouded turbine, the mass flow rate of air through a 

turbine is enhanced because of the sub-atmospheric pressure at the diffuser 

exit plane (Buyung Kosasih and Andrea Tondelli, 2012). Thermo-economics, 

in essence, integrates the theories of thermodynamics and economics with an 

eye on furnishing functional data on cost-conscious energy renovation 

mechanisms that cannot be generally accomplished by means of traditional 

energy and economic modelling (Iman Janghorban Esfahani and Changkyoo 

Yoo, 2014). The thermo-economic technique is employed to allocate the cost 

of the entire procedure onto the internal streams by way of energy and non-

energy. The stream-cost equations are organised in a matrix form and resolved 
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to evaluate the financial outlay of the process streams (Seyed Reza et al., 

2011). In fact, the thermo-economic assessment is highly significant in 

studying the nature of the cycles thermodynamically and financially. The 

energy elimination and cost flow in the segments of the cycles can be tracked 

and comprehended by means of thermo-economic techniques (Rabi Karaali 

and Ilhan Tekin Oztürk, 2015). The comprehensive formulations for the 

energy, exergy, and exergy-economic evaluation for the plant segments and 

the whole tri-generation systems have been effectively developed.  

The thermodynamic and exego-economic systems embrace the efficiency 

and performance parameter definitions and the cost assessment formulation 

according to the Specific Energy Cost (SPECO) technique (Ozgur Balli et al., 

2010). The blend of thermodynamic performance and economic factors is 

shortlisted as the objective function. The thermo-economic optimization of the 

biomass-based integrated energy system employs the total cost rate of the 

system and the energy efficiency as objective functions (Yongqiang Feng et 

al., 2015). 

 

 

Literature Review 

 

In 2015, Goldstein (Leo Goldstein, 2015) made a name for himself by bringing 

to light an innovative wind turbine with a downwind rotor that was tilted 

upward. An external cable appended to the centre of force of the blades acts 

as a support for each rotor blade, and the tower is supported by guy wires at 

the top. The innovative wind turbine does not employ either a gearbox or a 

direct drive generator. The novel mechanism is structurally assessed and 

contrasted vis-a-vis a traditional wind turbine. The assessment reveals the fact 

that developing the novel technique may entail an outlay of around 2.5 times 

less than that required for a traditional wind turbine of the same power on land. 

The cost benefits tend to perk up in offshore scenarios as well. 

In 2015, Fahad Al-Sulaiman et al. (Fahad Al-Sulaiman and Bekir Yilbas, 

2015) fantastically proposed the thermo-economic evaluation of the shrouded 

wind turbines after integrating various area ratios of the shroud. It was 

established that the wind turbine efficiency scaled up depending on the 

enhancement in the shroud area ratio. Further, it was proved that the expenses 

were incredibly elevated by the low wind speed. In addition, the outcomes 

revealed that the energetic improvement potential escalated as the wind speed 

was stepped up, and it went up further at high shroud area ratio. The 

expenditure was minimum for an area ratio of 1.5 and maximum for 1.1 The 
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overheads of the energy lost were also evaluated, and it was found that the 

area ratio of 1.5 was the minimum energy cost, while that of 1.1 entailed the 

maximum energy cost, which was in harmony with the cost of the power 

generated. 

In 2014, Jafari et al. were afforded a bouquet of applause for their novel 

proposal by which the Computational Fluid Dynamic (CFD) simulations of a 

miniature commercial wind turbine were performed with a simple frustum 

diffuser shrouding. The diffuser was modelled with various shapes with the 

intention of comprehending the impact of length and area ratio on the power 

expansion. This factor was greatly influenced by the diffuser area ratio. The 

outcomes of their investigation offered a technique to evaluate the effective 

frustum diffuser geometries for a miniature wind turbine. The results can be 

extended to any kind of wind turbine intended for the nominal wind speed. 

In 2014, Canan Cimsit et al. had the conviction and courage to advocate 

the performance of comprehensive energy-based thermo-economic 

evaluations, thermo-economic assessment with exergo-economic variables, 

and thermo-economic optimization by employing the non-linear simplex 

direct search technique for the cascade refrigeration cycle. The exergetic 

effectiveness and the least cost of the objective function are decided as 7.30% 

and 4.05 ($/h) respectively for the optimum case of sample application. In 

comparison to the base case, the least cost of objective function is reduced by 

approximately 3.3%, whereas the coefficient of performance (COPcyclegen) 

and energetic efficiency of the cascade cycle have increased by approximately 

7% and 3.1%, respectively. 

In 2013, Chonga et al. were instrumental in launching a novel shrouded 

wind turbine mechanism studded with a multitude of prospective advantages 

over the traditional wind turbine. The incorporation of the PAGV into the  

3-in-1 wind, solar, and rain water harvester on high-rise buildings is 

demonstrated. From the wind tunnel testing measurements where the wind 

turbine is in a free-running state, only the rotor inertia and bearing friction 

were initiated, and the wind rotor rotational speed (with the PAGV) was 

enhanced by 75.16%. By means of a semi-empirical technique, the power 

output increment of the rotor with the PAGV went up by 5.8 times at a wind 

speed of 3 m/s. 

In 2013, Gandiglio et al. came up with a grandiose proposal, shelling out 

the thermodynamic and financial performance of the two plant configurations.  
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The exergy assessment has illustrated an augmented exergetic 

accomplishment for the pressurised cycle, which envisages components with 

superior efficiency and a resultant reduced rate of exergy damage (20% less 

than the atmospheric plant). The cheering outcomes have clearly proved that 

the pressurised plant has incredibly overwhelmed the atmospheric one, with 

an outlay (based on the exergo-economic base) of electricity of 47.7 $/MWh 

in place of 64.2 $/MWh. Taking into account the exergy and financial 

outcomes integrated in a meticulous thermo-economic analysis, the thermo-

economic outlay of electricity was brought in and deployed to underscore the 

sterling overall performance of the pressurised plant, with a TCOE in the 

PSOFC plant 25% lower than in the atmospheric one. 

 

 

Proposed Methodology 

 

An artificial neural network structure is utilised to predict the thermoeconomic 

parameters with the various wind speeds and wind turbine surround area 

ratios. Thermoeconomic parameters, which are air mass flow rate, power of 

the wind, energy efficiency, energy loss, improvement potential, cost of power 

produced, and cost rate of energy loss of the wind power generation. From the 

above mentioned parameters, the ANN structure is generated with the input 

layer, hidden layer, and output layer of the structure. This is utilised to train 

and test the process. For the training process, 80% of the data is used in 

preliminary stage prediction with known input data values and during the 

testing process. The 20% of data used in validation for the ANN structure is 

based on the input constraints that predict the thermoeconomic parameters. In 

the input and hidden layer processes, the weights α and β are used in the ANN 

structure. For the better value produced in the ANN structure, optimise the 

weight of the structure. To optimise the weight of α and β various optimization 

techniques are utilised to arrive at the optimal weight of the structure. If the 

achieved results are not up to the level expected, then the training process is 

repeated again to adapt the structure to the appropriate level necessary to 

predict the output. Once the attained error values between the output of the 

experimental values and the predicted values are close to zero, the designed 

model is utilised for predicting the unknown values in the input and 

minimising the time interval of the process. The ANN structure with the 

Harmony Search (HS) optimization process is shown below in pseudo code. 

 

 



A Machine Learning Approach for Thermodynamic Analysis … 

 

77 

Pseudo Code for the Proposed Method 
 

 
 

 

An Artificial Neural Network 

 

The artificial neural system is an adapted computational model that aims to 

copy the neural structure and workings of the human cerebrum. It contains an 

interconnected structure of misleadingly delivered neurons where capacity is 

used as a pathway for information exchange. With every different inner or 

outer boost, artificial neural systems are adjustable and flexible, learning and 

conforming. Artificial neural systems are employed as a part of the 

arrangement, for example, gratitude frameworks, information handling, 

mechanical technology, and demonstrating. The information sets are classed 

out by the framework for knowing the base sneak past misusing the weights α 

and β, which are altered with the end goal of deciding the motions of the input 

stipulations. Designed for improving weights α and β diverse improvement 

systems are utilised to optimise the weights of some algorithms, which are 

Harmony Search (HS), Particle Swarm Optimization (PSO), and Ant Colony 

Optimization (ACO). These are adequately used to land at the perfect weights 
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of the target capacity, which is given by the contrast between the test and 

gauge values. 

 

 

Figure 1. Neural network structure. 

In Figure 1, the important structural planning of the artificial neural 

system is pointed out. It has a multi-layer neural system that consists of three 

layers, for instance, the input layer, concealed layer, and output layer. Neural 

networks carry out these functions together and in parallel by the units, rather 

than there being an obvious delineation of subtasks to which different units 

are allocated. The term “neural network” frequently refers to models  

used in statistics, cognitive psychology, and artificial intelligence.  

Neural network models that follow the central nervous system are part of 

theoretical neuroscience and computational neuroscience. In this 

methodology, the necessary ANN structure, the shrouded layer is 1, and the 

unseen neuron is 1 to 20.  

The mathematical result of ANN equation includes Fi that is an input layer 

parameter; Oi is an output layer parameter. 

 

Structure Initialization  

In the initialization process, three inputs, which are based on the input layer 

weight and the hidden layer weight, are initialized. Input parameters 

considered are wind speed and different area ratios. 
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Input Layer 

The input layer contains a number of neurons. All input layer neurons are 

connected to the hidden layer. It has four inputs i1, i2….in and the input 

neurons possess a weight W1, W2….Wn, which is represented as the ith input 

layer neuron connected with the jth neuron of the hidden layer. Like the input 

layer basic function equation, which is defined as equation 1 where L is a basic 

function of hidden neurons, l is the number of hidden units, β is the weight of 

the input layer neuron, N is the number of data, and W is the input value. In 

these value-based calculations, the basics function 

 

 



N

j

ijif WL
1

  (1) 

 

Where Li is a basic function, ijb is an input layer weight, and i is a number 

of input Wi1= wind speed and Wi2 = Area ratio. 

 

Hidden Layer 

The hidden layer contains a number of neurons which are named as

1 2, ,......... nh h h , the hidden layers are connected with the output layer by using 

the neurons. Weight obtaining equation is αi where Li is the number of input 

layers, and the weight αi and ij based obtains the activation function. The 

ANN is usually based on several optimizations of the weights. In this 

arithmetic demonstration, the harmony search (HS) optimization strategy is 

observed to achieve the optimal weight. 

 

 

The Harmony Search (HS) Algorithm  

 

The Harmony Search was inspired by the improvisation of jazz musicians. 

Specifically, the process by which the musicians (who have never played 

together before) rapidly refine their individual improvisation through 

variation, resulting in an aesthetic harmony. 
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Figure 2. Harmony search process. 

 

Initialization of Solution and Algorithm Parameters 

Initialize the input parameters such as weight α and β which is defined as the

i ,
i , is an initial solution, and i is a number of solutions, and also initialise 

the parameters such as step. This process is known as the “initialisation 

process.”  

 

 Ii = (Woj, W1j….Wn) 

 

Where, iI  defines an initial solution, i ε [1, 2 … 10] and jε [1, 2 … 140]. 

Since the ith value represents the number of solutions and the jth value 

represents the length of the solution. 

The HS algorithm parameters are also specified in this step. These 

parameters are 

 

 Harmony Memory Size (HMS) or the number of solution vectors in 

the harmony memory; 

 Harmony Memory Considering Rate (HMCR), HMCR;  

 Pitch Adjusting Rate (PAR);  
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where Total input = 2; Hidden neuron = 20. 

Based on equation (2), the attained solution length is 140 and the solution 

range lies between 1010 
jiI according to the initial solution-based 

output as thermoeconomic parameters. 

 

Fitness Function 

Evaluate the fitness value of each harmony solution by using this equation (3) 

and then calculate the best solution values.  
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Where, Fi is a fitness function α and β are weights, is the input parameters, 

is the number of inputs; j is the number of weights, and h is the number of 

hidden neurons. This equation is based on the fitness value of the process. 

The new solutions for the process of updating the new harmony memory 

are based on the following process. 

 

Initialize the Harmony Memory (HM) 

In this step, the HM matrix is filled with as many randomly generated solution 

vectors as the HMS. 
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Improvise a New Harmony 

A new harmony vector is generated based on three rules such as memory 

consideration, pitch adjustment, and random selection. Generating a new 

harmony is called improvisation. In the memory consideration, the value of 

the first decision variable for the new vector is chosen from any of the values  
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in the specified HM )( 1

1

1

HMSWW   range. HM is similar to the step where the 

musician uses memory to generate a tune. The values of the other decision 

variables are chosen in the same manner. The HMCR ]1,0[ is the rate of 

choosing one value from the historical values stored in the HM, while 

)1( HMCR  is the rate of randomly selecting the value from the possible 

range of values. 
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iiii
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For example, a HMCR of 0.90 indicates that the HS algorithm will choose 

the decision variable value from historically stored values in the HM with a 

90% probability or from the entire possible range with a (100–90%) 

probability. Every component obtained by the memory consideration is 

examined to determine whether it should be pitch-adjusted or not. This 

operation uses the PAR ]1,0[  parameter, which is the rate of pitch 

adjustment, as follows: 

The value of (1-PAR) sets the rate of doing nothing. If the pitch 

adjustment decision for is YES, is replaced as follows: 

Where, is an arbitrary distance bandwidth, which is a random number 

between 0 and 1. 

 

Update Harmony Memory 

For each new value of harmony, the value of the objective function is 

calculated. If the new harmony vector is better than the worst harmony in the 

HM, the new harmony is included in the HM and the existing worst harmony 

is excluded from the HM. 

 

Optimal Solution 

Based on the abovementioned process, the optimal weights and also optimal 

fitness are attained, which is defined as this optimal fitness based on the 

output. The optimal values are based on predicting the output, which is air 

mass flow rate, power of the wind, energy efficiency, energy loss, 

improvement potential, cost of power produced, and cost rate of energy loss. 
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Output Layer  

 

The output layer has a number of neurons. The neurons in the hidden layer are 

connected with the output layer by the neurons. Each connection has a 

weighted value, such as n ,......., 21 . The basis function of the output units 

is expressed by the equation is lO  . 

 

 )8()( )(

1

optimali

i

n

i

l FO 


  (5) 

 

The calculation of the error value and weights ranges from -50 to 50, I 

represents the input parameters, i represents the number of inputs, j represents 

the number of weights, and h represents the number of hidden neurons. 
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Where ND is the number of the data, D is the desired value, and P is the 

predicted value, i = 1, 2,..., n. By using this formula, the error value is 

calculated from the difference between the desired value and the predicted 

value. 

 

 

Results and Discussion 

 

The results are taken on the working platform of MATLAB 2014 with the 

system configuration, i5 processors with 4GB RAM using the ANN process. 

Wind turbine considerable parameters like wind speed and area ratio with the 

output parameters like air mass flow rate, power of the wind, energy 

efficiency, energy loss, improvement potential, cost of power produced and 

cost rate of energy loss are obtained by utilising the artificial neural network 

(ANN). For developing the optimal artificial intelligence network with the HS 

algorithm, optimising the fascinating function of finding the optimal solutions 

of α and β is elegantly performed. Subsequently, the optimal solutions for the 

weight with input constraints are arrived at with the assistance of the amazing 

HS process. The major objective of the ANN is to forecast the output like a 
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real-time experiment to minimise the error. In other words, the differential 

error between real-time output and the attained output from ANN is found to 

be near to zero. As a result, the related output is evaluated by utilising the 

thermoeconomic parameters. 

 

 

Convergence Graph 

 

The graphs shown below successfully show the wind power generation 

parameters fitness graphs based on iteration of the HS, PSO, and ACO by 

altering the weights in the range of -500 to 500, and thus the error values are 

determined. The error graph is drawn with the iteration symbolised on the  

X-axis and fitness on the Y-axis. 

Figure 3 illustrates the convergence graph for thermoeconomic 

parameters for wind generation with the fitness values. The graph basically 

resolves the harmony search (HS) procedure, which presents the minimum 

fitness in a maximum iteration. From the graph, the minimum wind power 

generation that is achieved in the HS technique is 0.04 in the 44th iteration. 

The minimum error of the proposed work compared to other optimizations is 

72.3%. The wind power generation parameter, which is based on speed and 

area ratio, shows that the predicted values are almost equal to the experimental 

values. The HS process compared to the ACO error difference is 72.3% and 

the PSO is 70.23%. The harmony search optimization approach obviously 

specifies the ideal fitness value with competent results. 

 

 

Figure 3. Convergence graph. 
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The Error Values of Output Parameters in Different Algorithms 

 

In this section, the number of testing data is varied and an error value is 

calculated for some input data like wind speed and area ratio, based on the 

predicted wind power generation parameters. The parameters such as air mass 

flow rate, power of the wind, energy efficiency, energy loss, improvement 

potential, and cost of power produced and cost rate of energy loss are 

determined. The predicted results are shown below. 

Figure 4 shows the thermodynamic parameters for the different 

techniques with error values. Figure (4a) shows that the air mass flow rate 

error values for the different algorithms are similar. The minimum error value 

for this parameter is 3.51 for HS, and this value compared to the ACO, the 

error value is 91.70, and the PSO is 201.3. In PSO, the maximum error value 

of the initial testing data is 210.27 and the HS is 1.13. The behaviour of the air 

mass flow rate graph is initially minimised and maximised according to the 

value based on the testing inputs. Figure (4b) shows that the power produced 

in wind power generation of the proposed technique is compared to the ACO 

where the error difference is 90.4% and the PSO is 85.5. In the initial testing 

data, the error value is 176.4, 230.83 in the HS process. This technique 

contrasts with the other two algorithms by 11.56%, and the Figure (4c) also 

shows the energy efficiency for the testing data where the error is set at 2.5 for 

the initial data in all algorithms, and the error will be decreased and then again 

increased. The energy efficiency error value of all the testing data is 0.017 for 

HS, 0.27 for ACO, and 1.56 for the PSO process. 

Figure (4d) shows that the energy minimum error value is 0.19 for HS, 

0.27 for ACO, and 1.56 for PSO. The next figure (4e) shows the potential error 

value for the optimization technique. The minimum error value is 0.107 in HS. 

This technique is compared to ACO and the difference is 91.45% and the PSO 

difference is 91.07%. The predicted value of the wind power produced is 

shown in Figure (4f). The minimum error value of testing data is 0.6 in ACO 

and similar values for the other techniques. Then the energy loss values are 

shown in Figure (4g), where the minimum error value is 0.19 in HS. All the 

testing data minimum error value is compared to other techniques and the 

difference is 5.63%. In all the theromodyamic parameters, the minimum error 

value is attained in HS technology. 
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Figure 4. Error graph for testing data. 

 

Experimental Results and Predicted Values for the Proposed Method 

 

Using the neural network process, the testing results and original values for 

the wind power generation and thermodynamic parameters are shown in the 

Table 1. 

Table 1 displays the actual and predicted values of the proposed method, 

in which the wind speed and the surrounded area ratio are calculated using the 

thermodynamic parameter. For the first testing data, the actual value of the air 

mass flow rate is 130 and the nearby value that occurs in the HS technique is 

128.8. The optimum weights with the minimum error value of thermodynamic 

parameters are attained in the HS approach. 
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Hidden Neuron- Based Thermoeconomic Parameters 

 

All the thermodynamic parameter error values of the artificial neural network 

process with different optimization algorithms This ANN process considers 

the one hidden layer and the neurons varying from 10 to 30. In each neuron, 

the parameters error values vary in the graph shown below. 

 

 

 

Figure 5. Hidden neuron-based error values. 

Figure 5 shows that the neural network structure with neurons varying 

predicts the error value. Figure (5a) shows the air mass flow rate for the 

different neurons in 10 neurons. The error value of this parameter is 52.69 for 

the PSO process. It’s compared to the 20 neuron PSO technique, and the 
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difference is 73.7%, and the 30 neuron PSO technique has a difference of 

80.23%. The proposed technique of the 10 neurons is compared to 20 and 30, 

and the difference is 75.5%. Figure (5b) shows that the power generation for 

the wind mill is if the neuron varies the performance of the proposed method 

and the other techniques also vary these thermodynamic parameters. The 

difference between 10 neurons compared with 20 and 30 neurons will be 

98.45% of the proposed technique. The particle swarm optimization process 

has obtained a maximum error value of 30 neurons in the process. Figure (5c) 

shows the energy efficiency of the error and in this graph, the minimum error 

is attained in the HS technique with 10 neurons varying and also the maximum 

value is arrived at in the ACO process with 30 neurons varying. 

Energy loss as a thermodynamic parameter is shown in Figure (5d). In this 

process, the maximum difference is predicted and experimental values are 

shown in the ACO technique with 30 neurons. The minimum deviation 

compared to the HS and PSO processes of 30 neurons is 98.27%. The next 

Figure (5e) shows that the improvement potential maximum error value of the 

proposed method is attained in the 10 neuron process, and the next Figure (5f) 

shows that the cost for power produced in the proposed method of the 20 

neuron is compared to the ACO with 20 neurons, where the difference is 74%, 

similar to the other techniques. The final graph shows the cost rate of energy 

loss of the 10 neurons where the maximum error value is 1.7 in the HS 

technique and 20 neurons is 1.89 in the ACO process. 

 

 

Conclusion 

 

The thermoeconomic parameters of wind turbines are predicted by using the 

artificial neural network (ANN) with the HS algorithm, which amazingly 

attains the accurate ideal values of the weights in the model. Multivariable 

optimization issues are resolved in the universal optimum solution and 

illustrate the adaptability of choosing the design variables based on the 

weights. During this process, consider the wind speed and area ratio of the 

turbine. The convincing output results are observed to be nearly equal to the 

data set minimum error value achieved in the optimization method. The 

minimum error of ANN with HS process, the air mass flow rate, power of the 

wind, energy efficiency, energy loss, improvement potential, cost of power 

produced, and cost rate of energy loss is 98.14%, 95.58%, 96.9%, 52.85%, 

95.42%, 72.4%, and 88.80% of the prediction process. In future, the ANN 

investigators will look towards further unbelievable improvement 
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methodologies for the production of diminished errors with their excellent 

techniques for the thermo-economic parameters of wind power generation. 
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Abstract 

 

A wind turbine is a device that converts kinetic energy from the wind, 

also called wind energy, into mechanical energy, a process known as 

wind power. If the mechanical energy is used to produce electricity, the 

device may be called a wind turbine or wind power plant. A utility wind 

turbine’s typical design lifetime is 20 years, but the gear boxes that 

convert the rotor blades’ rotational speed of 5 to 22 RPM to the 

generator’s required rotational speed of 1000 to 1600 RPM frequently 

fail within 5 years of operation and must be replaced. The surface and 

sub-surface damages lead to fatigue crack initiation followed by crack 

growth and eventual fracture. This paper presents the design of wind 

turbine gear using Pro-E and analysis was carried out by ANSYS 

software. Through analysis, it was identified that chromium-vanadium 

material is better than EN-36 material for making wind mill gears, 

thereby providing higher strength and lifetime. Another part is to design 

a windmill gear using Pro-e Wildfire 2.0 and the stress analysis of the 

gear is done by using ANSYS Work Bench and the results are calculated. 

By achieving this concurrent engineering concept, the product 

development cycle time can be reduced considerably for any kind of 

model with the required quality. Based on the computation process and 
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the detailed analysis, the life of the windmill has increased by up to 10% 

of the desired life. So it tends to reduce the breakdown of the windmills 

and also increase the power production range. The next step is to analyze 

and modify the wind turbine blades. There are two electromagnetic 

induction generators that are preferred to share the loads through a single 

shaft over straight-level gears. The poles of these generators will be 

changed from alternate to parallel. The output electric current is stored 

by a series of batteries for utilisation through the converter and step-up 

transformer. The wind energy conversion process is done by the control 

system to extract extreme energy from the incident wind. The maximum 

power point tracker (MPPT) control schemes have been reported, which 

are operated by varying the speed of the generator in order to optimize 

wind turbine aerodynamic efficiency. However, for the implementation, 

the measurement of accurate wind speed is required. The optimum value 

depends upon the accuracy of the loss model parameters. 

 

Keywords: wind turbine, helical gear, pitting, Pro-E & ANSYS, power, 

MPPT, HAWT, VAWT, MATLAB, pitting, gear, Pro-e, and ansys 

 

 

Introduction 
 

Helical gears are extensively used in numerous engineering applications, 

including gearboxes. Failures of gears not only result in replacement costs but 

also in process downtime. The causes of gear failure are numerous, including 

faulty designs, improper applications, and manufacturing errors. Design errors 

include improper gear geometry, improper materials, poor material quality, 

and an inappropriate lubrication system. Application errors include improper 

mounting and installation, poor cooling and lubrication, and poor 

maintenance. Manufacturing errors could be from poor machining and faulty 

heat treatments. Surface pitting is one of the principal modes of failure of 

mechanical elements that are subjected to rolling contacts, like gears and 

bearings, and it governs the service life of the components. The complete 

contact fatigue process starts with micro-pit formation, followed by crack 

initiation, crack growth, and the breakaway of the surface material layer. In 

practice, it is common that contact fatigue damage will first occur in the 

dedendum of the smaller gear (which is usually the driving gear) of a gear set. 

Damage due to contact fatigue in gear teeth usually occurs in one of three 

areas: along the pitch line, in the addendum, or in the dedendum. The pits 

formed on the surface lead to stress concentrations that serve as initiation sites 

for the cracks and eventually the failure. The reducer gearbox failed after 
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approximately 15,000 hours, which was much lower than the expected 

working life of 30,000–50,000 hours in continuous running conditions. 

The wind is a clean source of energy that does not pollute the air, and it is 

a renewable energy source that is available at no cost. The kinetic energy of 

the wind can be used to produce electrical energy by wind turbines (Chaware. 

K.D., Dr. P.V. Washimkar, 2016). A wind turbine is a type of power plant. 

The different configurations can be used for wind turbines. One of two 

different modes of operation can be used in the function of the wind turbine, 

one being MPPT and the other being a Fuzzy logic controller. These types of 

operations are used for both fixed-speed and variable-speed wind turbines 

(Ashwin P. Joseph, Suraj P. Chavhan, Pravesh K. Sahare, Abdul Arif, and 

Tanveer A. Hussain, 2015). In previous years, fixed speed was used to achieve 

maximum efficiency for a given wind speed. But, power conversion is not an 

efficient method. To avoid this reason, nowadays, variable speed wind 

turbines are used. Maximum efficiency over a wide range of wind speeds has 

been achieved by this design. 

Power generation from wind has emerged as one of the most successful 

renewable energy technologies. Despite the facts of unpredictability and lack 

of control over wind energy, windmills are preferred as the source of power 

generation because of growing environmental concerns with respect to the use 

of other conventional fuels and to preserve the finite resources of fossil fuels. 

The field reliability study of modern wind turbines shows a reduction in failure 

rates of the gearbox subsystem in comparison with other subsystems. 

However, the gearbox has a low availability due to its high downtime per 

failure, and gearbox failure incurs high repair costs. However, for gear systems 

used in wind turbine applications, the demand for gearboxes designed with 

extremely high gear ratios and operating under conditions subject to a broad 

spectrum of load and speed variations makes reliability prediction and failure 

prevention difficult. Current research initiatives in this area include the Gear 

Reliability Collaborative (GRC) of US NREL/DOE, which has committed 

research efforts to tackle this challenging problem. The failure mode is an 

important method in reliability analysis appropriate at the design stage. It 

provides benefits by improving designs by identifying weaknesses in 

subassemblies and components of a complex system. Identification of weak 

points in design also prompts further improvement in the configuration design 

of the system. 

The output range of a single windmill is small, and it can’t be used for 

commercial purposes. Therefore, a large number of windmills are erected over 

a large area, which is called a wind energy farm (FarhaKhanam, NeeleshSoni, 
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2016). Wind farms are created with multiple numbers of windmills placed in 

the same area for the purpose of generating a greater amount of electricity. 

Due to increasing energy prices and the resultant search for alternatives, 

nowadays there are thousands of wind farms available in many countries 

around the world. Each and every windmill is coupled together to get the 

electricity for commercial applications. For the production of electricity, the 

rated wind speed should be greater than 15 km/hr. In recent years, demand for 

increasing numbers of power plants has been renewed, sparking an interest in 

Vertical Axis Wind Turbines (VAWT) (Pravesh K. Sahare, Tanveer A. 

Hussain, Sangita N. Kakde, Sujata R. Ingle, and Ambikaprasad O. Chaubey, 

2016). The VAWT withstands high wind speeds when compared with the 

Horizontal-Axis wind turbines (HAWT). 

 

 

Literature Review 

 

In the wind turbine (Deng, ZheChen, Fujin Deng, 2010), a multiple permanent 

magnet synchronous generator (MPMSG) system is engaged in the wind 

turbine. A multilevel converter interface based on MPMSGs is established to 

combine a desired high ac voltage output that is directly connected to the grids. 

A phase angle shift strategy is proposed in this paper, which effectively 

reduces the fluctuation of the electromagnetic torque sum and results in good 

performance for the MPMSG structure. 

The authors (Matthias Kinzel, Quinn Mulligan, and John O. Dabiri, 2012) 

analyzed the flow field of an array of 18 counter-rotating vertical-axis wind 

turbines (VAWTs), with an emphasis on the fluxes of turbulence kinetic 

energy and mean. The turbine wakes up the recovery of the average wind 

speed between the turbines. The rows are derived from the measurements of 

the velocity using a meteorological tower. The flow fields in wind farms are 

highly complex due to the contact between the wind turbines and the 

atmospheric boundary layer. The average horizontal wind speed during the 

measurement was 8.05 m/s1 at 10 m, which means above the top of the wind 

turbine canopy, with a deviation of 2.1 m/s. The turbine is commercially 

available with a lift-based rotor design consisting of three airfoils, and a 1200-

watt generator is connected to the base of the turbine shaft. 

By means of placing seven sensors at different positions, we get the 

average mean horizontal flow velocity at the mid-height of the rotor at each 

location. This is done to average the velocities. The experimental field study 

has analyzed the flow field along with the center line of an array of nine pairs 
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of full-scale counter-rotating VAWTs. The velocity field result shows the 

blockage effect of the wind turbines and individual turbine pairs within the 

array. 

The authors (B. Bittumon, AmithRaju, Harish Abraham Mammen, 

AbhyThamby, and Aby K Abraham, 2014) considered high torque, which 

would be useful in self-starting and rotor having a high tip speed ratio for 

electrical generation. VAWTs have traditionally been more expensive to 

operate and maintain than HAWTs. The wind turbine rotors and stator are 

levitated correctly by using permanent magnets, which allow negligible 

friction with smooth rotation. At reasonable wind speeds, the power output of 

the generator satisfies the specifications needed to supply the LED load. 

Finally, the SEPIC circuit operated effectively and to the specifications that 

were slated at the beginning of the circuit design. 

This paper investigates and models the performance of a VAWT (Vertical 

Axis Wind Turbine) with PMSG. A careful and wide-ranging investigation is 

required since different environmental locations call for different wind speeds. 

For example, Nigeria is a country that has low and unsteady wind speeds. The 

wind turbine system consists of three main parts; wind speed, turbine, and 

generator. 

A three-phase PMSG was chosen for the experimental work due to its 

higher efficiency and less maintenance when compared to other generators. It 

does not require rotor windings, which involves a reduction in weight and cost. 

These elements, and the entire idea of this work, have been modelled and 

simulated by using MATLAB and SIMULINK. Results show the good system 

performance. The wind turbine system is designed to generate a three-phase 

current with a peak value ranging from 2.27A to 7.35A for a comparatively 

low wind speed range of 3m/s to 6m/s. From these values, the generated 

current is sufficient at low and unsteady wind speeds. Voltages from the steady 

state values generated range from 32.9Vrms/phase to 117.2Vrms/phase for the 

wind speed range of 3 m/s to 6 m/s. The power generated ranges from 32.08w 

to 335.6w for a relatively low wind speed range of 3m/s to 6m/s. If the 

methodology is implemented, the cost of design and cost of maintenance is 

reduced, making it economical and affordable. 

In (Peter J. Schubel and Richard J. Crossley, 2012), the design of a wind 

turbine blade is presented, which includes the value of maximum theoretical 

efficiency, propulsion and practical efficiency, HAWT blade design, and the 

amount of load acting on the blade. A detailed review of design loads for wind 

turbine blades is offered by relating aerodynamic, centrifugal, gravitational, 

gyroscopic, and different operational conditions. For efficiency reasons, 
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control, noise, and aesthetics of the modern wind turbine market are 

dominated by a horizontally mounted three-blade design. The use of yaw and 

pitch is to operate under different wind speed conditions. The basic load 

analysis result shows that the blade can be modelled as a simple beam with 

inbuilt support at the hub ends. A uniformly distributed load is used to 

represent aerodynamic lift during the blade operation. 

 

 

Design and Construction 

 

Wind turbines are designed to exploit the wind energy that exists at a location. 

Aerodynamic modelling is used to determine the optimum tower height, 

control systems, number of blades, and blade shape. Wind turbines convert 

wind energy to electricity for distribution. Conventional horizontal axis 

turbines can be divided into three components: 

 

1. The rotor component, which is approximately 20% of the wind 

turbine’s cost, includes the blades for converting wind energy to low-

speed rotational energy.  

2.  The generator component, which is approximately 34% of the wind 

turbine cost, includes the electrical generator, the control electronics, 

and most likely a gearbox.  

3.  The structural support component, which is approximately 15% of the 

wind turbine cost, includes the tower and rotor yaw mechanism. 

 

 

Figure 1. Gear Box Arrangements. 
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A 1.5 MW wind turbine of a type frequently seen in the United States has 

a tower 80 meters (260 ft) high. The rotor assembly (blades and hub) weighs 

48,000 pounds (22,000 kg). The nacelle, which contains the generator 

component, weighs 115,000 pounds (52,000 kg). The concrete base for the 

tower is constructed using 58,000 pounds (26,000 kg) of reinforcing steel and 

contains 250 cubic yards (190 m3) of concrete. The base is 50 ft (15 m) in 

diameter and 8 ft (2.4 m) thick near the center. 

 

 

Power Control 

 

A wind turbine is designed to produce a maximum of power at a wide 

spectrum of wind speeds. All wind turbines are designed for a maximum wind 

speed, called the “survival speed,” above which they do not survive. The 

survival speed of commercial wind turbines is in the range of 40 m/s (144 

km/h, 89 MPH) to 72 m/s (259 km/h, 161 MPH). The most common survival 

speed is 60 m/s (216 km/h, or 134 MPH). Wind turbines have three modes of 

operation. They are below-rated wind speed operations; around-rated wind 

speed operations; and above-rated wind speed operations. 

 

 

Gear Box Arrangements 

 

Wind-turbine gearboxes convert low-speed input from the turning blades to 

high-speed output to the generator, which is shown in Figure 1. The function 

of the gearbox in a wind turbine is to transmit torque from the rotor to the 

generator shaft, providing the desired conversion ratio for speed and torque. 

Gearbox failure is among the failures resulting in the longest average 

downtime and thus has a strong impact on production availability. It can cause 

severe secondary damage, e.g., in the main bearing or the rotor shaft. An 

additional failure cause of general validity for different gearbox components 

is manufacturing and installation deficiencies, which lead to increased friction 

or inappropriate high cyclic loading, resulting in damage. 

 

 

The Design of a Gear Blade 

 

Sixty-five percent of gears fail from pitting fatigue, and the gear fails 

completely after 60 thousand hours. The new gearbox is designed by replacing 
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the gear material, and new gear geometry is introduced. Pitting is a form of 

surface fatigue that may occur soon after an operation begins, and it is due to 

overloading. Improper lubrication and sudden starting and stopping may lead 

to micro pitting. 

 

 

Micro Pitting 

 

More recently, a microscopic pitting phenomenon—generally referred to as 

micro pitting—has become a very problematic failure mode in certain 

applications. Typically, high loading is present at lower speeds under low or 

marginal film thickness conditions, and micropitting becomes a significant 

risk. It is important to note that although it usually appears in a somewhat 

different presentation, micro pitting is also a factor in the operation of higher-

speed gears as well. 

 

 

Macropitting 

 

Until fairly recently, the surface durability of gears has been defined by 

macropitting, in which a crack initiates at a subsurface location where the 

shear stress exceeds the shear allowable. When such a crack propagates to the 

tooth surface, a small piece or, more often, several small pieces of material are 

liberated, leaving an inverted, cove-shaped defect. As this process is repeated, 

more and more pits appear, and eventually, the tooth surface is heavily 

damaged. 

 

 

Figure 2. 3D View of Gear Arrangement. 
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Figure 3. Helical Gear Tooth after Partial Tooth Fractures. 

 

Reason for Pitting 

 

The simple model is based on linear momentum theory. The analysis is 

assumed by a control volume, which consists of the surface of a stream tube 

and double cross-sections of the stream tube (Figure 5). The wind turbine 

model is represented by the actuator disk, which has a uniform discontinuity 

of pressure in the stream tube of air flowing through it. This analysis is not 

limited to any particular type of wind turbine. 

There are three different reasons for pitting on a gear surface: The surface 

contact stress of the gear is higher than the permissible surface fatigue stress 

of the material. When using helical gears, the axial force is produced in the 

gear shaft. For this reason, the clearance value in the bearing is increased. For 

this reason, the percentage of tooth contact is reduced from 99% to 90%. 

 

 

Figure 4. Classic Macropitting Fatigue. 
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Figure 5. Actuator disk of a wind turbine. 

 

Power Obtained from Wind Turbines 

 

The simple model is based on linear momentum theory. The analysis is 

assumed by a control volume, which consists of the surface of a stream tube 

and double cross-sections of the stream tube (Figure 5). The wind turbine 

model is represented by the actuator disk, which has a uniform discontinuity 

of pressure in the stream tube of air flowing through it. This analysis is not 

limited to any particular type of wind turbine. 

The total static pressure upstream and downstream of the rotor system is 

equal to the undisturbed ambient static pressure. By applying the conservation 

of linear momentum to the control volume enclosing the entire system, it is 

possible to find the force on the filling of the control volume. The net force is 

equal and opposite to the thrust, which is the force of the wind on the wind 

turbine.  

The momentum for a 1D incompressible, time-invariant flow is, 

 

 T=V_1 (ρAV)_1- V_4 (ρAV)_4 

 

ρ is the density of air, A is the value of the cross-sectional area, V is the 

velocity of the air, and the subscripts indicate the values at the numbered cross 

sections in Figure 1. For steady-state flow,  

 

 (ρAV) 1 = (ρAV) 4 = m, T = m ̇(V_1- V_4 ) 
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Figure 6. Wind turbine power versus wind speed. 

The thrust value is positive, so the velocity behind the rotor V4 is less than 

the velocity of the free stream V1. The Bernoulli equation is used in the two 

control volumes on both sides of the actuator disk. The stream tube upstream 

of the disk 

 

 p_1 + 1/2 〖pv〗_1^2= p_2 + 1/2 〖pv〗_2^2 

 

The stream tube downstream of the disk, 

 

 p_3 + 1/2 〖pv〗_3^2 = p_4 + 1/2 〖pv〗_4^2 

 

The upstream and downstream pressures are equal (p1 = p4) and the 

velocity across the disk remains the same (V2 = V3). The thrust of the actuator 

disc: 

 

 T = A_2 (P_2- P_3) 

 

It is possible to obtain by solving the equations: 

 

 T = 1/2 ρA_2 (V_1^2 - V_4^2) 

 

Equating the thrust values and the mass flow rate is  

 

 A2V2, V_2 = (V_1+ V_4)/2 
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Wind velocity at the rotor plane is calculated by the average of the 

upstream and downstream wind speeds. The axial induction factor “a”, then 

 

 a = (V_1-V_2)/V_1; V_2 = V_1 (1-a); V_4 = V_1 (1-2a) 

 

The axial thrust on the disk is: 

 

 T = 1/2 ρAV_1^2 [4a (1-a)] 

 

The non-dimensional thrust coefficient is as 

 

 C_T = T/(1/2 ρAV^2 ) = (Thrust Force)/(Dynamic Force) 

 

 

Construction of a Wind Mill 

 

The windmill can be divided into two major parts: the mechanical turbine and 

the electric generator. The following section gives a brief description of the 

wind energy system, including the main components, design, and operation. 

Among the above, the nacelle is a casing that houses the key components of a 

windmill, such as the gear, generator, electronic control unit, yaw controller, 

brakes, etc. The rotor blades capture the wind’s energy and convert it to 

rotational energy for the shaft. The hub in turn transfers the energy to the low-

speed shaft. Blade designs operate on either the principle of drag or lift. The 

low-speed shaft of the wind turbine connects the rotor hub to the gearbox. 

 

 

Gear Box 

 

Most wind turbine installations are equipped with similar gearboxes; a typical 

example is the three-stage spur wheel gearbox (lower capacity area), the one-

stage planetary gearbox with two spur wheel stages (middle capacity area), 

and the two-stage planetary gearbox with one spur wheel stage (higher 

capacity area). In addition to that, there are currently some interesting variants. 

As you can see, the majority of wind turbine installations have one rotor only, 

which generally is up. Likewise, most installations have one generator only 

i.e., the gearbox has exactly one input and one output. These are the four 

combinations conceived and partially implemented. Several generators, or 
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rotors, are unusual. The author does not know of any installation with several 

rotors and several generators. The wind turbine gearbox’s mission is to 

transform the low speeds and high torques at the gearbox input into higher 

speeds and lower torques at the output. 

 

 

Methodology and Material Selection 

 

Wind Turbine Gear: Design and Analysis 

A gear rating is parametric in nature. The approximate tooth size needed to 

carry a specified load is too small. As the dynamic factor decreases as size 

decreases, the rating is slightly higher (10%) than the minimum acceptable 

values. 

For this work, two different types of materials were selected for analysis. 

They are EN-36 alloy steel and Chromium Vanadium alloy steel. The 

chemical and mechanical properties of the materials are shown in Table 1. The 

design parameters of both materials are shown in Table 2. As per the design 

calculation, the required gear sets were designed by Pro-E Wild Fire modelling 

software, and then the simulation was carried out by ANSYS software. 

 

Table 1. Material properties 

 

Material EN-36 Chromium Vanadium 

Chemical composition 

Carbon 0.15% 0.55-0.65% 

Manganese 0.45% 0.70-0.90% 

Silicon 0.20% 0.20-0.35% 

Nickel 3.50% - 

Chromium 0.80% 0.80-1.10% 

Sulphur 0.025% 0.040% 

Phosphorous  0.025% 0.040% 

Mechanical properties 

Young’s Modulus 200 ×103 N/mm2 206 × 103 N/mm2 

Density 7.85 × 10-6 Kg/mm3 6.59 × 10-6 Kg/mm3 

Tensile strength 1180 N/mm2 1370 N/mm2 

Yield strength 765 N/mm2 915 N/mm2 

Factor of safety 0.27 0.29 

 

 

 



P. Sakthivel 

 

106 

Table 2. Design parameters of existing & new gear materials 
 

EN-36 Chrome-vanadium 

σu = 1180 × 106 N/m2 σu = 1370 × 106 N/m2 

σc = 909.28 × 106 N/m2 σc = 622.85 × 106 N/m2 

σb = 109.17 × 106 N/m2 σb = 41.45 × 106 N/m2 

Power P = 103.452 Kw P = 103.452 Kw 

Gear ratio1:2 1:2 

 

 

Corrective Action 

 

Nowadays, so many corrective actions are there to prevent the pitting of gear. 

They are: 

Increasing the hardness of the gear material, improving the surface 

hardness of the material, redesigning the gear geometry, providing a proper 

lubrication system, and eliminating the axial force of the rolling element are 

all options. 

 

Design and Analysis of Wind Turbine Blades 

 

Windmill Using a Multi-Generator  

The two electromagnetic induction generators are connected to the end of the 

shaft by coupling. The wind turbine rotor transmits the power to the two 

generators through a bevel gear. The output power of a multi-generator wind 

turbine will be double that of a single-generator wind turbine. 

 

The Methods’ Guiding Principle 

The wind turbine works by the conversion of wind energy to electrical energy 

by using the generator. The blades of a wind turbine rotate due to the force of 

air striking them. Due to the blade rotation, electricity is generated by the shaft. 

 

Construction of the Methods 

The main components of the horizontal blade wind turbine are as follows: 

blades and rotor; electromagnetic induction generator; gear and shaft. The 

blades are attached to the rotor. The rotor is connected to the gear through a 

shaft and balanced by bearing mountings. The gearbox consists of the driven 

gear and driver gear. The driven gear teeth are meshing with the driver gear. 

The low-speed shaft is connected by a driver gear, and the other side is 

connected by the turbine rotor of the wind turbine. The high-speed shaft is 
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connected by the center of the driven gear. Both ends of the shaft are connected 

to the same or different generators through coupling. For vertical blade wind 

turbines, the main parts are as follows: blades and rotor; electromagnetic 

induction generator; gears and shaft. Of these two types of generators, one is 

rotated in a clockwise direction and the other one is rotated anticlockwise. Due 

to the anticlockwise rotation of the generator, it does not produce the current. 
 

 

Figure 7. Wind turbine configuration. 

 

Power and Torque Transmission in Bevel and Spur Gears 
 

The power produced from the wind turbine rotor flows through the spur gear 

and it is divided into two ways: one part goes straight and another side goes to 

the driven gear, then it is divided into two sides; one is the right side, which is 

used by the generator, and the other side is the loss of power and torque. So, 

the windmill carries on with an efficiency of 50%. 

In a bevel gear system, the power and torque generated by the wind 

turbine flow to the driver gear and then to the driven gear. Then it is divided 

into two sides. One is on the right side by Generator G2 and the opposite side 

by Generator G1. So, the windmill has increased efficiency when compared 

with the spur gear arrangement. 
 

 

Parts of a Windmill  
 

Blades 

The blades are basically the wings of the wind turbine. Blades act as barriers 

to the wind. When the wind forces the blades to rotate, it transfers some 
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amount of energy to the rotor. Blades are generally available in two types as 

follows: horizontal and vertical. 

 

Shaft 

The wind-turbine shaft is connected to the rotor. And the rotor transfers its 

mechanical energy to the shaft, which enters into the generator at the other end 

of the shaft. The shaft is a machine member which has high strength to support 

the total weight of all three blades. 

 

Gear (Bevel Gear) 

Bevel gears are drive systems that convert the direction of a shaft’s rotation 

exactly perpendicular. It is usually fixed on shafts that are 90 degrees, but it 

can be designed to work at other angles as well. 

 

  

Figure 8. Power and torque flow of the transmission in spur and bevel gears. 

 

Table 3. Chemical composition 

 

Name of Material Composition 

Carbon C 0.35 - 0.45% 

Chromium Cr 1.0 - 1.40% 

Nickel Ni 1.30 – 1.40% 

Manganese Mn 0.45 - 0.70% 

Molybdenum Mo 0.20 - 0.35% 

 

Table 4. Mechanical properties 

 

Tensile Strength 

(N/mm2) 
Yield Strength (N/mm2) Hardness Value BHN 

800 to 1300 600 to 1200 300 to 400 BHN 
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Generator 

A generator is a device that uses electromagnetic properties to produce 

electrical energy. A simple generator consists of a conductor and magnets. The 

conductor is typically a coiled wire. The generator shaft connects to an 

assembly surrounded by permanent magnets that the coil of wire winds 

around. 

 

Tower 

The turbine is usually positioned upwind of its supporting tower. It supports 

the rotor, the drive train mechanism, and other types of equipment, including 

control mechanisms, ground support equipment, and interconnection devices. 

 

 

Material Specification 

 

The material that is used to make the shaft, gear, bolt, and nut is alloy steel. 

[Case Hardened] 40 Ni 2 Cr 1 Mo 28. 

 

 

Schematic of Wind-Hybrid System 

 

Figure 9 shows the schematic layout of a 3-phase, 4-wired autonomous 

system. The two back-to-back connected with insulated gate bipolar transistor 

systems (IGBTs), pulse width modulation (PWM), and voltage source 

converters (VSCs) are connected among the stator windings of SCIG and 

PMSG to facilitate bidirectional power flow. The tip speed ratio determines 

the SCIG rotor-speed set point for a given wind speed. The mechanical energy 

generated at this speed lies at the maximum energy of the turbine. The load-

side converter is controlled by the regulation of load-voltage magnitude and 

frequency. For maintaining the load-frequency constant, it is also essential that 

excess power in the system be side tracked to the battery source. 

The BESS on the DC bus of the PWM converter is to transfer the power 

from the battery without any converter. The role of the transformer and 

converter is to recompense the unbalanced condition with the load currents. 

The new system consists of three different modes of operation. For the 

first mode, the necessary power of the load is less than the power produced by 

the synchronous generator. The excess power generated by the PMSG is 

transformed into the BESS through the load-side converter. In the second 
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mode, the power generated by SCIG is supplied through the converter on the 

load-side, and the remaining power is stored in BESS. In the third mode, the 

shortage power is supplied by the BESS, the generated power by PMSG, and 

the shortage by BESS is supplied to the load-side converter. 

 

 

Figure 9. Schematic layout of the hybrid system. 

 

Figure 10. Performance coefficient vs. tip speed ratio. 

The Wind Turbine Design 

 

The hybrid system being considered has a wind turbine capacity of 55 kW and 

a hydro turbine of 60 kW, respectively. The voltage of the battery bank is 

considered 700V. The maximum value of the RMS line voltage at the load 

terminals is 415 V. By considering the ability of the new system to provide 
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electricity at a load rate of 60 kW for 10 hours, the storage capacity of the 

battery power bank is taken as 600 kWh. The commercially available battery 

bank contains cells at 12 V. The capacity of each cell is taken as 150 Ah. To 

achieve a voltage range (700 V) through series linked cells of 12 V, the battery 

bank has 59 (700/12) cells in series. The storage capacity of this combination 

is 150 Ah and the total ampere per hour required is (600 kWh/700 V) = 857 

Ah, and the number of sets required to be linked in a parallel connection is 

(857 Ah/150 Ah) = 5.71 = 6. The battery bank contains six parallel-connected 

sets and 59 series-connected battery cells. 
 

 

Gear Ratio of Wind Turbine 

 

The wind turbine will produce 55 kW at a rated wind speed of 1.2 m/s. 

Mechanical power Pm is calculated for wind speeds less than the rated wind 

speed by multiplying wind speed Vw, turbine radius rw, the density of air, and 

coefficient of performance (Cpis). The maximum coefficient of performance 

is achieved at the optimal tip ratio (λ∗w). The values of Cpmax and tip ratio 

are 0.4411 and 5.66. Consider the values of wind speed Vw = 11.2 m/s, Pm = 

55 kW, Cp = 0.4411, and density of air ρ = 1.1544 kg/m3 for 4.1. The wind 

turbine’s radius, rw, is discovered to be 7.5m. The gear ratio is thus 12 

[(100*705)/5.66*11.2]. 
 

Pitting Analysis of Wind Turbine Blades 

The first step in this exercise was to design the anticipated gear sets. As gear 

ratings are parametric in nature, the approximate tooth size needed to carry a 

specific load has to be selected. The rating is slightly higher (10%) than the 

minimum acceptable values as the dynamic factor decreases with size. The 

required gear sets were designed by Pro-E wildfire and then the simulation 

was carried out by ANSYS WORKBENCH. 
 

Eliminating Methods 
 

(i)  Replacing the gear material to have higher hardness. 

(ii) Reworking the gear geometry 

(iii) Removing axial force. 
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Specification of the Present Double Stage Gear 
 

1. Power of the gearbox (P) = 500KW 

2. Type of gear: Helical gear. 

3. The gearbox material is Chromium-Vanadium. 

4. Rockwell hardness of the Material (HRC) = 41 

5. The ultimate tensile strength of the material is13700kgf/cm2 

6. Lubrication- Flash type. 

7. Type of bearing: Roller bearing. 

 

 

Design Calculation for New Gear (Herringbone Gear) 
 

Two-stage Herring bone gear calculation: 

 

First Stage Gear 

Alloy steel (40 Ni 2 Cr 1 Mo 28) is used. 

N1 pinion, N2 main wheel. 

N2 = 15 rpm, P = 500 kw 

HRC = 57 i = 10. 

Design surface contact stress: [σc] = 933.66 *106 N/m2 

Design bending stress: [σb] = 309.16*106 N/m2 

Calculation of initial design torque (Mt): 

 [Mt] = 21107.58 N-m 

Calculation of centre distance:a = 1.04211 m 

Calculation of normal module (Mn): Mn = 7.98*10-3 m 

Calculation of the number of pinion and gear teeth (Z1 and Z2): 

Assume Z1 is equal to 20 [Z1 is equal to 20]. & Z2 = 200 

Calculation of pitch circle diameter of pinion and gear:  

d1= 0.208865 m & d2 = 2.08865 m 
 

Revised Calculation 

Calculation of normal module (Mn): Mn = 7.25*10-3 m 

Calculation of centre distance (a):a = 1.14875 m 

Calculation of design torque [Mt]: [Mt] = 22211.66 N-m 

Checking design calculation: σc
 = 827.56 *106 N/m2 

[σc] > σc, Design is Safe. 

σb = 122.61*106 N/m2    

[σb] > σb, Design is Safe. 
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Surface fatigue stress is permissible.  

(σcp) = 1425 *106 N/m2 : (σcp) > σc., Design is Safe. 

Surface wear strength condition is satisfied. 
 

Second Stage Gear 

While N2 = 150 rpm, N1 = 1500 rpm. 

[Mt] = 2110.7666 N-m 

Where, 

 [σc] = 933.66*106 N/m2
 

 [σb] = 309.16 *106 N/m2
 

Calculation of centre distance (a): a = 0.483709 m 

Normal module calculation: Mn = 3.67 4*10-3 m 

Revised Calculation: 

Normal module calculation: Mn = 3.86 4*10-3 m 

The center distance is calculated as a = 0.574375 m. 

Design torque is calculated as [Mt] = 22221.1 N-m. 

Calculation of design torque: [Mt] = 22221.1 N-m  

Check calculation: σc = 740.16 *106 N/m2 

[σc] > σc , Design is Safe. 

 σb = 91.72 *106 N/m2 [σb] > σb , Design is Safe. 

Surface fatigue stress permissible 

(σcp) = 1425*106 N/m2 

[σc] = 933.66 *106 N/m2: (σcp) > σc. 

The condition is satisfied.  
 

 

Comparison Table for Present and New Gear 
 

Table 5. Present and new gear 
 

Title Present Gear (Helical) New Gear (Herring bone) 

Material Chrome-vanadium Nickel-chromium 

HRC 41 57 

Ultimate tensile strength σu =1370*106 N/m2 σu = 1550*106 N/m2 

Surface contact stress σc = 635.60*106 N/m2 σc = 933.66*106 N/m2 

Bending stress σb= 279.7*106 N/m2 σb = 309.66*106 N/m2 

Module First Stage gear 

Mn = 13*10-3m 

Second Stage gear 

Mn = 6*10-3m 

First Stage gear 

Mn = 8*10-3m 

Second Stage gear 

Mn = 4*10-3m 

Power P = 500KW P = 500KW 

Gear ratio 1:10 1:10 

Gear type Helical gears Herring bone gears 
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Results and Discussion 

 

The helical gear is modelled using Pro-E software. Then the different types of 

analysis like stress deformation, displacement vector, and strain deformation 

are carried out by using ANSYS software. Table 6 summarises the analysis 

values for both materials. 

 

Table 6. Analysis values 

 

Particulars EN-36 Chrome-Vanadium 

Displacement vector 0.20284 × 10-3 m 0.20924 × 10-3 m 

Stress Deformation 3321 × 10-6 N/m2 3340 × 10-6 N/m2 

Strain Deformation 0.016493 0.017636 

 

The analysis result shows that Chrome-Vanadium material has high 

values of stress, displacement, and strain compared with EN-36 material. By 

changing the material to Chrome-Vanadium instead of EN-36, pitting failure 

is minimized to the desired level. The chromium vanadium material is better 

than EN-36 material for making wind turbine gears, thereby providing higher 

strength and longer life. 

 

 

Figure 11. Helical gear. 
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Figure 12. Stress deformation (EN-36). 

 

Figure 13. Stress deformation (chromium vanadium). 

 

Figure 14. Displacement vector (chrome-vanadium). 
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Figure 15. Displacement vector (EN-36). 

 

Analysis of Modified Wind Turbine Blades  

A balanced load and a secondary dynamic load at a wind speed of 11 m/s are 

connected to the network. At this wind speed, the wind turbine produces 55 

kW and the hydro turbine produces 60 kW. So the total power generation is 

115 kW. The model is tested with a half load of 57.5 kW, a full load of 115 

kW, and a 10% overload. The waveforms are purely sinusoidal, as expected 

for the above conditions. The magnitude and frequency of the load voltage are 

also maintained at constant levels. 

 

 

Double Multiple Stream Tube Model 

 

The Double Multiple Stream Tube (DMST) models are used for the difference 

between the upwind and downwind passes through each blade. This is done 

by dividing the stream tube into an upwind and downwind half. The turbines 

interact with the wind upwind and downwind, which separately bypass 

through the blades. The upstream wind-induced velocity (V∞) is the  

average of the far upstream (V) and downstream equilibrium (Ve) air velocity. 

𝑉𝑎𝑢 =  
1

2
(𝑉𝛼 + 𝑉𝑒)(𝑜𝑟)𝑉𝑒 =  2𝑉𝑎𝑢 − 𝑉𝛼. 
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The conventional airfoils used for the Darrieus VAWTs were 

NACA0012, NACA0015, and NACA0018. These blades are of symmetrical 

geometry with minimum or negative torque generations at lower TSRs. 

Among these blade profiles, NACA0018 was selected for the analysis. The 

airfoil selected is to vary the trailing edge, which is from the original 

dimensions. For this analysis, the conventional NACA0018 symmetrical 

airfoil was used for the analysis of the double multiple stream tube (DMST) 

model. The trailing edge axis inclination of the blade is set to 15. 

 

 

Figure 16. NACA0018 modified airfoil. 

 

Table 7. Flow conditions 

 

TSR (λ) 0.25 0.5 0.75 1 1.5 2 3 3.5 4 5 

Velocity m/s 4 4 4 4 4 4 4 4 4 4 

Turbine angle 

Velocity (rad/s) 

0.5 1 1.5 2 3 4 6 7 8 10 

 

 

CFD Analysis  

 

In the VAWT analysis, the modified airfoil limit is set to 0.2 m in chord length 

with a radius of 2 m. The 2D model of the turbine is created by Gambit 

software, the mesh of the model is generated, and the commercial CFD fluid 

is used for numerical solution. The RNG k-epsilon model was adapted for the 

turbulence closure. 

 

 

DMST Analysis  

 

In the VAWT analysis by using DMST, the normal NACA0018 airfoil is set 

to 0.2m chord length and the radius of the turbine radius is 2m. The wind 
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velocity used for this analysis is 4 (m/s) and the tip speed ratios (λ) are 0.5, 1, 

1.5, 2, 3, 4, 5, and 6. The number of stream tubes used for the analysis is 12, 

with an angle of Δθ = 15°. 

The coefficient of power for the modified airfoils is calculated by 

combining the performance of the turbine trailing edge angle of 15 for TSR 

limit is 0.1 to 1 and without inclination of the trailing edge for TSR value is 

greater than 1. The Cp was found from the ratio between the modelled turbine 

power and the available wind power in the air. In DMST, the Cp value is less 

than about 2.6. The CFD analysis for the modified airfoil system indicates that 

positive torque occurs at low tip speed ratios. 

The Cm values are obtained from the average moment of three airfoils, 

which is modelled and analyzed through computational analysis. The modified 

airfoil tip speed ratio has values of 0.1, 0.25, 0.75, and 1. As can be seen, the 

value of Cm is higher and seems to reduce up to TSR = 0.5 and then starts to 

rise. The torque values were calculated from the coefficient moment (Cm) by 

using the value of the modelled airfoil, turbine area, air density, free stream 

velocity, and the radius of the turbine. As the graph shows, the average torque 

values at each of the TSR simulated values are positive. 

The analysis result shows that the minimum stress value is 7.63607X10-

7 N/mm2 (MPa) at node 16099 and the maximum stress value is 0.304129 

N/mm2 (MPa) at node 11002. The maximum displacement value is 0.101712 

mm at node 8538. 

 

 

Figure 17. Simulation of a blade. 

 



Design, Modeling and Analysis of Wind Turbine Gear … 

 

119 

 

Figure 18. Stress and displacement analysis of the blade. 

Table 8. Results of the analysis 

 

Particulars Helical gear Herringbone gear 

Stress deformation 453.24*10-6 N/m2 554.97*10-6 N/m2 

Strain deformation 0.0028328*10-3 m 0.0022652*10-3 m 

Total deformation 0.0001382*10-3m 0.0008076*10-3 m 

 

 

Pitting Analysis 

 

The maximum amount of pitting is eliminated by the use of material and gear 

changes. The best-suited gear to be used in a windmill is herringbone gear. 

 

 

Figure 19. Helical gear design. 
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Figure 20. Herringbone gear design. 

 

 

Figure 21. Helical gear stress distribution. 
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Figure 22. Herringbone gear stress distribution. 

 

Conclusion 

 

Windmills have been around for thousands of years. They almost resulted in 

failure due to gear. In this work, it was finally found that herringbone gear is 

the most suitable gear to be used in the windmill. Furthermore, the gear’s 

lifetime at full load increased to nearly 85,000 hours. The present scenario is 

all about wind energy, so this project would hold up well regarding the 

construction of windmills. Through this design, it is concluded that 

herringbone would be the better choice to be used in windmills. By achieving 

this concurrent engineering concept, the product development cycle time can 

be reduced considerably for any kind of model with the required needs. 

Theoretical and experimental work is carried out to confirm the validity of the 

analytical work. The control system of the induction generator, in combination 

with the MPPT of the wind turbine, has developed with minimum resistive 

power loss. The simulation was carried out using MATLAB and the results 

have been tabulated. From the simulated result, the total ohmic loss has been 

reduced to 5.79% in the grid side inverter, the power output has increased to 

100w, and the efficiency has increased to 11.5%, so it can be one of the 

efficient wind energy conversion systems. Among the renewable energy 

sources, small hydro systems and wind systems have the ability to match each 

other. Further, there are many isolated locations that cannot be linked to the 
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grid where wind potential and hydro potential exist simultaneously. For such 

locations, a type of three-phase four-wire autonomous wind-hydro hybrid 

system is used, with one cage generator driven by a wind turbine and another 

synchronous generator driven by a hydro turbine, which includes the BESS. 

The system has been modelled and simulated in MATLAB and Sim Power 

System. The performance of the hybrid system has been demonstrated by 

consumer load variation and mechanically by wind speed variation. The 

performance of the system is within the load range while maintaining constant 

voltage and frequency ranges. 
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